UDC 521 525 YU ISSN 0373--3734

BULLETIN

DE

L'OBSERVATOIRE ASTRONOMIQUE DE BELGRADE

NO 136

BEOGRAD 1986

BULLETIN

DE

L'OBSERVATOIRE ASTRONOMIQUE DE BELGRADE

FOUNDED IN 1936

PUBLISHING COUNCIL:

A.Kubičela	(Astronomical Observatory, Belgrade), Chairman,
Đ Jović	(Boris Kidrič Institute of Nuclear Sciences, Belgrade),
M.Kuzmanoski	(Department of Astronomy, Faculty of Sciences, Belgrade University, Belgrade),
M.Mitrović	(Astronomical Observatory, Belgrade),
S.Sadžakov	(Astronomical Observatory, Belgrade),
G Teleki	(Astronomical Observatory, Belgrade)

EDITORIAL BOARD:

G. Teleki, Editor-in-Chief, M.S. Dimitrijević, Editor, O. Atanacković-Vukmanović, Secretary J. Arsenijević, Lj.A. Mitić, M. Mitrović Z. Knežević

Published by Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

Director of the Astronomical Observatory: M.Mitrović

The publication of this issue is financially supported by the Republic Community of Sciences of Serbia

Printed by

Zavod za grafičku delatnost Instituta za vodoprivredu "Jaroslav Cerni" Beograd – Bulevar vojvode Mišića 43/III; Tel.: 651–067

BULLETIN

DE

L'OBSERVATOIRE ASTRONOMIQUE DE BELGRADE

Nº 136

UDC 523.741

FURTHER BELGRADE RESULTS OF THE LARGE-SCALE PHOTOSPHERIC VELOCITY RESEARCH

A. Kubičela

Astronomical Observatory, Volgina 7, 11050 Beograd, Yugoslavia

M. Karabin

Astronomical Institute, Faculty of Sciences, Studentski Trg 16, 11000 Beograd, Yugoslavia

I. Vince

Astronomical Observatory, Volgina 7, 11050 Beograd, Yugoslavia

Z. Ivanović

Astronomical Observatory, Volgina 7, 11050 Beograd, Yugoslavia

(Received November 13, 1985)

SUMMARY. A series of Doppler shift spectrographic observations in Fel 630.25 nm has been analysed. Solar sidereal equatorial rotational velocity amounting to 2.82 μ rad s⁻¹ was found. Low space-resolution (3?8x 3?8 at the solar disk) line-of-sight velocity data show a difference of 12 ms⁻¹ between the quiet and by activity contaminated photosphere. The equatorial limb effect out of active regions exhibits at $\theta = 27^{\circ}$ a blue shift with respect to the centre of the solar disk amounting to 46 ms⁻¹ while the meridional one amounts to 14 ms⁻¹ at $\theta = 30^{\circ}$. The meridian minus equator limb effect difference (named ,,meridional excess") would give a poleward horizontal meridional velocity of about 100 ms⁻¹. As such a fast meridional flow is doubtfull, additional explanations of the meridional excess have to be considered.

1, INTRODUCTION

Photospheric large-scale velocities have been observed at Belgrade Astronomical Observatory since 1974. Previous results have been published twice (Kubičela and Karabin, 1977, Karabin and Kubičela, 1979). After certain improvements in the instrument and the reduction procedure, a suitable series of observations has been obtained in 1983.

This observational material has been analysed with the aim to estimate the influence of solar activity in our specific observation approach, to obtain a limb effect curve and to find some parameters of a possible meridional motion.

2. OBSERVATIONS

The observations were done with the equatorial solar spectrograph of Belgrade Astronomical Observatory (Kubičela, 1975). The series contains 13 daily observations from 2, Sept. 1983 till 3, Oct. 1983 (see the first column in Table I). Central meridian and equatorial diameter of the solar disk were covered with a total of 17 observed points located at the sin ϕ (ϕ = heliocentric angle) values: 0.00, 0.25, 0.50, 0.66 and 0.79. In order to filter out to some extent the small-scale velocity fields, the solar image was observed extrafocally hence integrating a square portion of the solar disk of 3.8 side around each observed point.

Table 1: Estimated Presence of Activity at the Observed Radii of the Solar Disk

Date	Active	radiús	Date		Activ	e radius
(UT)	СМ	EQ	(UT)		CM	EQ
Sept. 2.454	N	_	Sept.	23,375	S	E + W
3.417	none	E		24.375		-
9.362	S	E + W		28,471		E
11,400	S	E + W		29,467		E
14,442	S + N	W	Oct.	2,404	N	none
15.354	S + N	W		3.471	S	-
16.333	S	W				

The measurements were performed with the Belgrade Observatory Doppler measuring machine described by Vince (1983). FeI 630.25 nm spectral line was measured with respect to the two neighbouring telluric lines. Four spectrograms were measured at each observed position of the solar disk. Entrance slits of the measuring machine cover in both wings of the Fe I line intervals of 6.4 pm with a distance between them of 2.8 pm. In the line profile this corresponds to an integration interval from about 40% to 80% of the continuum intensity what defines the measured wavelength as an implicitly averaged line bisector within the same intensity interval.

The measured line shifts were corrected for the Earth's rotation, its orbital motion and the effects of extrafocal observations depending on solar rotation and limb effect fields across the disk and amounting up to ± 8 ms⁻¹ (Kubičela et al., 1985). It is known that solar active regions contribute with a predominant red shift in large-scale velocity fields interpreted as a steady downward motion (Howard, 1971 and 1972) or as an effect of radiative transfer in a complex environment of magnetic flux tubes (Cavallini et al., 1984). To discern this activity effect in our observation, daily solar maps of Solnechnye Dannye for the corresponding period were used. Any observed solar radius along the central meridian (CM) or along the equatorial diameter of the solar disk (EQ) has been assigned as ,,active" if it crossed an active region contour in the corresponding activity map or if it was touched by such a contour. Actually, in most cases only a small portion of active radius was contaminated with the photospheric activity. Solar filaments were neglected in this procedure. The observed radii oriented toward N, E, S and W ends of the solar disk are listed in Table I. Here the absence of the velocity observations along an equatorial diameter has been marked with a hyphen.

3. RESULTS AND DISCUSSION

3.1 Rotation

A by-product of the reduction of equatorial distribution of the observed line-of-sight velocities is the sidereal solar equatorial rotation velocity. The linear regression procedure applied to the averaged observed velocity data along the equatorial diameter yielded a slope which after being corrected by the factor sec B_o (B_o = heliographic latitude of the Earth) amounted to 1961 ms⁻¹ or 2.82 x 10⁻⁶ rad s⁻¹. The corresponding values for the quiet and active equatorial radii are 1967 ms⁻¹ and 1957 ms⁻¹ respectively. As far as the differential solar rotation is concerned the influence of non-zero value of B_o, being about 3.5 ms⁻¹, has been neglected. Also, the synodic and sidereal rotation axes were taken as identical (neglecting 1 ms⁻¹).

The obtained value of 2.82 x 10^{-6} rad s⁻¹ is within the long-term scatter of the observed solar equatorial rotation velocities (e.g. Paterno, 1979). At the same time it is somewhat smaller than some other similar measurements in 1983, Namely, Pierce and Lopresto (1984) using various spectral lines in the period from March till October 1983 found an equatorial velocity of 1986 ms^{-1} (or 1977 ms^{-1} for our spectral line in May and June). Also, the corresponding quantity in Snodgrass (1984) amounts to 2007 ms⁻¹. No corrections for scattered light in the atmosphere or in the instrument have been done in our case. The obtained difference between our quiet and active rotational velocities we do not take as significant - especially having in mind the overall accuracy of the whole material and the small number of the observed quiet equatorial diameters (only 3).

3.? Activity Contribution

Distribution of the average line-of-sight velocities in 9 observed points along the central meridian (A, B, C, D, S, V, X, Y and Z) is given in Table II. The corresponding velocity distribution along the equator (points RE, T, N, M, S, L, K, U and RW) have been found after subtracting the obtained rotational slope for quiet, active and all equatorial radii separately. All velocities in Table II, except those derived from three or less observations, are accompanied by the r.m.s. errors of the mean values.

The first interesting aspect of these central meridian and equatorial velocity profiles is the difference between the quiet and active radii data. They are shown in Figure 1 for the central meridian and in Figure 2 for the equa-

an harmon dala	and to the second	adasta anila	entoina mar	ma ní	and a second second	anuda febra	ada di Mir	1. Been Star	Initial and
$\sin \theta$	0.79	066	0.50-	0.25	0.00,	0.25	0.50	0.66	0.79
La La La	South	atani ti kini	2CUL a 1a	d anti-	Center	Contra States a	81) IC 1910 		North
CM points	A	В	С	D	S	V	X	Y	Z
Ouiet radii	+47 -	+ 1 -	-19 -	- 8 -	-2 ± 4	$-1\pm.8$	-15 ± 8	+11± 6	+69±8
Active radii	+41±5	+12±6	+ 3±13	-11±7	$+1\pm4$	+ 8±13	+ 3±15	+26±11	+55±18
All radii	+42±4	+10±6	. – 2±11	-11±5	0±4	+2±7	- 9±7	+15± 5	+63±7
	East				Center				West
EO points	RE	T	N	M	S	L	K	U	RW
Ouiet radii		+ 7 -	-53 -	-33 -	-0-	-24-	-33-	-16-	1975 1995
Active radii	+28 -	+11± 9	-20 ± 9	-13±11	0±10	-15±14	-20±13	+ 2±20	+43 -
All radii	+31 -	+12±11	-28 ± 10	-16 ± 12	0±10	-18±10	-36 ± 10	- 7±15	+54 -

tor as full-line curves in the case of quiet photosphere and as dashed lines in the case of active regions partly covering the observed radii of the solar disk.

All the curves follow in general the expected form where the limb effect shape dominante., but the active velocity profiles are in most points red—shifted with respect to the quiet ones. This is in accordance with the mentioned prevailing red shift in active regions. Somewhat more complex shape of the active central meridian velocity profile is probably due to non—uniform activity distribution or even to the presence of some possible localized blue—shifted region (Howard, 1971). The most striking red—shifted activity contribution was found in the central meridian velocity distribution on 28. September when a sunspot group entered the observed area

Fig. 2. Observed line-of-sight velocities along the solar equator. Full line: quiet photosphere; dashed line: active photosphere.

around the point C. The line-of-sight velocity difference between the 28. September data and the mean value was +98 ms⁻¹ contributing to the mean active velocity profile at C with about 9 ms⁻¹. Activity along the equator was not very frequent but was more evenly distributed than along the central meridian. The equatorial active velocity profile is also red-shifted with respect to the quiet one.

It is found that the mean difference between the active and the quiet line-of-sight velocity profiles for the seven central observed point (points B to Y at the central meridian and T to U at the equatorial diameter) amounts to 12 ms^{-1} . It is not clear whether the opposite sign of this difference at the peripheral points of the central meridian (A and Z) is a systematic effect. The

same quantity for the equator has not ben derived as the points RE and RW in the quiet photosphere were not observed.

3.3 Limb Effect

As far as the limb effect is concerned, it is supposed that both central meridian and equatorial line shift distributions are symmetric with respect to the centre of the solar disk. The values of the observed quiet photosphere line-of-sight velocities averaged in such a way are given in Table III (column L_m for the central meridiar, and Le for the equator). Here the photospheric data disturbed by activity have not been used and all the central meridian data have been corrected for +2 ms⁻¹ in order to normalize the central limb effect value to zero. The corresponding limb effect curves are shown in Figure 3a. Unlike some of our earlier results when the equatorial curve seemed to be monotonic or when symmetric and monotonic equatorial limb effect functions have been tentatively assumed (Karabin and Kubičela, 1979), both of the curves in Figure 3a have obvious off-centre minima at $0.45 \le \sin \theta \le 0.50$ (or $26^\circ \le \theta$ **≤** 30°).

Table III: Limb Effect and Meridional Excess in the Quiet Photosphere (in ms^{-1})

sinθ	Central meridian	Lm	Equatorial diameter	L _e	ME
0.00	S	0	S	0	0
0.25	D, V	- 1	M.L	-28	+27
0.50	C, X	-14	N, K	-43	+29
0.66	B, Y	+ 10	T.U	- 5	+15
0.79	A, Z	+ 65	RE, RW	_	-

Though less complete, the equatorial curve L_e , presumably free from large-scale stationary flows, has to be taken as more representative for the limb effect itself. It can be represented in a ccs θ polynomial form

$-7035 + 26742 \cos \theta - 33511 \cos^2 \theta + 13804 \cos^3 \theta.(1)$

Expression (1) satisfies the obtained limb effect values with an error less than 1 ms^{-1} but it is severely limited to the interval $0.00 \leq \sin \theta \leq 0.66$ what makes it meaningless at the extreme limb. The curve has a minimum of -47 ms^{-1} at $\theta = 27^{\circ}$. A tendency of increasing the red shift toward the limb is also present. Such a shape could be expected having in mind the integrated effect of unresolved granular motions (Beckers and Nelson, 1978), though some minor contribution can be allowed for interatomic collisional processes too (Beckers and Vegvar, 1978). The effect is highly line-dependent and even the off-centre blueshift is not always observed in a given spectral line. Perhaps that can also depend on the observational approach. Among recent results, for example, Balthasar (1984) found for 59 FeI lines (including FeI 630.25 nm) a mean blue shift of 42 ms⁻¹ and 73 ms⁻¹ along the equatorial radii, but only 0 ms⁻¹ and 5 ms⁻¹ along the polar ones. Cavallini et al., (1985) found the off-centre minimum in FeI 629.78 nm but in FeI 630.15 and 630.25 they did not detect it. In our case the central meridian off-centre minimum in FeI 630.25 nm has been so far observed three times and the equatorial one once.

Fig. 3. a) Limb effect in quiet solar photosphere. L_m : along the central meridian; L_e : along the equator. b) Meridional excess (ME = $L_m - L_e$)

3.4 Meridional Excess

The term meridional excess refers to the difference of meridional and equatorial spectral line shift distribution (whether it is symmetrical with respect to the centre of the solar disk or not) expressed in wavelenght or velocity units. It was almost routinelly interpreted as a line-of-sight component of a horizontal meridional motion. Within the appearance of some alternative views (e.g. Cavallini et al., 1984 and 1985), such a term allowing different interpretations of the observed phenomenon might be useful.

The result of our evaluation of meridional excess. ME, in the sense ME = $L_m - L_e$ is given in the last column of the Table III and shown in Figure 3b. It is qualitatively different from the earlier situations when we compared a similar meridional velocity distribution with monotonic equatorial curves. Now, meridional excess is positive throughout the observed interval $0.00 \le \sin\theta \le 0.66$. The meridional excess reaches maximum of 34 ms^{-1} at $\theta = 21^{\circ}$. Interpreted as a horizontal meridional meridional motion, this line-of-sight velocity distribution

would yield a high horizontal velocity of 108 ms⁻¹ at about $\theta = 15^{\circ}$ (and 95 ms⁻¹ at $\theta = 21^{\circ}$) quickly decreasing toward the centre of the solar disk (where the measurability of horizontal velocities decreases linearly) and toward the higher θ -values where it would suggest a decelleration of the meridional flow.

The obtained line-of-sight velocity distribution has a somewhat higher maximum located at a lower heliocentric angle than in some other observations. Consequently, our derived horizontal meridional velocity is higher than found before. For example, Duvall (1979) found a poleward flow of 20 ms⁻¹, Beckers (1979) published 42 ms^{-1} in the same direction, Howard (1979) agreed with Duvall, and LaBonte and Howard (1982) measured 16 ms⁻¹. Perez-Garde et al. (1981) obtained an equatorward flow of 20 ms⁻¹. The highest value of 70 ms⁻¹ was published by Beckers and Taylor (1980). However, if Balthasar's (1984) limb effect functions from his Table 6 are re-reduced in the sense ME = 0.5(N + S - E - W), one can (besides the published 45 ms⁻¹) obtain line-of-sight components of about 130 ms⁻¹ at $\sin\theta = 0.8$ or horizontal velocities of even more than 160 ms⁻¹ at $\sin\theta = 0.75$.

4. CONCLUSION

Our equatorial sidereal solar rotation velocity of 1961 ms^{-1} fits into the well known picture where the scatter of various observations exceeds the inner errors of any particular series of observations. There is, however, a possibility that correction of the influence of scattered light (instrumental or atmospheric) might improve the situation. Perhaps it would be usefull to introduce some kind of standardization in this field.

The direction in which the activity contamination changes the observed line-of-sight velocities is expected at least for $\sin \theta \leq 0.66$. The obtained mean amount of +12 ms⁻¹ reflects the actual strength and distribution of active regions along the observed solar diameters as well as our specific way of extrafocal aver aging of radiation in square areas around each observed point. With such an out-of-focussed solar image one can not decide upon reality of the opposite signe of the effect closer to the limb (beyond $\theta = 52^{\circ}$). The choice of equatorial radii of the solar disk in quiet photosphere for representation of the limb effect (free of a priori expected large-scale stationary flow along the polar meridian) in our material based on a moderate number of observations, resulted in a somewhat smaller weight of our limb effect curve. Its extension in sin θ is also limited as well as the applicability of the expression (1). We, nevertheless, belive in reality of the blue shifted minimum (at medium sin θ values) of the limb effect curve with respect to the centre of the solar disk. The relation (1) can then be used for good representation of our data within the mentioned interval sin $\theta \leq 0.66$.

The unique explanation of the meridional excess as a steady horizontal meridional flow is doubtfull. Some other not yet fully elaborated effects, as those suggested by Cavallini et al. (1984 and 1985), probably contribute considerably. Some room must be also left for possible individual instrumental or observational effects of various observations.

REFERENCES

- Balthasar, H.: 1984, Ph.D. Thesis, Univ. Gottingen.
- Beckers, J.M.; 1979, Proc. Workshop on Solar Rotation, Catania 26-29 Sept. 1978, Belvedere, G. and Paterno, L. eds., 166.
- Beckers, J.M. and Nelson, G.D.: 1978, Solar Phys., 58, 243.
- Beckers, J.M. and Taylor, W.R.: 1980, Solar Phys., 68, 41.
- Beckers, J.M. and Vegvar, P.: 1978, Solar Phys., 58, 7.
- Cavallini, F., Ceppatelli, G. and Righini, A.: 1984, Arcetri Astrophys. Preprints, 9, 1.
- Cavallini, F., Cepatelli, G. and Righini, A.: 1985, Arcetri Astrophys. Preprints, 7, 1.
- Duvall, T.L.Jr.: 1979, Solar Phys., 63, 3.
- Howard, R.: 1971, Solar Phys., 16, 21.
- Howard, R.: 1972, Solar Phys., 24, 123.
- Howard, R.: 1979, Astrophys. J., 228, L45.
- Karabin, M. and Kubičela, A.: 1979, Publ. Astron. Obs. Beograd, 26, 157.
- Kubičela, A. 1975, Publ. Astron. Obs. Beograd, 20, 47.
- Kubičela, A. and Karabin, M.: 1977, Solar Phys., 52, 199.
- Kubičela, A., Vince, I. and Ivanović, Z.: 1985, Bull. Astron. Obs. Beograd, 135, 21.
- LaBonte, B.J. and Howard, R.: 1982, Solar Phys., 80, 361.
- Paterno, L.: 1979, Proc. Workshop on Solar Rotation, Catania 26-29 Sept. 1978, Belvedere, G. and Paterno L.eds., 11.
- Perez Garde, M., Vazquez, M., Schwan, H. and Wöhl, H.: 1981, Astron. Astrophys., 93, 67.
- Pierce, A.K. and Lopresto, J.C.: 1984, Solar Phys., 93, 155.
- Snodgrass, H.B.: 1984, Solar Phys., 94, 13.

Vince, I: 1983, Bull. Astron, Obs. Beograd, 133, 5.

te one gren by Melani and Drev. Proming in the H-bela and Call in man was serve and by Clorica and Britosia (1997) which inder the C is R har's contrar at waisans with the H-bela line, at

VARIATIONS OF THE LINEAR OPTICAL POLARIZATION OF κ DRACONIS

J. Arsenijević, S. Jankov, G. Djurašević and I. Vince

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugosiavia

(Received October 10, 1985)

ABSTRACT It is demonstrated that there were present in the star κ Dra, in the period 1979 to 1984, slow-going variations in the linear intrinsinc polarization in the spectral band V The variations were developing within approximately 0.13 and 0.61 polarization percent, the minimum having taken place during 1980, between 5° and 22° position angle. As of 1981 the polarization percent is continuously increasing while the position angle ever since 1982 is keeping constant. It might well be that the minimum of the polarization percent has been occasioned by the emission from the shell which is largely unpolarized.

1. INTRODUCTION

Slow variations in the intrinsinc optical polarization of the Be star radiation in the course of time are generally well known. It is considered as firmly established that the polarization arises inside an extended, spherically asymmetric enlarged atmosphere, i.e. in the stellar shell, Coyne (1976a) and Coyne and McLean (1982) in their review papers described the basic features of polarization of Be star radiation. However, few are stars in which variations in the intrinsinc polarization have been pursued over longer time intervals, e.g. several years. Not in a single star yet has the behaviour of the polarization parameters P and Q been scrutinized in the course of shell phases or outside these phases, nor their connection with photometric and spectral characteristics over yearlong intervals, apart from some double systems. One of the principal reasons is the non-availability of an entirely dependable method for removing, from the observed polarization, the interstellar component, i.e. for accurate determination of the intrinsinc polarization of particular stars,

Concerning the star κ Dra there have been some sporadic observations of its optical polarization: Hall (1958), Behr (1959) and Coyn and Kruszewski (1969). Coyne and Kruszewski established the polarization to be probably variable and that, having regard to the polarization percent dependence on wavelength, the conclusion was to be drawn that it incorporated an interstellar component. Poeckert and Marlborough (1976), from their measurements in H-alpha line and neighbouring continuum, evaluated the interstellr polarization component in the direction of κ Dra considerably diverging from the one given by McLean and Brown (1978). Another measuring in the H-beta and Ca II K lines was performed by Clarke and Brooks (1983), who found in the Ca II K line's centre, at variance with the H-beta line, an increase of the linear polarization percent with respect to the polarization value in the continuum around the line. This, according to the literature at our disposal would be about all hitherto achieved concerning this star's polarization.

Since 1979 started at the Belgrade Observatory, within an enlarged programme of investigation of long-term polarization variations of bright star radiation, polarimetric observations of the star κ Dra in the visual spectral region. The work has been undertaken with the purpose of pursuing over several years the variations in the polarization parameters and studying possible relationships with other physical parameters. The present paper is first result of this programme.

2. OBSERVATIONAL RESULTS

The observations have been carried out with the Zeiss equatorial having a lens of 65 cm aperture, in the visual spectral domain V, using the Belgrade Observatory's polarimeter. Any individual measure is a result of a 8-minute integration of the photoelectrical signal modulated by a continuously rotating polaroid, its full turn taking 1 minute. The observations encompass the period 1979 to 1984. On the basis of an appreciable number of stars with known polarization and the zero-polarization stars, the characteristics of the instrument and the polarimeter were pursued in the course of the entire interval. as were the instrumental polarization and the zero-direction of measuring the polarization position angle. In the course of a night's run one accomplished from 1 to 6 eigth-minute measures from which were determined mean daily values of the observed polarization parameters p_0 and θ_0 , as well as the Stoks parameters Q_0 and Uo. These observed values are listed in Table 1, wherein, in addition to the entered parameters and the number n of the corresponding individual measurements, are given also the rms errors of the quantities Qo and

VARIATIONS OF THE LINEAR OPTICAL POLARIZATION OF K DRACONIS

Table 1. Daily means of the polarization parameter of κ Dra in the spectral region V

2440+ 000+	Q0%	σq	Uo%	συ	Po%	θ_0^0	Qs%	Us%	Ps%	θ_{s}^{o}	n
3927	0.27	±0.06	0.11	±0.03	0.28	11	0.34	0.01	0.34,	1	4
3993	0.19,	-	0.20	-	0.27	23	0.26,	0.11	0.28	11	1
4340	0.02	21840	0.28	1	0.27	42	0.09	0.18	0.20	31	1
4342	0.01	0.03	0.13	0.01	0.13	44	0.08	0.13	0.09	11	2
4343	0.03	0.02	0.13.	0.02	0.13	38	0.10	0.03	0.10	9	2
4344	0.09	0.01	0.15	0.02	0.17	31	0.16	0.15	0.16	9	2
4346	0.04	0.03	0.14	0.03	0.15	37	0.11	0.04	0.12	10	4
4371	0.11	0.01	0.17	0.02	0.20	29	0.18	0.07	0.19	11	2
4401	0.02	0.01	0.23	0.07	0.23	43	0.09	0.13	0.16	28	2
4403	0.05	0.02	0.16	0.05	0.16	36	0.12	0.06	0.13	13	3
4637	0.09	0.03	0.22	0.07	0.23	33	0.16	0.12	0.20	19	2
4644	0.13	0.04	0.19	0.02	0.23	29	0.20	0.09	0.22	12	2
4670	0.14	0.02	0.20	0.02	0.24	27	0.21	0.10	0.23	13	4
4701	0.09	0.02	0.17	0.03	0.18	31	0.16	0.07	0.18	12	4
4702	0.10		0.21	-	0.23	32	0.17	0.11	0.20	17	1
475 3	0.07	0.07	0.20	0.07	0.20	35	0.14	0.10	0.17	18	2
475.5	0.20	0.02	0.19	0.01	0.27	22	0.27	0.09	0.28	9	2
4756	0.16	0.04	0.16	0.09	0.22	23	0.23	0.06	0.24	7	2
4757	0.10	0.02	0.24	0.02	0.25	34	0.17	0.14	0.22	20	2
475 8	0.08	0.01	0.23	0.01	0.24	35	0.15	0.13	0.20	20	2
5083	0.13	-	0.21	-	0.24	29	0.20	0.11	0.23	15	1
5107	0.29	0.03	0.48	0.08	0.56	29	0.36	0.38	0.52	23	2
5111	0.18		0.39		0.42	32	0.25	0.29	0.38	25	1
5344	0.34		0 44		0.55	26	0.41	0.34	0.53	20	1
5346	0.22	0.03	0.40	0.03	0.46	31	0.29	0.30	0.42	23	5
5354	0.33	0.04	0.37	0.07	0.49	24	0.40	0.27	0.48	17	4
5402	0.25	0.01	0.36	0.02	0.43	28	0.32	0.26	0.41	20	4
5403	0.30	0.01	0.59	0.03	0.66	31	0.37	0.49	0.61	27	2
5405	0.24	0.06	0.47	0.03	0.53	31	0.31	0.37	0.48	25	4
5406	0.20	0.08	0.34	0.05	0.39	29	0.27	0.24	0.36	21	2
5407	0.30	0.02	0.47	0.04	0.55	29	0.37	0.37	0.52	23	4
5 408	0.31	0.02	0.36	0.03	0.47	25	0.31	0.26	0.41	20	6
5409	0.28	0.02	0.41	0.04	0.49	28	0.35	0.31	0.46	21	6
5410	0.24	0.07	0.45	0.04	0.50	31	0.31	0.35	0.47	24	2
5411	0.28	0.05	0.39	0.01	0.47	27	0.35	0.29	0.46	20	2
5433	0.34	_	0.46	_	0.57	27	0.41	0.36	0.55	21	1
5434	0.33.	0.06	0.43	0.09	0.54	26	0.40	0.33	0.52	20	2
5461	0.17	0.08	0.50	0.10	0.56	36	0.24	0.40	0.47	30	-
5469	0.29	0.03	0.46	0.03	0.54	29	0.36	0.36	0.51	23	2
5470	0.34	0.05	0.42	0.08	0.53	25	0.41	0.32	0.52	19	-
5520	0.12	0.01	0.27	0.06	0.29	33	0.19	0.17	0.32	21	
5758	0.41	0.03	0.48	0.04	0.62	25	0.48	0.38	0.61	19	2
5786	0.39	0.01	0.60	0.02	0.71	28	0.46	0.50	0.68	24	2
5787	0.33	0.01	0.57	0.02	0.61	20	0.40	0.10	0.50	22	-
5707	0.33	0.02	0.57	0.02	0.01	29	0.40	0.42	0.58	23	1
5171	0.521	0.03	0.57	0.02	0.05	50	0.39	0.4/	0.01,	25	

 U_o , σ_q and σ_u . The polarization percent p_o and the position angle θ_o , from Table 1 are plotted in Fig. 1 versus time. In Fig. 2 are displayed the Stoks parameters Q_o and U_o . It is readily recognized in both Figs. that variations were present in the observed polarization parameters, significant ones in the polarization percent and lesser ones in the position angle. These variations are an unmistakable indication of the existence of variations. However, to judge on the magnitude and the character of the variations in the intrinsic polarization from the measured polarization parameters is not possible as there are indications, referred to previously, of the presence in this star of an interstellar polarization component that can-

not be neglected. It appears therefore indispensable to have this component, considered constant in time, removed from the observed value.

3. INTERSTELLAR COMPONENT

Having regard to high galactic latitude of κ Dra there would be some ground for assuming the interstellar

Fig. 2. The observed daily means of the parameters Q_0 and U_0 . (in percents) in the spectral region V fro κ Dra in the period 1979-1984.

polarization component in this star to be small, even negligible. This, however, is not the case. It was found by Coyne and Kruszewski (1969) from the departure of the polarization dependence on wavelength, typical of Be stars, that the observed polarization of κ Dra was a blend of the intrinsic and the interstellar polarization components.

The first determination of the component of this star's interstellar polarization was performed by Poeckert and Marlborough (1976) on the basis of method advanced by Poeckert (1975) underlying which is the premise of the radiation in the lines being unpolarized. whence it follows that the decrease of the polarization across the lines is tied up exclusively to the star. If it were so, the polarization parameters of the interstellar component might be arrived at from the difference of the polarization across the continuum and the one across the line, with the use of some additional assumptions. Thus was found by these authors that the interstellar component of κ Dra, at the wavelength about 650 nm. was having the following polarization parameters: $p_i =$ 0.138 % and $\theta_i = 30$ 37. It turned out, however, that a fraction of the radiation in the lines may, none the less, be polarized, making it not always certain that the method will yield true value of the interstellar polarization. Besides, the nature of the polarization in the lines and the continuum is not sufficiently understood, while the variations in time are so large as to invite the question of the justifiability of deriving mean values of the observed polarization parameters from which it is parted in this procedure of separating the polarization components. These probably are the reasons why the next attempt at deriving the intrinsinc polarization of κ Dra, made by Poeckert and al. (1979), failed to furnish any results.

McLean and Brown (1978) approached the problem in a more sophisticated way. By analysing polarization of the surrounding stars, the variations in polarization in the course of time as well as polarization variations along the emission lines, they inferred that the interstellar polarization component in the direction of κ Dra likely had the values: $p_i = 0.10\%$ and $\theta = 60^\circ$.

Having regard to the complexity of the method of determination of the interstellar polarization component and also the inconsistency in the evaluated values, we deemed it useful to reconsider the problem of the interstellar component in κ Dra on the basis of evidence on polarization of the neighbouring stars.

There are in the neighbourhood of the star κ Dra (between 39° and 62° galactic latitude and 79° and 100° galactic longitude) 10 stars with measured polarization (Behr, 1959). The positions of κ Dra and the rest of stars in the field are illustrated in Fig. 3 (in galactic

Fig. 3. Field of stars surrounding κ Dra whose polarization is measured, Behr (1959). Star positions are given in galactic coordinates.

coordinates). Being given that the polarization parameters do not differ as much as it often happens, we considered it admissible to assume the field relatively homogenous and that it made sense deducing the mean value of the polarization. The mean value of the polarization parameters resulting from all the 10 stars is p =0.09 % and $\theta = 66^{\circ}$. However, as apparent from Fig. 3 κ Dra is situated between the stars HD 108907 (4 Dra) and HD 113092 (9 Dra), possessing highly similar polarizations, and in both parameters at that. The mean value of the polarization parameters of these two stars is $p_i =$ 0.12% and $\theta = 62^{\circ}$. Note here that the Behr's measures were performed in the spectral region 0.462 nm effective wavelength, but the corrections involved by the transition to the visual spectral region, provided one employs the known dependence of interstellar polarization on the wavelength given by Serkowski (1971), are less than errors commited by meaning the polarization values for different stars.

As an illustration of how much do the parameters of the observed polarization of κ Dra, incorporating also parameters of the intrinsinc polarization, deviate from the polarization parameters of the neighbouring stars, likely possess only interstellar component, may serve Fig. 4, in which the parameters are plotted in the (p,θ) system.

Fig. 4. Polarization parameters of stars surrounding κ Dra plotted in the p, θ plane.

To decide confidently which one of the values of the interstellar polarization component was to be adopted one would know the distances of all the stars in the field, which unfortunately is not the case. Yet, something may be said. Namely, seven stars out of 10 present in the field, are of the lumunosity class III and the magnitudes from 2.2 to 5.5. The star κ Dra has a 3.9 magnitude. We rate it little likely that κ Dra, possessing a 3.9 magnitude and a luminosity class III - IV, may substantially be farther away than these luminosity class III stars or, more precisely, we consider it likely that κ Dra is situated somewhere at the mid-distance of the rest of stars in the field. When it comes to the mid-distance it seems as the most likely that it is comwhere in the middle between two nearest stars in the field, i.e., 4 Dra and 9 Dra, This because 4 Dra is a dwarf star and 9 Dra of the luminosity class III, both having nearly the same magnitude 5,4 which is perhaps suggestive of their different distances. Taking in consideration their similar polarizations one may well assume the error, involved by the not accurately known distance of κ Dra, not to be large.

Thus was how, in consideration of all the above stated, one adopted for the parameters of the interstellar polarization component of κ Dra the values: Pi = 0.12 % and Qi = 62° (mean values of the polarization parameters of two nearest stars in the field). The error committed by adopting these values is certainly not large and will not substantially affect the behaviour of the intinsinc polarization of κ Dra. The values of the interstellar component as determined by McLean and Brown (1979) differ but slightly from those here adopted.

4. INTRINSINC POLARIZATION

On removing the interstellar polarization component, thus determined, from the observed values one derived the parameters of the intrinsinc polarization p_s and θ_s , i.e., Q_s and U_s . These values are listed in Table 1 (second part). In Fig. 5 are displayed the polarization

Fig. 5. Intrinsinc polarization percent of κ Dra (a) and the position angle(b) on terms of time in the period 1979-1984

Fig. 6. The plot illustrating Stoks parameters of the intrinsinc polarization of κ Dra in the spectral region V in the period 1979–1984. Annual means are marked by circlets with corresponding years indicated.

The observations performed by other authors are labeled in the following way:

- 1949–1950, Hall (1958)
- + 1956-1958, Behr (1959)
- ⁽¹⁾ 1967-1968, Coyne and Kruszewski (1969)
- 1982, September, Clarke and Brooks (1983), measured within narrow spectral intervals around the H_{β} line.

percent (5a) and the position angle (5b) as a function of time. In Fig. 6 are illustrated the Stoks parameters Q_s and U_s in terms of percent as well as the values of these parameters as determined by other authors. On comparing the latter plots with the one of the observed polarization, one at once recognizes that the features of the polarization percent variations did not markedly change. The percent of the intrinsinc polarization (and of the observed one) varies continuously in the course of time. The minimum percent value is about 0.13 %, as measured in 1980. Following 1980 the polarization percent grows steadily up to the close of the observing period. The variations of the polarization position angle, though slight, upon removing the interstellar component, acquired new features which becomes clearly recognizable on comparing Figs, 1b and 5b exhibiting respectively the position angles of the observed and the intrinsinc polarization. The position angle of the intrinsinc polarization increased from about 5° during 1979 to about 22° as obtained in 1984.

In the (Q, U) plane, Fig. 6, the variations of both parameters are clearly recognized. Namely, starting in 1980, the polarization percent is steadily increasing (distance from the coordinate origin) with the position angle keeping practically constant, so that the anual means Q_s and U_s, whose values are summarized in Table 2, plotted in graphs by circlets, lie virtually on straight line. However, the parameter values measured in 1979 deviate from the straight line along which lie all other values measured over the period 1980 to 1984. The measurements by other authors (indications given in the figure subscript) are also plotted in the graphs. Hall's (1958) measurement is the only one departing considerably from the rest. The turnover in the star seems to have taken place in the period around 1980, bringing down the polarization percent to the extremely low value, seconded by a change in the position angle of about 10°. The next event occured apparently during 1982. With an unsignificant change in the position angle of about 60 the percent increased by about 0.2%. Therafter the polarization keeps increasing without the position angle having changed.

There are in the (Q, U) graph roughly three areas whithin which the points are converging. The first area is

Table 2. Annual means of the parameters of the intrinsinc polarization of κDra

and the second se				_
Qs%	Us%	Ps%	θs	n
0.30±0.04	0.06±0.05	0.30	5	5
0.12 0.01	0.07 .02	0.14	16	18
0.19 .01	0.10, .01	0.21	14	23
0.31, .05	0.34 .08	0.45	24	3
0.34 .02	0.32 .02	0.47	22	48
0.4402	0.43 .02	0.43	22	12
	Qs% 0.30±0.04 0.12 0.01 0.19 .01 0.31 .05 0.34 .02 0.44 .02	Qs% Us% 0.30±0.04 0.06±0.05 0.12 0.01 0.19 .01 0.31 .05 0.34 .02 0.34 .02 0.44 .02	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Qs%Us%Ps% θ_s 0.30±0.040.06±0.050.3050.120.010.07.020.14160.19.010.10.010.21140.31.050.34.080.45240.34.020.32.020.47220.44.020.43.020.4322

patterned by points measured in 1979, including some measurements by other authors in the preceding years. The second area is the one containing points from 1980 and 1981, distinguished by low polarization value. Finally, the third area of higher polarization values encloses all points from 1982, 1983 and 1984. It may well be that this separation had resulted from the scarcity of observations in 1979 and 1982. Nevertheless, we believe the cause to be in the star itself, mainly because the polarization position angles in all three areas are differing (see annual means in Table 2), comparatively slightly true, but having regard to the agreement within the groups containing more measurements, probably real as well.

The growing of the polarization percent is ongoing uninterruptedly ever since 1981, while the position angle stabilized in 1982. Abiding to the already accepted notions concerning the origin of polarization in Be stars, we assume that during 1981 a global process of shell forming has set in involving an augmentation of the number of free electrons in the shell, whose asphericity is growing or, rather, is getting changed.

Obviously, the ways of interpreting these observed polarization changes within one spectral region, without an insight into other relevant physical parameters, are practically limitless, being mostly dependent on an author's imagination. It is certainly hoped that there is a great deal of spectral observations of κ Dra, along with polarimetric ones, not yet published, to render possible a more complex analysis. It is equally hoped that these polarimetric results will give an impetus to researches into other physical characteristics of κ Dra in the period 1979-1984.

An interesting fact is perhaps still to be mentioned at this point, Namely, Andrillat and Fehrenbach (1982) found in 1980 for κ Dra the maximum values of the equivalent width of the emission line H_{α} , after 1977, when the polarization increase did set in. Providing this live emission is attended by the emission in the continuum, and, that it is generated in the shell, and is mainly unpolarized, one might assume it as being responsible for the polarization percent decreasing i.e. for the 1980 minimum. In other words, the increase of the unpolarized component of the star's radiation in the total stars's flux had led to the diminishing of the polarization percentage. V ith plausible assumptions on this emission's location, the position angle might be accounted for as well. The possibility of the polarisation percent decreasing on account of the emission in the continuum increasing, was pointed out by Brown and McLean (1977), but it failed so far to be observationally established in any star.

5. CONCLUSION

First systematic measurements of the linear optical polarization of the star κ Dra in the spectral region V

enabled some interesting results to be arrived at.

Determined, rather dependably, were the parameters of the interstellar polarization component in the direction of

κ Dra: $P_i = 0.12$ %, $Q_i = 62^\circ$.

The star's intrinsinc polarization was determined and its changes pursued over the period 1979 to 1984. The minimum of the polarization percent was observed in 1980. Since 1981 the polarization percent has steadily increased the process probably not having terminated by 1984, Since 1982 the polarization position angle changed from about 5º to about 22º.

The polarization percent minimum in 1980 is assumed to have been occasioned by an extra unpolarized emission from the star's shell across the continuum and the lines.

REFERENCES

- Andrillat, Y., Fehrenbach, Ch.: 1982, Astron. Astrophys, Suppl., 48, 93.
- Behr, A.: 1959, Veroff. Gotingen, 126, 185.
- Brown, J.C., McLean, I.S.: 1977, Astron. Astrophys, 57, 141.
- Clarke, C., Brooks, A.: Mon. Not. R.Astr. Soc., 205, 9. Coyne, G.V.: 1976 a, IAU Symp. 70, Be and Shell Stars, Ed. Slettebak A., Reidel, Dordrecht, 233,
- Coyne, G.V.: 1976 b, Astron. Astrophys., 49, 89.
- Coyne, G.V., Kruszewski, A.: 1969, Astron. J., 74, 528.
- Coyne, G.V., McLean I.S.: 1982, IAU Symp. 98, Be Stars, Ed. M. Jashek and H Groth, Reidel, Dordrecht, 77.
- Hall. J.S.: 1958, Publ. Naval Obs. XVII.
- McLean, I.S., Brown, J.S.: 1978, Astron. Astrophys., 69, 291.
- Poeckert, R.: 1975, Astrophys. J., 196, 777.
- Poeckert, R., Marlborough, J.M.: 1976, Astrophys. J., 206, 182.
- Pocckert, R., Bastien, P., Landstreet, J.D.: 1979, Astron. J., 84, 812.
- Serkowski, K.: 1971, IAU Coll. 15, New Directions and New Frontiers in Variable Stars Research, Veroff,Remeis-Sternw., Bamberg, 100, 11.

COLLISION BROADENING AND MICROTURBULENCE SENSITIVITY OF SOME NaI NON-RESONANT LINES

V. Kršljanin and I. Vince

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

(Received January 14, 1985)

SUMMARY: Profiles of six weak and moderate weak NaI lines in the centre and on the limb of the solar disk have been synthetized using the Smirnov-Roueff potential. The sensitivity has quantitatively been examined of a variety of parameters of the spectral line profiles (equivalent width, central intensity, half-width and line shape parameter) to microturbulent velocity variations. The results are displayed both numerically and graphically. Inadequate knowledge of the collision broadening can lead to the value of the microturbulence velocity, obtained from these spectral lines being significantly distorted.

1. INTRODUCTION

Inadequate knowledge of the spectral line collision broadening may turn up an origin of errors in determining the microturbulent velocity (see e.g. Gray, 1976; Gurtovenko, 1979). This is particularly true if the broadening due to collisions with the neutral perturbers in typified as the van der Waals broadening as then both the enhancement factor and the microturbulent velocity (hereafter denoted by ξ) become virtually free ,,bestfit" parameters,

We quantitatively investigated the sensitivity to the quantity ξ changes of a variety of profile parameters of several weak and moderate weak lines in the solar spectrum, and by this very fact the possible uncertainty of its deriving from these lines. The calculations have been performed using the results of the current collision broadening theories (see Section 2).

It is well known that the weak line sensitivity to changes in ξ is not a strong one and this fact, together with the simplicity of calculations under LTE conditions, is one among reasons of their being particularly suitable for determination of the chemical elements abundance (Blackwell et al., 1972) as well as for exploration of other conditions in the solar photosphere. Accurate quantitative evaluation of the weak and moderate weak line sensitivity to changes in ξ can prove useful at clearing this sort of problems.

The lines have been selected in such a way as to satisfy the following demands:

1) The uncertainty in the knowledge of all other parameters, viz.: transition probabilities, the abundance of the absorbing element in the solar atmosphere, the broadening due to collisions with the neutral and electrically changed particles, to be as small as only possible; 2) The NLTE effects to be as little pronounced as possible;

3) The existence of high resolution spectrograms.

Particularly suitable in terms of all these points proved the moderate weak and weak lines of neutral sodium.

In earlier analogous investigations (Blackwell et al., 1972; Sheminova, 1977) the FeI lines were those used. The van der Waals broadening was anticipated and the sensitivity of the equivalent line width alone was investigated.

2. COLLISION BROADENING PARAMETERS, ATO-MIC AND OBSERVATIONAL DATA

The preponderant agent of the spectral line collision broadening is constituted by interactions with the neutral perturbers, chiefly with hydrogen atoms. This broadening mechanism's contribution was computed from the semi-empirical Smirnov-Roueff exchange potential (Smirnov, 1967; Roueff, 1970), employing the approach (Roueff, 1975) adjusted to the p-s transitions of the neutral sodium.

For the case of broadening due to collisions with the electrically charged particles (mainly electrons) use was made of the results (Dimitrijević & Sahal-Brechot, 1985), acquired by the semi-classical approach to the Stark broadening (Sahal-Brechot, 1969 a, b). For all the lines under consideration the ratio of the broadening by collisions with the hydrogen atoms to the one due to collisions with the electrons amounts to 10.1 approximately. Thence it follows that only excessive errors in the knowledge of the Stark broadening could have materially affected this paper's results.

<u> </u>	Laboratory wavelength	EW ^{1.0} _{obs}	I ^{1.0} Icobs	FW ^{1.0} _{obs}	LSP ^{1.0}	EW ^{1.0} obs	I ^{0.2} c obs	FW ^{0.2} _{obs}	LSP _{obs}
	(nm)	(pm)		(pm)		(pm)		(pm)	
$\frac{3p^2P^0-5s^2S}{3p^2P^0-5s^2S}$ $\frac{3p^2P^0-5s^2S}{3p^2P^0-6s^2S}$ $\frac{3p^2P^0-7s^2S}{3p^2P^0-7s^2S}$	616.07470 615.42253 514.88381 475.18218	6.06 3.76 1.30 1.29	.558 .704 .868 .865	11.9 10.8 8.92 8.43	.623 .618 .628 .627	6.34 4.37 1.63 1.77	.594 .707 .848 .842	14.3 13.2 9.98 10.4	.643 .639 .638 .626
$4p^2 P^0 - 6s^2 S$ $4p^2 P^0 - 7s^2 S$	1638.885 1290.794	2.08 .192	.940 .992	29.5 20.5	.624 .619	4.00 .367	.906 .987	38.4 27.4	.630 .629

Table 1. Line profile parameters calculated from data of Pierce & Slaughter (1982). The upper index indicates $\cos \theta$ (θ is the heliocentric angle)

Natural broadening was calculated using the simple quantum-mechanical method (relation 11.22 in Gray, 1976). The broadening of both upper and lower levels was calculated. The contribution of this sort of broadening is almost negligible in comparison with the collision broadening.

The transition probabilities and the oscillator strengths are borrowed from Wiese et al. (1969).

The value $A_{Na} = 6.32$ taken from Lambert & Luck (1978) has been adopted for the sodium abundance in the solar photoshere.

The calculating results were compared with the recently published high resolution observations (Pierce & Slaughter, 1982) made with the Kitt Peak large and infrared spectrographs.

Table 1 shows our line selection as well as the parameters of the observed profiles in the centre of the solar disk ($\cos \theta = 1$) and on its limb ($\cos \theta = 0.2$) where θ is the heliocentric position angle.

3. METHOD OF ANALYSIS

The spectral lines were syntetized using the SUN-LINE program, developed by these authors at the Belgrade Observatory. Pure absorption and absence of NLTE effects are implied. The HSRA solar atmospheric model was used (Gingerich et al., 1971). Each line's profile in the solar disk centre ($\cos \theta = 1$) as well as on its limb ($\cos \theta = 0.2$) was synthetized for five different values of ξ ($\xi = 0, 0.5, 1.0, 1.5$ and 2.0 km/s). Gaussian, homogeneous and isotropic turbulence model was assumed. (Possible changes of ξ with optical depth have not been considered since previous inquiry revealed that such changes, within the photospheric layer within which weak and moderate weak lines are formed, are too slight for their effect on the spectral lines to be reliably registered).

The sensitivity to variations of ξ of the following parameters of the spectral line profiles was investigated: equivalent width within the frequency range corresponding to the observed one (EW), relative intensity in the

line centre (I_c), full width at half-maximum (FW) and the line shape parameter (LSP) specified by the ratio of the 3/4 width to the 1/2 width (Slettebak, 1956). The amounts of these parameters as obtained from the observed profiles are listed in Table 1.

In order to allow a quantitative comparison of the sensitivity of individual lines and parameters we normalized all the values obtained from the synthetized profiles to those deduced observationally.

The Figures 1 through 12 illustrate the variations of the normalized parameters of the synthetized spectral lines depending on the ξ variations.

Calculated were also the gradients

$$\frac{\partial EW^{norm}}{\partial \xi} , \frac{\partial I_c^{norm}}{\partial \xi} , \frac{\partial FW^{norm}}{\partial \xi} , \frac{\partial LSP^{norm}}{\partial \xi}$$

where
$$A^{norm} = \frac{A^{carc}}{A^{obs}}$$
, (A = EW, I_c, FW, LSP).

Provided in this form they are rendered directly comparable with each other. Their summarization is found in Table 2. The same Table contains also the effective depths of individual lines (τ_{eff}^{5000}) furnished by the emission contribution function, weighted according to the line depths at particular points of the calculated profiles.

4. RESULTS AND DISCUSSION

Theoretical consideration of microturbulence effects on profiles of the moderate and weak lines (see e.g. Section 18 in Gray, 1976) made us expect a weak sensitivity of the equivalent width and the central intensity and a somewhat stronger sensitivity of the half-width and the line shape parameter.

Table 2 shows that from all the selected parameters most sensitive to the ξ variations is the FW.

The line shape parameter recommended by Evans et al. (1975) also exhibits expectedly a relatively high sensitivity though less intensive than the one displayed

Wavelength (nm) -	τ_{eff}^{50}	00 [<u>∂</u> EW ∂ξ	norm	$\frac{\partial \operatorname{Ic}^{I}}{\partial I}$	norm	<u>∂LSP</u> ⁿ ∂ξ	orm	d FV	w ^{norm} ٤
	1.0	0.2	1.0	0.2	1.0	0.2	1.0	0.2	1.0	0.2
6161	44	05.2	052	063	057	037	.11	.12 ^{IV}	.10	.079
615 4	.44	076	.038	.054	.046	.037	.10	.12	.15	.12
5149	1.0	.15	.006	.019	.018	.025	.045IV	.075 IV	.13	.11
475.2	1.1	.18	.000	.006	.010	.021	.034111	.087IV	.15	.096
1638.9	1.3	.34	.000	.000	.003	.004	.044	.087	.18	.13
1290.8	.95,	.20	.000	.000	.000	.001	.049	.14	.19	.16
			.016	.024	.022	.021	.064	.10	.15	,12
	Averaged	values	.0.	20	.0	22	.08	2		14

Fig. 1. Dependence of the different line profile parameters on microturbulent velocity (ξ). Legend: EW – normalised equivalent width; I_C – normalised central intensity; LSP – normalised line shape parameter; FW – normalised full width at the half maximum

by the FW. With the weak lines it is conspicuously lower. For some of the lines, however, (Figures 2, 5, 6, 7

Fig. 3. The same as in Fig. 1

Fig. 4 The same as in Fig. 1

and 8) the irregularity in the LSP behaviour conditioned the gradients to be calculated from fewer points, i.e. from 4 and 3, respectively, instead of from 5, which in Table 2 is specially indicated. This irregularity, emerging for high values of ξ , can be accounted for by the Doppler core being significantly extended, approaching the line wing, thus producing a decrease in the 3/4width sensitivity. This suggests caution at using the LSP parameter.

The I_c displays a comparatively weak sensitivity to the ξ variations, but a strong regularity of its behaviour.

The EW parameter, linked with the definition of the microturbulence notion, displays convincingly the weakest sensitivity, making it actually the least suitable for the determination of ξ .

The quantitative analysis of Table 2 data points to an extremely feeble sensitivity of the investigated lines to the ξ changes. It transpires that, using the ξ values in the solar photosphere acquired in recent years (1 km/s or less), the omission of ξ from the calculation of these lines might affect the EW and I_c parameters by no more than a percent, which is on the very limit of the observing accuracy, and the FW and LSP parameters by about 10%, which must not be neglected. However, a change of about 10% in ξ generates changes that are below the observing accuracy for the parameters EW and I_c, and the ones at its very limit for the FW and LSP parameters.

The results shown in Figures 1 through 12 and in Table 2 lead one to several more conclusions.

The $3p^2 P^0 - 5s^2 S$ lines are probably experiencing a macroturbulence influence as well, which harmonizes with the findings of Evans et al. (1975) for the moderate lines.

V K/RŠLJANIN and I: VINCE

Fig. 5. The same as in Fig. 1

Fig. 6. The same as in Fig. 1

A stronger sensitivity of the half-width at the centre of the solar disk than on its limb is a consequence of the adopted normalization, i.e. of the poorer accordance of the synthetized and the observed profiles on the limb. The reasons of this are to be looked for above all in the disparity of the adopted model (pure absorption, LTE) from the physical reality in the given case, having regard to the considerably lower effective depths of the line forming on the limb (apparent also from Table 2).

A number of reasons might be induced (which might be at work in combination) for the distinct divergence of the profile parameters of the two lines from the 4p-ns series and the observed ones, such as: too large theoretical value of the collision broadening for this series, to low abundance value for the sodium (no attempts have so far been undertaken to check this value in conformity with the knowledge of the exchange potential, which these authors are intent of doing) and, in view of the extremely low depth and enormous width of these lines, not to be ruled out is the possibility of an error in the continuum level of these lines.

We tried to establish possible uncertainty in the providing of ξ from the investigated lines for the case of unsufficient accuracy of the collision broadening. The estimation was performed for the instance of 3p-7s line (475,2 nm), considered representative of this line selection. This line's profile was synthetized using different values of the factor by which the broadening due to collision with the hydrogen atoms was miltiplied. The factor values were varied from 0 to 2. For each one of the profiles parameters were calculated whose sensitivity was scrutinized. The results are shown in Figure 13. The diminuation of EW is a consequence of its having invariably been determined within the same frequency range while the far wings have been neglected.

Fig. 8. The same as in Fig. 1

The profile parameters changes due to the enhancement factor changes disclose trends similar to those due to the ξ changes. Mutual relations of the parameters in terms of their sensitivity are also similar. However, with the value of the collision broadening used in this paper, the parameters disclose stronger sensitivity to its changes than to the variations in ξ .

It can be brought out by comparing the variations of the most sensitive parameter, FW, visualized in Figure 7 and 13, that a 30% change in the collision broadening can occasionally produce an effect analogous to the one brought about by a 1 km/s change in §.

5. CONCLUSIONS

The unsuitability of the weak and moderate weak lines for the determination of ξ has quantitatively been confirmed. This, however, makes them simultaneously suitable for such investigations, as for instance the investigation of the element abundance, in which the unsufficiently accurate knowledge of § may prove a handicap.

The line profile parameters whose sensitivity was investigated have all been used in the literature for the determination of ξ (see e.g. Gray, 1978). Our analysis points to the unpracticability for this purpose of the EW and Ic parameters in the case of weak and moderate weak lines, even though this is occasionally done (e.g. Sheminova & Gurtovenko, 1979; Sheminova, 1984).

Inadequate knowledge of the collision broadening (not unfrequent even in the present-day calculations) can significantly affect the quantity ξ deduced from the weak and moderate weak lines,

V. KRŠLJANIN and I. VINCE

Fig. 10. The same as in Fig. 1

Fig. 13. Dependence of the line profile parameters on changes in broadening due to collisions with $H-atoms(\gamma_H)$. All symbols have the same meaning as in previous figures.

ACKNOW LEDGEMENTS

The authors would like to thank Drs. M.S. Dimitrijević and S. Sahal-Brechot for making available their unpublished results. Particular gratitude is due to Dr. M.S.Dimitrijević for useful coments and suggestions.

REFERENCES

- Blackwell, D.E., Calamai, G. & Willis, R.B.: 1972, M.N.R.A.S. 160, 121.
- Dimitrijević, M.S. & Sahal-Brechot, S.: 1985, J.Q.S.R.T. (submitted).
- Evans, J.C., Ramsey, L.W.& Testerman, L.: 1975, Astron. Astrophys. 42, 232.
- Gingerich, O., Noyes, R.W., Kalkofen, W. & Cuny, Y. 1971, Solar Phys. 18, 347.
- Gray, D.F.: 1976, The observation and analysis of stellar photospheres, John Wiley and sons, New York - London -Sydney - Toronto,
- Gray, D.F.: 1978, Solar Phys. 59, 193.
- Gurtovenko, E.A.: 1979, Astrometriya Astrofizika, 37, 12.
- Lambert, D.L. & Luck, R.E.: 1978, M.N.R.A.S. 183, 79.
- Pierce, A.K. & Slaughter, Ch.S.: 1982. Ap. J. Suppl. 48, 73.
- Roueff, E.: 1970, Astron. Astrophys. 7, 4.
- Roueff, E.: 1975, Astron. Astrophys. 38, 41.
- Roueff, E.: 1976, Astron. Astrophys. 46, 149.
- Sahal-Brechot, S.: 1969a, Astron. Astrophys. 1, 91.
- Sahal-Brechot, S.: 1969b, Astron. Astrophys. 2, 322.
- Sheminova, V.A.: 1977, Soln. Dannye Nº 6,80.
- Sheminova, V.A.: 1984, Astrometriya Astrofizika 53, 15.
 Sheminova, V.A. & Gurtovenko, E.A.: 1979, Astrometriya Astrofizika 38, 29.
- Slettebak, A.: 1956, Ap. J. 171, 565.

Smirnov, B.M.: 1967, Sov. Phys. J.E.T.P. 24, 314.

Wiese, W. L.; Snuth, W.W. & Miles, B.M.: 1969, Atomic transition probabilities, vol. 2, NSRDS - NBS 22, Government Printing Office, Washington DC.

ON THE PROBLEM OF CLASSIFYING MODERN METHODS FOR THE RIGHT ASCENSION DETERMINATION

S.A. Tolchelnikova-Murri

Main Astronomical Observatory, Academy of Sciences of the USSR, 196140 Leningrad, USSR

(Received July 15, 1985)

SUMMARY. At comparing different methods of reduction of the star coordinates and of compilation of a fundamental catalogue it is important to know 1) In what was do the derived values of coordinates depend on the initial (source) catalogue and 2) How accurate is the method in terms of the observational errors (systematic and accidental).

Several methods, intended for the improvement of the right ascension (R.A.) system of the FK4 are discussed, among them those analysed by Strelkova and the author (1985). The derived R.A.s are shown to deviate from their absolute values not by only a constant, as implied by the absolute method, but by a quantity $C + C_1 f(\delta)$ where C and C_1 are dependent on the R.A. values in different δ -zones of the FK4 (or of the initial catalogue).

Two methods are in use nowadays for the absolute azimuth determination. The one-from both, upper and lower, culminations of the circumpolar stars. It this case the clock correction Δu is determined from the observations of equatorial stars in the closing stage of the reduction.

The second method is based on the determination of Δu from the zenith stars in the opening stage of the reduction and the subsequent derivation of the absolute azimuth from both, upper and lower, culminations of the zenith stars. The optimum conditions are shown to be different for the two methods. Their systematic errors are of different origin.

To overcome the existing difficulties: the deficiency of the methods and the divergence in terminology, a conformity should be achieved in planning and in solving of both problems: the choice of the methods of reduction and the procedure of compiling the star catalogues.

1. INTRODUCTION

"There is no king's way in the modern astrometry" states Eichhorn (1974). The classification of modern methods for the reduction of catalogue observation would help achieving better planning and cooperation in the positional astrometry, as voiced by G. Teleki at the IAU Symposium No. 109 "Astrometric Techniques" (1986).

Some aspects of the problem concerning the right ascension (R.A.) determination will be considered in this paper.

2. CLASSIFYING THE METHODS OF R.A. DETERMI-NATION

We distinguish two methods for the determination of the star coordinates. The purpose of the differential method is to reproduce the system of the reference catalogue by extending it over uncatalogued stars. The purpose of the absolute (or fundamental) method is the establishment of a system of positions independent of the source catalogue.

As far as the R.A.s are concerned it is only absolute differences $\alpha_i - \alpha_k$ that can be obtained from the observation of stars. However, as coordinates, not their differences, is what is required, an equation of condition must be subjoined in order to solve the set of equations and determine, in the initial stage, the sums $\alpha_i + C$, where C is constant throughout the celestial sphere.

Absolute values of α_i are unknown until the link to the Sun or the planets is established. The preliminary zero point in α coincides with that of the initial fundamental catalogue if the correction to the R.A. of the fictitious mean equatorial star is assumed to equal zero in this catalogue.

Such was the case in the classical approach. For instance in the Pulkovo method the R.A.s were derived by the equations

$$\Delta a_j \sin z_i \sec \delta_i + \Delta b_j \cos z_i \sec \delta_i + \Delta u_j + \Delta \alpha_i = l_{ij} \quad (1)$$

where the unknowns Δu_j and $\Delta \alpha_i$ cannot be separated or determined simultaneously.

In the Washington method the equations

$$\Delta n_{j} tg \,\delta_{i} + \Delta (u + m)_{j} + \Delta \alpha_{i} = l_{ij}$$
⁽²⁾

are used, whereby the unknowns $\Delta \alpha_i$ and $\Delta (u + m)_j$ are unseparable. In (1) and (2) the subscripts i and j indicate the star and the series, respectively.

To solve the equations the restriction is adopted for the corrections $\Delta \alpha_i$ to the R.A.s of certain equatorial stars

$$\sum_{i=1}^{N} \Delta \alpha_i = 0 \tag{3}$$

Therefore Δu or $\Delta(u + m)$ are dependent on the initial (fundamental) catalogue. All the other reduction parameters i.e. Δa and Δb in (1) or Δn in (2) have to be determined independently of the initial catalogue i.e. they have to be absolute.

Thus, the absolute method enables to derive the **R.A.s** deviating from the absolute ones by only a constant. Such is the implication of the method.

2.1. The methods used by H g (1974), Zverev (Anguita et al., 1971) and Bykov (1977) were analysed by Strelkova and the author (1985). We showed that even though the three authors just mentioned used different equations for the reduction, their methods are similar in one respect: the derived **R**.A.s differ from the absolute values by

 $C + C_1 f(\delta)$

i.e. not by only a constant but also by a variable - - function of star declinations. The unknown constants C and C₁ depend on the errors in R.A.s in different δ zones of the fundamental (FK4) catalogue.

2.2. The author and Popov (1986) analysed N.N. Pavlov's method for the R.A. determination from observations with the small transit instrument (T.I.) as used in the time services.

If the T.I. is reversed during the observation of a star the error Δb (lateral flexure) is removed in (1). Hence (1) becomes for the zenit stars

$$\Delta u_{i} + \Delta \alpha_{i} = l_{ii} \tag{4}$$

with the weight $P = \cos^2 \xi_i$.

Using the chain method for the reduction of observations of several years duration Pavlov obtained for the zenith stars the sums $\alpha_i + C$, where C is dependent on the error $\Delta \alpha_{\delta} = \varphi$ in the initial (fundamental) catalogue, imposing the restriction (3) for the **zenith** stars in order to solve the equations (4).

Further, from the observation of the lower culminations of the same zenith stars one obtains

$$\Delta a_{\mathbf{k}} \sin z_{\mathbf{z}} \cos \delta_{\mathbf{z}} + \Delta u_{\mathbf{k}} + \Delta \alpha_{\mathbf{z}} = l_{\mathbf{z}\mathbf{k}}$$
(5)

which weight is $P = \cos^2 \delta_z$.

Assuming the sums $\alpha_z + C$ to be known one may write (4) and (5) for z and i zenith stars

u.c.
$$\Delta u_{j} = l_{ij} - \Delta \alpha_{i} - C$$

l.c. $\Delta a_{j} \sin z_{z} \cos \delta_{z} + \Delta u_{j} = \begin{cases} p = \cos^{2} \delta & (6) \\ = l_{z,j} - \Delta \alpha - C \end{cases}$

The determinant

$$\begin{vmatrix} C [\sin z \cos \delta] & [\sin z \cos \delta] \\ Cn & n \end{vmatrix} = O$$

whence it follows that the value of Δa_j derived from (6) is independent of C, i.e. it is absolute one, only C on the right-hand side of the equations (6) being dependent on the catalogue positions.

C enters fully into Δu_i as

$$\begin{bmatrix} \sin^{2} z \cos^{2} \delta \end{bmatrix} C \begin{bmatrix} \sin z \cos \delta \end{bmatrix}$$

$$\begin{bmatrix} \sin z \cos \delta \end{bmatrix} Cn$$

$$= C$$

$$\begin{bmatrix} \sin^{2} z \cos^{2} \delta \end{bmatrix} \begin{bmatrix} \sin z \cos \delta \end{bmatrix}$$

$$\begin{bmatrix} \sin z \cos \delta \end{bmatrix} n$$

Thus the Pavlov's method is available if two parameters Δa and Δu enter the equation. It is absolute one. The derived R.A.s deflect from the α -absolute by a constant, the latter being dependent – not on the error $\Delta \alpha_{\delta=0}$ in the fundamental catalogue as is the case in the classical method but – on $\Delta \alpha_{\delta} = \varphi$.

2.3. The stumbling-block to many authors has been presented by the problem of absolute azimuth determination (Tolchenikova-Murri, 1980). For instance in Nemiro (1973) the method is discussed in which the instrumental parameters a and b depart from the absolute ones by constants, say C_1 and C_2 , respectively. In such a case we shall have for $\Delta \alpha$ derived from (1)

$$\Delta \alpha = l - C_1 \sin z \cos \delta - C_2 \cos z \cos \delta - C_2$$

If Bessel's equations (2) are used and the derived values of n deviate from the absolute ones by a constant C_1 , then

$$\Delta \alpha = l - C_1 \, \mathrm{tg} \, \delta - C$$

In either case the obtained R.A.s depart from the absolute ones by a quantity

 $C + f(\delta)$

Accordingly, the methods do not satisfy the definition of an absolute one.

2.4. At comparing different methods of right ascension determination it is important to know 1) in what way do the derived values of the coordinates depend on the initial catalogue and 2) how accurate is the method in terms of the observational errors (systematic and accidental).

In the foregoing it was the first point that was considered. Turning now on the second point let us compare the classical and the Pavlov's methods.

Suppose the weight of the equations (1) and (2) is

 $p = \cos^2 \delta$

Here the decreasing of p with the zenith distance is neglected in order to come by analytical formulae for the dependence of the weights of the unknown quantities on the local latitude.

From the four equations (1), i.e. from the observations of both transits of a star with $\delta \approx 90^{\circ}$ in two clamp (CE and CW) positions of the instrument one obtains the corrections Δa and Δb with the weights

$$p (\Delta a) = 4 \cos^2 \varphi$$

$$p (\Delta b) = 4 \sin^2 \varphi$$
(7)

Adopting the values of Δa and Δb with their weights (7) one obtains the correction Δu from the observation of N equatorial stars with $\delta = 0$ (2N equations for CE and CW). The inverse weight of Δu is

$$\frac{1}{p(\Delta u)} = \frac{1}{2N} + \frac{1}{4} tg^2 \varphi$$
 (7')

Using (7) and (7') one finds for the weights of the unknown corections $\Delta \alpha_i$ (see Kreinin, Tolchelnikova–Murri, 1982):

$$\frac{1}{p\left(\Delta\alpha_{i}\cos\delta_{i}\right)} = \frac{1}{2} + \frac{1}{4} \sin^{2}\delta_{i} + \frac{1}{2N}\cos^{2}\delta_{i} \quad (7")$$

From (7") it is clear that the weight of $\Delta \alpha_i$ is independent of the observatory's latitude.

On proceeding from the equations (2) we shall find the same formulae (7") for p ($\Delta \alpha_i \cos \xi_i$).

The systematic errors associated with the observations of the polar star at low altitudes from low φ , or those associated with the observations of the equatorial stars from high φ , narrow the range of latitudes suitable for the method.

At deriving (7) - (7") we had to assume the azimuth of the meridian marks of T.I. constant for at least 12 hours (longer in practice).

In Pavlov's method the steadiness of the instrumental azimuth for several hours is required, in principle the period might be reduced to the fractions of an hour. Ignoring the systematic errors in R.A. of the zenith stars, arising from the chain method of reduction, which is a concession from the strictness, we can derive

$$p(\Delta a) = 2k \sin^2 \varphi \cos^2 \varphi \tag{8}$$

$$\frac{1}{p(\Delta u)} = \frac{1}{k\cos^2\varphi}$$
(8')

$$\frac{1}{p\left(\Delta\alpha_{i}\cos^{2}\delta_{i}\right)} = 1 + \frac{\sin^{2}\delta_{i}}{2k\sin^{2}\varphi} + \frac{\cos^{2}\delta_{i}}{2k\cos^{2}\varphi} \qquad (8")$$

In (8) through (8") k denotes the number of the zenith stars observed at both culminations.

For precise observations of the zenith stars at the lower culmination it is necessary that the latitude $\varphi \ge 55^{\circ}$. From (8") one obtains p ($\Delta \alpha$) is maximum when $\varphi = 45^{\circ}$, diminishing with φ growing.

Therefore, the Pavlov's method is efficient for instance at Pulkovo ($\varphi \approx 60^{\circ}$) but is hardly suitable for $\varphi > 75^{\circ}$.

At high latitudes the effect of the last terms in (8["]) on p ($\Delta \alpha$) could be reduced by augmenting k. However, the nearer an observatory is to the pole, the less is the number of its zenith stars.

In this connection a remark, bearing on the R.A. observations made at high latitudes, might be added.

According to Petrov (1981) the variations of the instrumental parameter n were carefully controlled at Spitsbergen. Note that

$$n = b \sin \varphi - a \cos \varphi$$

becomes

$$n = 0.78 b - 0.21 a$$
 (9)

for $\varphi = 780$.

As stated on page 15 (Petrov, 1981) the horizontal axis of the T.I. was reversed at each star's observation. Accordingly, the effect of b on the derived values of n should have been removed. Thus, as it results from (9), the azimuth variations might be 5 times as large as those in n, revealed by the Spitsbergen observers.

Consequently, the formal approach is unsufficient and the physical meaning of the parameters is to be clearly understood at studying the accuracy of observations (Teleki, 1986).

2.5. Methodical defficiency makes itself felt by the disparity in terminology.

For instance, in Polozhentsev (1977) the errors $\Delta \alpha_{\delta}$ of the FK4 system were derived by the calculation of the weighted means from the right ascensions in 8 catalogues. Two among them were termed absolute and six – quasiabsolute ones. However, the methods of reduction of the six catalogues were different.

Namely, in the A S -1 (astrolabe) the R.A. s deviate from the absolute values by a constant in the same way as they do in the PBPI-1 or 2 if the Washington method is used for the reduction.

As shown by Strelkova (1985) the R.A.s in PB catalogue (Høg, 1974) could be reduced to the absolute system if corrections

$$C + C_1 f(\delta) = C + C_1 \sin(\delta - \varphi) \sec \delta$$
(10)
$$\varphi = 330$$

had been found, C and C₁ being dependent on the R.A. in the FK4 zone -90° to $+40^{\circ}$. The A.R.s in the SPF--1 or 2 catalogues (Anguita et al., 1971) are shown to deviate from the absolute ones by

$$C + C_1 \operatorname{tg} \delta$$
 (11)

C and C₁ being dependent on the R.A. in the FK 4 zone -40° to $+40^{\circ}$.

Methods used for the reduction of the SPZ and MP catalogues were also of different kind.

In fact only 6 independent catalogues were used by Polozhentsev (1977), PBPI-1 and 2, as well as SPF - 1 and 2, being two versions of the results of nearly the same observations.

Individual catalogues should be reduced to an absolute system **before** being used for the compilation of a fundamental (general) catalogue, i.e. prior to the calculation of the mean values from individual coordinates. Such was the traditional (classical) requirement. To comply with it the ones and the same stars were used (Maskelyne or other common stars in the equatorial zone) for the determination of the zero point of the absolute catalogues. Hence the differences $\alpha_{ik} - \alpha_{is}$ for

the same stars observed at k and s observatories were due to the errors of observation only.

If the methods used at the observatories are absolute, but the reference zones for Δu or $\Delta (u + m)$ determination are different, the quantities $\alpha_{ik} - \alpha_{is}$ will consist of two components: the observational errors and the differences $\Delta \alpha_{\delta}$ in R.A. in the initial catalogue. The latter are systematic, their mathematical expectation M being constant. The situation gets worse if the R.A. s of the catalogue deviate from the absolute ones by quantities expressible by (10) and (11).

In this case $M = f(\delta)$ even in the total absence of the systematic observational errors, which is never the case. In practice, the systematic errors of both kinds, those having their origin in the initial catalogue and those involved by observations, are mixed. Using the accidental field theory there is no possibility of separating these errors neither is it possible to remove them from the obtained mean values of coordinates.

3. CONCLUSION

It is clear from the above stated that the two problems: the choice of the method of reduction of star coordinates and that of the method of compilation of a fundamental catalogue are closely interconnected.

The rigorous classical solution, yielding an accuracy level formerly considered sufficient, is almost discarded in the current practice. The modern approach calling for efficiency, implies conformity in planning and solution of both problems.

REFERENCES

- Anguita, C., Zverev, M.S., Carrasco, G., Polozhentsev, D.D.: 1974, *Izv. glav. astron. Obs. Pulkove*, **189–190**, 83.
- Bykov, M.F.: 1977, Cirk. Tashkent astron. Obs., 79, 1.
- Eichhorn, H.: 1974, Astronomy of Star Positions, F. Ungar Publ. Comp., New York, 1.
- Høg, E., Nikoloff, I.: 1974, Proc. IAU Symp. 61, "New Problems in Astrometry", D. Reidel Publ. Comp., Dodrecht-Holland, 79.
- Krejnin, E.I., Tolchelnikova-Murri, S.A.: 1982, *Izv. g'av. astron.* Obs. Pulkove, 200, 77.
- Nemiro, A.A.: Izv. glav. astron. Obs. Pulkove, 194, 119.
- Popov, A.A., Tolchelnikova, S.A.: 1986, *Izv. glav. astron. Obs. Pulkove*, in press.
- Polozhentsev, D.D.: 1977, Pisma v Astr. Zhurnal, 3, 90.
- Streikova, I.A., Tolchelnikova-Murri. S.A : 1985, Vest. Leningrad. gos. Univ., 1,95.
- Teleki, G.: 1986, Proc. IAU Symp. 109 "Astrometric Techniques", D. Reidel Publ. Comp., 749.
- Tolchelnikova-Murri, S.A.: 1980, Vest. Leningrad. gos. Univ., 19, 89.

UDC 526

THE DETERMINATION OF THE BELGRADE LONGITUDE FOR THE PERIOD 1964–1984

D. Đurović

Department of Astronomy, Faculty of Sciences, Studentski trg 16, Belgrade

(Received Sept. 6, 1985)

1. THE DATA CHARACTERISTICS; GROUP CO-RRECTIONS

 $\sigma' = \pm 13 \text{ ms}$

In this paper we are dealing with an analysis of residuals RT of the Belgrade system of UT1–UTC with respect to the system of UT1–UTC of BIH (Bureau International de l'Heure).

The initial Belgrade longitude in the international terrestrial system of reference "BIH 1968" (Rapport Annuel du BIH pour 1969), used for the computation of RT, is:

$\lambda_0 = 1^{h} 22^{m} 3^{s} 233$ (East)

For the years 1964 and 1965 the BIH has published the monthly means of RT, while for 1966 and 1967 the means for each 1/20 yr. Since 1978.0 onwards we dispose of RT for each group of observation.

In the Time Service of the Belgrade Observatory UTO has been computed from the observation of groups of 10 stars ($-10^{\circ} \le \delta \le 70^{\circ}$; mean $\delta = 39^{\circ}$ 3), dedicated to time measurement and 1 "supplement" star, observed in lower transit for the absolute azimut computation. The instrument was a Transit instrument BAMBERG, D = 10 cm, F = 100 cm. Every night 2 to 5 successive groups were observed by the same observer. The synchronisation of quartz clock with UTC signals has been performed with a precision of 0.1 to 0.3 ms. Having in mind that the standard deviation of UTO is larger for approximately, two orders of magnitude, in the following discussions the errors of UTO-UTC will be attributed to UTO.

The standard deviation of RT, estimated from internal incoherence of results (with respect to the mean UTO of the group) is

$\sigma = \pm 12 \text{ ms}$

The average number of "clock" stars effectively observed by one group is 9.0.

As the observations were made by the chain method, we have had the possibility to determine the group corrections and, after their removal, the Allan pair variance (on the differences of corrected results of successive groups, observed during the same night by the same observer). We find As $\sigma' \approx \sigma$ we can consider that during observation of two successive groups (~ 2 hours) contribution of the change of meteorological conditi is negligible. However, their seasonal variation is v important. Because of them and because of or periodical errors ($\Delta \alpha_{\alpha}$ of the catalogue), the stand deviation of RT with respect to the annual mean (R amounts to

σ " = ± 25 ms

Table 1

In Table 1 the RTa values, their standard deviation σ_a and the number of observed groups (Ng) presented.

Table I	28.0			-	26429		
Year	RTa		Ng	Year	RTa		1
1968	8.2 ±	1.2 ms	246	1977	5.5 ±	1.6 ms	
1969	10.2	1.0	369	1978	- 8.5	2.3	
1970	15.2	1.1	283	1979	-11.3	2.1	
1971	4.6	1.2	280	1980	-15.2	2.2	1
1972	8.5	2.1	208	1981	- 7.9	2.0	1
1973	32.6	1.7	217	1982	- 6.5	1.7	
1974	40.2	1.8	204	1983	- 6.6	2.2	
1975	30.3	1.6	221	1984	9.4	2.3	1
1976	15.8	2.1	184	mean	7.3	1.7	2

The mean density of the observation nights is times less than Ng.

From RTa we note that the local system UT1-UTC has a large quasi-periodical variation wi characteristic period P=15 yrs. It will be discussed la

Besides errors depending on time of observat there exist errors depending on the compositior groups: errors of catalogue, instrumental errors dep ing on the zenithal distance, etc. They generate an et known as the group correction, or, with the opposign, group error.

The group corrections Δ_i computed by the c smoothing of observations for the period 1969-1 are presented in the Table 2. Before 1969, an anc programme was observed and the number of of vations was insufficient for the computation of Δ_i .

Group No	Δ_{i}	Group No	Δ_{i}
1	-1.2 ± 4.3 ms	15	-2.4 ± 4.3 ms
2	- 8.3	16	-1.4
3	0.2	17	5.2
4	3.2	18	5.1
5	- 3.0	18	4.6
6	- 4.2	20	12.2
7	- 3.7	21	10.6
8	- 4.5	22	14.2
9	- 3.2	23	14.1
10	- 9.4	24	0.5
11	-18.3	25	0.7
12	- 8.6	26	5.2
13	- 7.9	27	5.0
14	- 4.9		NUMBER OF STREET

The mean standard deviation of Δ_i is $\sigma_{\Delta} = \pm 4.3$ ms. It was computed by the formula (Nemiro 1963):

$$\sigma_{\Delta}^{2} = \frac{(N-1)^{2} - 1}{12(N-1)} \quad \sigma_{d}^{2}$$
(1)

where N represents the number of groups in the chain (N=27), σ_d – the mean standard deviation of difference of UTO of successive groups ($\sigma_d = \pm 2.9$ ms).

It seems from Table 2 that the corrections Δ_i are realistic.

The corrections Δ_i are applied for the following computations.

2. THE DRIFT AND THE PERIODICAL VARIATIONS OF RT

After a preliminary analysis of RTa we have assumed that the polynomial term does not exist. On the contrary, there were some indications for the existence of a periodical variation with a period between 10 and 20 years (see Fig. 1). To make it more evident, the 1/10or means have been smoothed by the Wittaker-Robinson-Vondrak (WRV) method with a parameter $\epsilon =$

 10^{-14} . By this smoothing the seasonal variation, whose amplitude is the largest one (see the Table 3 and Fig. 2), was efficiently eliminated. The smoothed residuals (RC) are presented in Fig. 1a.

- I-	1	2
an	10	
		1

Р	A	Y and and		an that
123 days	2.4 ±	0.6 ms	,750 ±	210
183	4.8	.6	330	11
248	2.4	.6	207	21
265	8.3	.6	124	6
504	2.4	.6	158	21
780	2.6	.6	81	21

By the least squares (LS) method the set of equations:

RTa = a + b sin ωt + c cos ωt = a + A sin(ωt + α) (2)

has been solved.

an

By a 0.5 yr step and for values of the period ranging from 10 to 20 yrs we searched for the minimum of the standard deviation of residuals (σ_r). In this way we have found the following results:

$$P = 15.0 \text{ yrs}$$

$$a = \Delta \lambda = 8.1 \pm 2.2 \text{ ms}$$

$$A = 19.6 \pm 2.0 \text{ ms}$$
(1968-1984)

$$\alpha = 201^{\circ} \pm 9^{\circ}, \text{ for } 1976.0$$

$$\sigma_{r} = 9.0 \text{ ms}$$
d:

$$P = 15.0 \text{ yrs}$$

$$a = 2.8 \pm 2.3 \text{ ms}$$

$$A = 24.9 \pm 2.1 \text{ ms}$$
(1964-1984)

$$\alpha = 258^{\circ} \pm 7^{\circ}, \text{ for } 1976.0$$

$$\sigma_{r} = 10.2 \text{ ms}$$

The observation period is given in the brackets. Since the former sample of results is based on homogeneous data series, it will be adopted as ,,definite".

25

The longitude:

 $\lambda_m = \lambda_0 + \Delta' \lambda = 1^h 22^m 3^s 225 \pm 0^s 002$ (East)

will be termed the mean longitude.

Here we note that the classical Orlov method (see, for example, Kulikov 1962) gives results practicaly equal to RC. Therefore, the above term "mean longitude" is not equivalent to the known Orlov's definition of the mean latitude. We have followed the logic that the expression "mean' should represent the information that the result has no periodical variation, at least, the variation already identified.

Having in mind the order of the amplitude A, it would be interesting to see whether the variation with a period P=10-20 yrs exists in RT series of other observatories. We can imagine it concerns the comon variation whose amplitude (and/or phase) varies from one observatory to the other and so it appears in the residuals RT.

The "instantaneous" corrections to λ_0 (RC) are given in Table A (Appendix).

To detect the periodical variations in the range 50-800 days, spectral analysis of RT has been made by the method of direct Fourier transforms (DFT). To obtain the equidistant data, the 15-day means were previously computed. In exceptional cases, when in 15-day subinterval the observations were missed, the RT was computed by the linear interpolation.

In Fig. 2, where the variable $Q = (s^2 + c^2)^{1/2}$ (s--the amplitude of sinus, c--the amplitude of cosinus transform) is presented in function of the period P, we can remark several peaks which could be due to the real periodical variations of RT. At first, two highest peaks (over 365 and 183 days) are due to the known seasonal variation of the local meteorological parameters. Beside them, there exist over the limit $\sigma_0 = 1.8$ ms, equal to three times standard deviation of Q, the peaks over 123, 248, 504 and 780 days. As we do not know geophysical phenomena having the same period, it is easy to assume that they are pseudo-pekas, "generated" by the computation technique, or that they are due to an interference of accidental errors.

The 123-day variation has been earlier detected in universal time scales UT1 and UT2 (Djurović 1974, 1983), in geomagnetic index AP and zonal atmospheric circulation (Djurović 1983, Belmont et al. 1974), in Doppler observations of the apparent height of a TRANET station (Déhant and Pâquet 1983). Its appearance in RT could indicate that there exists a difference between the amplitudes (and/or phases) of the local and global effect on UT.

The 248-day peak was noted in spectra RT and RF (RF-the residuals of latitude observations) on several tenths of instruments (Djurović 1978), but it is not explained.

Therefore, the continuation of researches of the origin of above mentioned peaks could reveal unknown phenomena whose contribution in real RT variations is important.

The numerical values of the period P, the amplitude Q and phase ϕ of 6 pronounced peaks from Fig. 2 are given in Table 3.

3. THE LOCAL GRAVITATIONAL ANOMALY

The lunar tides 01 and M2 could be present in RT if there existed the anomalous deflection of the vertical of the observation station. For the investigation of this phenomenon the following methods were applied:

a) The residuals RT are smoothed by the WRV method with $\epsilon = 10^{-7}$. Consequently, the sinusoidal terms whose $P \leq 40$ days are removed (see Feissel and Lewandowski 1984). Therefore, in the second order residuals dRT=RT-RT' they are saved, practicaly free of periodical terms discussed in the previous paragraph. After that, for six subintervals, defined below, we have solved by LS method six systems of equations:

$dRT = Ao + \sum_{i=1}^{2}$	(Ai sin $\omega_i t + Bi \cos \omega_i t$),
where:	$\omega_1 = 2 \pi / P1$
	$\omega_2 = 2 \pi / P2$
	P1 = 14.192 days
	P2 = 14.765 days

The length of subintervals was chosen according to the principle of commensurability. The Julian dates of their limits are:

No	l_1	l_2	n ₁	n ₂
	2439	000+		
1	860	1923	74.9	72.0
2	1923	2985	74,8	71,9
3	2985	4049	75,0	72.1
4	4049	5109	74.7	71.8
5	5109	6172	74.9	72.0
6	5933	7054	79.0	75.9

In this Table n_1 and n_2 represent the ratios: $(l_2-l_1)/P1$ and $(l_2-l_1)/P2$. Their deviations from the closest integers practically do not affect the exactitude of separation of 01 and M2.

The computed amplitudes of 01 and M2 are:

Subinterval	01	M2		
	1.4	± 0.7 ms	1.7	±0.7 ms
2	2.5	0.9	0.9	0.9
3	3.0	1.1	0.9	1.1
4	4.1	1.2	3.7	1.2
5	2.2	1.2	4.0	1.2
6	0.6	1.1	1.7	1.1
mean	2.3		2.2	

The mean phases for 1976.0 are: $246^{\circ} \pm 31^{\circ}$ (01) and $-16^{\circ} \pm 53^{\circ}$ (M2).

Evidently, the above results are not sufficient for any serious conclusion on existence of the local anomaly of gravity. As the amplitudes from the above Table are somewhat over the standard deviations we have still made a further attempt to detect the residual deflection of the vertical.

b) Let:

 $f1 = \tau_1 - INT(\tau_1)$

- $f2 = \tau_2 INT(\tau_2)$
- $\tau_1 = (t to)/P1$
- $\tau_2 = (t to)/P2.$

The operator INT means the integer part of the argument, t—the Julian date of observation, to = 2439860.0.

The residuals dRT have been organised in increasing order of fi (i = 1,2) and their means (dRTm) for each 0.02 of fi have been computed (the number of dRT in one subinterval of fi is ~ 40).

The dRTm are presented in Fig. 3. No concentration of points tracing a sinusoide is noticed in Fig. 3. It follows, therefore, that the residual deflection of the local vertical is not identified. If it existed, its East-West component is under 3-4 ms.

4. CONCLUSIONS

1. The mean Belgrade longitude in the "BIH 1968" system computed from the observations of about 34000 transits of FK 4 stars, is:

 $\lambda_{\rm m} = 1^{\rm h} 22^{\rm m} 3^{\rm s} 225 \pm 0^{\rm s} 002$ East.

- 2. It seems that the drift of the residuals RT does not exist. On the contrary, a large quasi-periodical variation of 15-yrs, with an amplitude $A \approx 20$ ms, is dominant.
- 3. The amplitudes of seasonal terms are typical for the class of instrument used in Belgrade.

Appendix Table A

Epoch	RC	Epoch	RC	Epoch	RC
1968.8	7.4 ms	1973.6	27.1 ms	1978.4	-4.1 ms
.9	7.9	.7	27.9	.5	-4.9
1969.0	7.6	.8	28.6	.6	-5.8
.1	7.3	.9	29.3	.7	-6.4
.2	7.1	1974.0	29.8	.8	-7.3
.3	6.9	.1	30.4	.9	-8.0
.4	6.7	.2	30.7	1979.0	-9.0
.5	6.6	.3	31.0	.1	-9.7
.6	6.5	.4	31.3	.2	-10.2
.7	6.4	.5	31.5	.3	-10.7
.8	6.3	.6	31.6	.4	-11.1
.9	6.2	.7	31.6	.5	-11.7
1970.0	6.2	.8	31.5	.6	-12.2
.1	6.2	9	31.3	.7	-12.7
2	62	1975.0	31.0	8	-130
3	6.2	1 1	30.8	0	-13.3
4	63	2	30.4	1980.0	-13.7
5	6.4	.2	20.8	1700.0	13.0
.5	6.6	.5	29.0	2	-13.9
.0	6.0	.4	29.2	2	14.1
•/	0.0	.5	20.0	.3	-14.5
.0	7.0	.0	21.9	.4	-14.5
.9	7.5	./	20.0		-14.0
19/1.0	7.5	.0	20.5	.0	-14.7
.1	1.9	10760	25.4	./	-14.7
.2	0.2	19/0.0	24.2	.8	-14.7
.3	0./	.1	23.5	1001.0	-14./
.4	9.1	.2	22.1	1981.0	-14.7
2	9.6	.3	20.9	.1	-14:5
.0	10.1	.4	19.4	.2	-14.6
./	10.7	.)	18.5	.3	-14.5
.8	11.5	.6	17.4	.4	-14.4
.9	12.1	.7	16.1	.5	-14.2
1972.0	13.0	.8	14.9	.6	-14.1
.1	13.7	.9	13.6	.7	-13.8
.2	14.6	1977.0	12.4	.8	-13.7
.3	15.2	.1	11.1	.9	-13.4
.4	16.3	.2	9.5	1982.0	-13.3
.5	17.1	.3	8.9	.1	-13.0
6	18.2	.4	7.5	.2	-12.6
.7	19.0	.5	6.2	.3	-12.3
.8	19.7	.6	4.8	.4	-11.9
.9	20.8	.7	3.6	.5	-11.5
1973.0	21.9	.8	2.5	.6	-11.1
.1	21.5	.9	1.6	.7	-10.5
.2	23.2	1978.0	0.4	.8	-10.2
.3	24.7	.1	-0.6	.9	-9.6
.4	25.7	.2	-1.7	1983.0	-9.0
.5	26.4	.3	-2.9	.1	-8.4

27

4. The residual (anomalous) deflection of the vertical, if it exists, is under 3-4 ms.

Table A	
Epoch	RC
1983.2 .3 .4 .5 .6 .7 .8 .9 1984.0 .1 .2	$\begin{array}{r} -7.6 \text{ ms} \\ -7.3 \\ -6.4 \\ -5.7 \\ -5.0 \\ -3.7 \\ -2.8 \\ -1.8 \\ -0.3 \\ 0.7 \\ 1.7 \\ 2.9 \end{array}$
• 5	2.8

5. In the spectrum of RT some of the peaks, particularly that of 123 days, could be assumed as realistic.

ACKNOWLEDGMENT: I thank Mrs L. Djurović, from Belgrade Observatory, for her having executed a major part of computations used in this paper.

REFERENCES

Belmont, A.D., Dartt, D.G., Nastrom, G.D.: 1974, Quart. J. Roy. Meteor. Soc. 100, 203.

Déhant, V., Pâquet, P.: 1983, Bull. Géod. 57, 4, 354.

Djurović, D.: 1974, Ciel et Terre, 90, 1.

- Djurović, D.: 1983, Astron. Astrophys. 118, 26. Feissel, M., Lewandowski, W.: Bull. Géod. 58, 4, 464.
- Kulikov, K.A.: 1962, Variations of the latitudes and longitudes, monograph., Gos. izd. Fiziko- mat. lit. Moscou (in Russian).
- Nemiro, A.A: 1963, Trudy 15-Astrometr. Conf. USSR, Leningrad, 176.

CONSTANT OF ABERRATION FROM THE LATITUDE OBSERVATIONS WITH THE BELGRADE ZENITH -- TELESCOPE

M. Djokić

Astronomical Observatory, Belgrade, Yugoslavia

(Received Oct. 15, 1985)

SUMMARY: Values of the constant of aberration are determined from the latitude observed under the new Belgrade latitude programme and compared with those derived from observations under the old programme as well as with the results obtained at other observatories.

The observations with the Belgrade zenith-telescope under the new programme, incorporating six groups (twelve subgroups) started in 1960. The prime purpose of this programme was to allow sufficiently long observing runs (at least a full nutation cycle) which implied the inclusion into it two groups (II and V) whose mean right ascensions fall within 6h and 18h (Ševarlić, Teleki, 1959). The old Belgrade latitude programme, under which the observations were carried out in the period 1949.0 to 1961.0, consisted of twelve groups and was similar to the one of the ILS (observations performed symetrically with respect to the mean midnight (Ševarlić, 1961).

Even though the new Belgrade latitude programme was composed with the purpose of determining correction to the constant of nutation, besides exploring local factors, attempt is made herewith to derive, from the latitudes obtained by it, correction to the constant of aberration. As is well known the latitude observations are employed to such purposes in virtue of both their accuracy and their having continuously been provided in the course of time (years). The view has also burn complied with that the correction to the constant of aberration was to be determined from the latitude observations and promptly published whenever this proves possible (Guinot, 1965). In determining the correction to the aberration constant from the latitude observations made under the n-w Belgrade latitude programme use has been made of the formula:

$$\Delta k = -R/\Sigma (m_a - m_b)$$

here R – the closing error and

 $m = -[(\sin\epsilon \cos\delta - \cos\epsilon \sin\alpha \sin\delta) \cos L_{o} + \sin L_{o} \cos\alpha \sin\delta]$

The subcripts a, b denote, respectively, the first and the second subgroup of particular group in the new programme, ϵ – obliquity of the ecliptic, α – mean right ascension, δ – mean declination of the given subgroup of the Talcott pairs and L_{Θ} – the longitude of the Sun.

The observational material used for the derivation of the correction to the constant of aberration was one collected in the period 1960,0 to 1980,0. Account has thereby been taken of the modifications implemented in the Belgrade Latitude Service early in 1969 (Milovanović et al., 1981) as well as the change of the constant of aberration introduced in 1965 following the respective resolution of the IAU 12 th General Assembly.

So the above related observing period was divided in the way displayed in Table 1, containing the results of the constant of aberration determination from the Belgrade observations.

 Table 1. Constant of aberration determined from the Belgrade latitude observations

Period	R	$\Delta \mathbf{k}$	k	n	Σ (m _a -m _b)	
1.1960.0-1965.0	+ 0.015	-0":004	20,466	4105	-3.851	
2.1965.0-1969.0	+ 0.039	-0.011	20.485	2970	-3.631	
3. 1969.0-1980.0	-0.114	+ 0.031	20.527	10085	- 0.691	

Notations in Table 1 are as follows: R-closing error; Δk -correction to the constant of aberration; k-constant of aberration; n-number of observations of Talcott pairs and; $\Sigma(m_a-m_b)$ -coefficient of the correction to the constant of aberration.

It is apparent from Table 1 that during the two first periods a tendency made itself felt of the closing error getting biger as the constant of aberration grew larger (Kulikov, 1954).

The constant of aberration value obtained in the third observational period is close to the one obtained from the observations under the old Belgrade programme in the period 1949.0 to 1957.0. The value concerned is 20.528, being derived from the material embracing observations of 7088 Talcott pairs (Ševarlić, 1959). The mean value of the constant of aberration resulting from the data in Table 1 is 20.492, and is close to the one adopted by the IAU 12. General Assembly (20.496).

In the year 1982 the new Belgrade programme was complemented by eight groups of Talcott pairs formed in such a way as to fill this programme's gaps. The new Belgrade programme thus enlarged fills out the whole of 24 hours in right ascension. One is therefore well entitled to assume the latitude differences of the neighbouring groups of Talcott pairs as unaffected by the daily latitude variations. The material collected on the basis of latitude programme thus enlarged in the period 1983.0 to 1985.0 served to derive yet another correction to the constant of aberration. The results of this determination is presented in Table 2.

Table 2. Results of constant of aberration determination from the Belgrade latitude observations under the enlarged programme

 Period
 R
 Δk n
 Σ (m_a-m_b)

 1.1983,0-1985.0
 -0.105
 +0.032
 20,528
 1773
 -3.249

Notations in Table 2 are identical to those in Table 1.

Note that the costant of aberration from Table 2 is identical to the one obtained from observations under

the old Belgrade programme in the period 1949.0 to 1957.0 (Ševarlić, 1959), as well as very close to the value 3 in Table 1.

The values 1 and 2 in Table 1 were compared with the values obtained at Pulkowo and Engelgardt observatories. The value obtained at Pulkovo observatory in the period 1953 to 1964 was 20"4998 (Bahrah, 1971), and at Engelgardt observatory in the period 1957 to 1968 were obtained the values 20"495 and 20"497 (Jusupov, 1976). All these values are closer to the IAU adopted value (20"496) than corresponding values in Table 1.

REFERENCES

- Bahrah, N.M.: 1971, Izv. Obs. Pulkovo, 187, 97.
- Guinot, B.: 1965, Bull.astronomique, 25,
- Jusupov, J.G.: 1976, Izv. Obs. Engelgardt, 41-42, 180.
- Kulikov, K.A.: 1954, Astron. Journal (russ.), 26, 6.
- Milovanović, V., Teleki, G., Grujić, R.: 1981 ; Publ. Obs. Astron. Sarajevo, 1, 131.
- Ševarlić, B., Teleki, G.: 1959, Bull. Obs. Astron. Belgrade, 112-113, 19.
- Ševarlić, B.: 1959, Bull. Obs. Astron. Belgrade, 112-113, 32.
- Ševarlić, B.: 1961, Publ. Obs. Astron. Belgrade, 8, 8.

PLATE REDUCTION AS THE DETERMINATION OF A BIJECTION IN MODERN ALGEBRA. PURE MATRICAL SOLUTION. ERROR EFFECT AND THEOREM OF THE MINIMUM. THE TEST-STARS METHOD APPLIED TO DETERMINATE ACCURACY ON GPO-LA SILLA-ESO PLATES.

H.Debehogne

Observatoire Royal de Belgique, BRUXELLES, Belgique.

(Received January 14, 1985)

SUMMARY. This work begins with a new definition of the plate reduction in language of Modern Algebra. We introduce the important ideas of the basis subset and test subset and of the reduction of a rectangular system to a quadratic one. One term of the quadratic matrice is the scalar product of two columns of the rectangular matrice. The main object of the following point is the study of accuracy by means of test subset. The Theorem of the minimum of the error-effect is reminded. Finally, results obtained at the Grand Prisme Objectif (GPO) of La Silla are given.

1. INTRODUCTION. SETS. MAPPINGS. BIJECTIONS.

The plate reduction in language of Modern Algebra consits in the determination of mappings or maps from S (set of celestial points) into (onto) P (set of their images on the photographic plate). A mapping is an assignment of a unique element of P to each element of S. For the most part we shall denote mappings by lower case Greek letters. If β is a mapping from S to P, we shall express this fact more briefly by writing $\beta : S \rightarrow P$; this is read , β is a mapping from S into P''. We call S the ,,domain'' and P the ,,codomain'' of β (Baumslag et al., 1968).

Suppose that $\beta : S \rightarrow P$. If α assigns to s in S (s \in S) the element p in T, we write $\beta : s \rightarrow p$ and read as $,\beta$ sends s into p". We call p the image of s (under β) and write s $\beta = p$, s^{α} = p or β (s) = p for this image; we call s a preimage of p. We say β is a mapping from S onto P if every element in P has at least one preimage in S, i.e. if for every p ϵ P there is at least one element \in S for which s β = p; in this case we call β an ,,onto mapping" (Baumslag et al., 1968).

On the other hand we say β is "one-to-one" if $s\beta = s'\beta$ implies s = s', i.e. distinct elements of S have distinct images in P(under β). Finally, we say β is a "matching of S and P" or that " β matches S with P" or " β is a bijection" if β is both "onto and one-to-one". Two sets, S and P, are termed "equipotent or of the same cardinality" if there exists a matching of the one with the other (Baumslag et al., 1968).

Thus, a bijection is a mapping (transformation) of sky "onto" plate and its returnback (inverse transformation or mapping from plate to sky).

2. REDUCTION IN MODERN ALGEBRA LAN-GUAGE.

In old or classical language, the bijection is identical to the plate constants (that, we use reluctantly) which are the coefficients of the bijection or the coefficients . a_{ij} , b_{ij} , of the equations between X, Y (standard coordinates or, in modern algebra language, the rectilinear celestial coordinates of a point in the sky, i.e. the celestial-set) and x, y (measurements or, in modern algebra language, the rectilinear plate coordinates of a point in the plate-set):

$$X = \sum_{i+j=k=0}^{n} a_{ij} x^{i} y^{j} \quad (1), \qquad Y = \sum_{i+j=k=0}^{n} b_{ij} x^{i} y^{j} \quad (2),$$

 $i \downarrow, j \uparrow$ in i + j = k = 1, ..., n, n being the degree of the bijection; for instance, k = 2 gives the the quadratic terms (only a part of the bijection) written in the order

$$a_{20} x^2 + a_{11} xy + a_{02} y^2$$

where i = 2, 1, 0 and j = 0, 1, 2 with i + j = k = 2.

The number NU of a_{ij} is equal to (or less than) (n + 1) (n + 2)/2; NU = number of unknowns. In order to compute a_{ij} (b_{ij}), or the bijection, we take a subset (g) in the celestial-set S (i.e. N stars= X_L , Y_L , L= 1, ..., N) and the corresponding one (g') (on the plate (i.e. the N stellar images: x_L , y_L , L = -1, ..., N). We write N equations like (1) (and like (2)).

From experience and various computational studies we have to take $N \ge 2$. NU (two times the number of a_{ij}). Thus we must solve a rectangular system of which the dimensions are N (vertically) and NU (horizontally). The rectangular matrice of $(x^i \ y^j)$ is defined by the measurements. The independant terms (vertical vector (X_L)) is computed from the catalogue by means of spherical trigonometry. When multiplying the equations system (equations of condition in classical language) by the inverse matrice $(x^iy^i)^{-1}$, we obtain a quadratic system

$$(x^{i}y^{j})^{-1}(x^{i}y^{j})(a_{ii}) = (x^{i}y^{j})^{-1}(X_{T})$$
(3)

A coefficient in the quadratic system is the scalar product of two columns of coefficients in the rectangular one. The order numbers of these two columns are the order numbers of the two rows of the term in the quadratic system (normal equations in classical language).

3. ACCURACY, TEST STARS SUBSETS.

After determination of a_{ij} (and b_{ij}), i.e. the bijection β , we shall control the accuracy of β by means of

- 10 the ,,return back" on the basis stars subset, B∈S, (in modern algebra language), or the computation of residuals on reference or comparison stars (referential) in classical language;
- 2° a chosen test stars subset, T \in S.

The "defect of return back' on the points of the basis subset (mean of the absolute values of residuals on the reference stars in classical language) is the "internal accuracy".

The "defect of return back" on the points of the test subset (means of the absolute values of residuals on the test-stars, Debehogne, 1970, in classical language) is the "external accuracy".

The "internal accuracy" could be without any meaning: for instance, if N (number |B| of points in the basis subset B or number of reference stars) is taken equal to NU (number of unknowns, number of coefficients to constitute the bijection, number of "plate constants"), the "internal accuracy" will be perfect (residuals $\equiv 0$) but the "external accuracy" will be bad.

When external and internal accuracies will remain constant (or become equal) by increasing the basis subset $B(|B| = N \uparrow)$:

- 1^o the choice of N is good and N is the minimum of the basis (reference) stars for a good reduction.
- 2° the mean (or the common value) of both accuracies (internal and external) gives a general accuracy on the

position of the points of both sets S (catalogue) and P (measurements). But, in the case of a focal length greater or equal to 2 or 3 m and a measurement instrument such as an Ascorecord (Uccle, last figure: 0.1 micron) or the Optronics (Garching-ESO, last figure: 1 micron) the basis subset on the plate, $B \in P$, is more accurate than the basis subset on the sky, $B \in S$: this is due to not well known proper motions or positions in our catalogues.

4. ERROR-EFFECT. THEOREM OF THE MINIMUM.

If, when increasing |B| = N, the position of a new basis star is not accurate, the "internal accuracy" increases by a value equal to about

(|residual| = |error - error effect|)/N;

the error-effect could be small following the localisation of the reference erroneous star and the value of N=|B| (Debehogne, 1972).

At the same moment, for same reasons, the "external accuracy" could remain constant. Thus

10 we gain nothing by increasing N = |B|;

20 the error-effect is very faint on the whole plate (if we are not sure, we can devide the plate in concentrical circles, Debehogne, 1974).

When performing a plate reduction by means of a simulation method we can deduce the error-effect (Debehogne, 1972) and the connection between this error-effect and the residual:

error = residual + error-effect.

The error-ffect can be studied at the alone erroneous point itself or on the whole plate.

In the first case, when changing the degree of the bijection we can see that (theorem of the minimum): for odd degrees only, the error-effect at the erroneous point (i.e. where the error is acting) is minimum at the center of the basis subset; there, we have a local maximum for even degrees (Debehogne, 1972).

5. RESULTS AT THE GRAND PRISME OBJECTIF (GPO) – LA SILLA.

Celestial coordinates of the center (plate n° : 6378 date: 1983 sept. 10.0; focal length: 4 m; diameter: 40 cm; plate size: 16 cm x 16 cm):

SAO n^r : 227481, $\alpha_{1950} = 16h53m5$, $\delta_{1950} = -42^{\circ}50'$.

Chosen bijections: n = 1 (3 terms), n = 2 (6 terms), n = 3(10 terms).

Basis subsets B used:

N = |B| = 3, 5, ..., 22 stars, for n = 1, N = |B| = 7, ..., 22 stars, for n = 2,N = |B| = 11, ..., 22 stars, for n = 3.

In the graphs, N is on the horizontal axis and the arithmetical mean of the absolute values of residuals on the vertical axis:

a) for points (reference stars) of basis subset, B, b) for points (test stars) of test subset, T,

in α , n= 1 (fig. 1), n = 2 (fig. 3), n = 3 (fig. 5), in δ , n = 1 (fig. 2), n = 2 (fig. 4), n = 3 (fig. 6).

Fig. 1. Precision on Reductions in α by the 1st degree bijection. Bijection between sky and plate: $X = a_{00} + a_{10}x + a_{01}y$, $Y = b_{00} + b_{10}x + b_{01}y$. n: number of basis stars (reference stars).

 α_{OC}^{B} : arithmetical mean of absolute values of residuals in α on basis stars.

 α_{OC}^1 : arithmetical mean of absolute values of residuals in α on 9 test stars.

Plate: 6378 – Grand Prisme Objectif (GPO) at the European Southern Observatory (ESO).

Superposition of fig. 1, 3, 5 for basis subset, B, in α : fig. 7; test subset, T, in α : fig. 9;

Superposition of fig. 2, 4, 6 for basis subset, B, in δ: fig. 8; test subset, T, in δ: fig. 10.

Fig. 2. Precision on Reductions in δ by the 1st degree bijection. Bjection between sky and plate: $X = a_{00} + a_{10}x + a_{01}y$, $Y = b_{00} + b_{10}x + b_{01}y$.

n: number of basis stars (reference stars).

 $\delta {}^B_{OC}$: arithmetical mean of absolute values of residuals in δ on basis stars.

 $\delta \mathop{OC}_{OC}^{T}$: arithmetical mean of absolute values of residuals in δ on 19 test stars.

Plate: 6378 – Grand Prisme Objectif (GPO) at the European Southern Observatory (ESO).

Fig. 3. Precision on Reductions in α by the 2nd degree bijection. Bijection between sky and plate: $X = a_{00} + a_{10}x + a_{01}y + a_{20}x^2 + a_{11}xy + a_{02}y^2$, $y = b_{00} + b_{10}x + b_{01}y + b_{20}x^2 + b_{11}xy + b_{02}y^2$.

n: number of basis stars (reference stars).

 ${}^B_{\alpha_{OC}}$: arithmetical mean of absolute values of residuals in α on basis stars.

 αb_{C} arithmetical mean of absolute values of residuals in α on 19 test stars.

Plate 6378 – Grand Prisme Objectif (GPO) of the European Southern Observatory (ESO).

Measurements and computations performed on the OPTRONICS machine (Garching-European Southern Observatory – Programs: R. West).

fg. 4. Precision on Reductions in δ by the 2nd degree bijection. Bijection between sky and plate: $X = a_{00} + a_{10}x + a_{01}y + a_{20}x^2 + a_{11}xy + a_{02}y^2$, $y = b_{00} + b_{10}x + b_{01}y + b_{20}x^2 + b_{11}xy + b_{02}y^2$.

n: rumber of basis stars (reference stars).

 δ_{OC}^{B} : arithmetical mean of absolute values of residuals in δ on basis stars.

 $\delta _{\rm C}$: arithmetical mean of absolute values of residuals in δ on 19 test stars.

Plate 6378 – Grand Prisme Objectif (GPO) of the European Southern Observatory (ESO).

Fig. 5. Precision of Reductions in α by the 3rd degree bijection. Bijection between sky and plate:

 $\begin{array}{l} X = a_{00} + a_{10}x + a_{01}y + a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{30}x^3 + \\ a_{21}x^2y + a_{12}xy^2 + a_{03}y^3, \\ y = b_{00} + b_{10}x + b_{01}y + b_{20}x^2 + b_{11}xy + b_{02}y^2 + b_{30}x^3 + \\ b_{21}x^2y + b_{12}xy^2 + b_{03}y^3. \end{array}$

n: number of basis stars (reference stars).

 α_{CC}^{OC} : arithmetical mean of absolute values of residuals in α on basis stars.

 $\alpha \delta_{C}$: arithmetical mean of absolute values of residuals in α on 19 test stars.

Plate: 6378 – Grand Prisme Objectif (GPO) of the European Southern Observatory (ESO).

Fig. 6. Precision of Reductions in δ by the 3rd degree bijection. Bijection between sky and plate: see fig. 5.

n: number of basis stars (reference stars).

 $\delta_{C}^{B_{C}}$: arithmetical mean of absolute values of residuals in δ on basis stars.

 $\delta_{\mathbf{C}}$: arithmetical mean of absolute values of residuals in δ on 19 test stars,

Plate: 6378 – Grand Prisme Objectif (GPO) of the European Southern Observatory (ESO).

Fig. 7. Comparison of 3 bijections by Basis Stars, in α . n: number of basis stars (reference stars).

6. CONCLUSION.

When the number of catalogued stars on a plate is small or when we choose a bijection with a great number of coefficients a_{ij} (and b_{ij}) we can not take a sufficient number of test stars (test subset, T, with |T| small).

Fig. 10. Comparison of 3 bijections by Test Stars, in δ . n: number of basis stars (reference stars).

Then, we can refer to studies such as those of the graphs on fig. 7 and 8: when the lines become horizontal we can deduce the optimal number |B| of points in the basis subset B (reference stars) and the mean accuracy of the celestial set, S (catalogue) as defined above (§ 3).

The study of bijections of higher degrees (n = 4, 5, 6)or 7 meaning 15, 21, 28, 36 terms for the complete polynomial) is not to be rejected because not used in practical computations. Of course, this study has permitted to establish the theorem of the minimum: the error-effect at the point where an error is acting is not minimum at the center of the basis subset, B, for even degrees but it is for odd degres bijections. This theorem is available (and to be taken into account and used) for all mathematical and physical problems with rectangular algebraic systems.

In the case of a ,,well furnished" basis subset, B, if a bijection β is perfect (residuals = 0 or perfect return back by means of β), for bijections β ' including β ($\beta \in \beta$ ', for example when degrees of β ' and β verify n' > n) we must notice that β ' will reduce to β when using the same B. In other words, the a_{ij} in (1) for β ', different of the a_{ij} for β , are identical to zero. It is easily seen in (3).

On the other hand, in the same case (of a perfect bijection β) when applying bijection β' ($\beta' \in \beta$) at the same basis subset B, we deduce the mathematical deviation or shift between β and β' (defect of equivalence, Baumslag et al., 1968), excluding all other error-effect due to catalogue, measurements or geometrical constitution or display of B.

ACKNOWLEDGEMENTS

To the ESO for financial and technical supports at La Silla and Garching and to the ESO-staffs (R. West, P. Grosbol, P.Shaver, ...). Graphs were performed by G. Peeters (Uccle Observatory).

REFERENCES

- Baumslag, B., Chandler, B.: 1968. Theory and Problems of group Theory. Schaum's outline Series. Mc Graw -Hill bok Company.
- Catalogue SAO: 1966, Smith. Astron. Obs. Cambridge; USA
- Debehogne, H.: 1970, Astron. Astrophys.8, 189.
- Debehogne, H: 1972, Astron. Astrophys. Suppl. 5, 185.

Debehogne, H.: 1974, Astron. Astrophys. Suppl. 16, 353.

ACCURACY OF THE ASTROGRAPHIC POSITIONS OBTAINED WITH THE BELGRADE SHORT –FOCUS ASTROGRAPH

D.Olević

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

S. Šegan and R. Pavlović

Department of Astronomy, Faculty of Sciences, Studentski trg 16, 11000 Belgrade, Yugoslavia

(Received Dec. 1, 1984, revised May. 5, 1985)

SUMMARY By analyzing astrographic position obtained with the Belgrade short-focus astrograph (Zeiss, D = 16 cm, F = 80 cm) the following has been established: a) Higher accuracy is reached by making reduction according to Terner's method involving 3 coefficients (T(3)) than the one associated with the reduction of Terner's equations involving 6 coefficients (T(6)); b) Considerably higher accuracy is reached in declination $|\Delta \delta| = 0.3 \pm 0.3 \pm 0.3$ in comparison with the one in right ascension $|\Delta \alpha| = 0.7 \pm 0.7$, attributable, in the authors' oppinion, to defects in the measuring engine; c) Chief prerequisite for expecting optimum results lies in such a selection of reference stars that the object is placed not beyond 43 arc minute from their gravity centre, and d) The plate ought to be measured in two positions differing by 180°.

1. INTRODUCTION

It is well known that the accuracy of the equatorial coordinates (α and δ) obtained with the short-focus astrographs is substantially inferior to the one associated with coordinates delivered by long-focus astrographs.

Thus, for instance, Chernyk (1970) found from the minor planet 10 Hygiea observations, used for calculating the mass of Jupiter, that the mean erros in the astrographic positions, as furnished by short-focus astrographs ($F \le 100$ cm) at Belgrade. Warsovie, Wurtzburg and Rome observatories, amounted to 2" to 5", those in the positions obtained with the medium-focus instruments (F = 1 m to 2 m) to about 1" and those associated with the long-focus astrographs (F > 2 m) to 0.5 in both coordinates.

Belgrade observations used by the above mentioned author were obtained with Zeiss astrograph whose object-glass (Petzwal) has a 16 cm diameter and 80 cm focal length. Reduction was made by Schlesinger method involving three reference stars whose positions were taken from the Yale catalogue.

The astro-plate were measured on a Zeiss, Pulfrich type, measuring engine with 0.001 mm graduation in both coordinates. It is the only measuring engine available at this observatory.

This astrograph, on a suggestion by Orelskaya (1975a, 1975b) was included – in the "Leningrad Programme" aimed at determining corrections to the inertial reference frame (Fricke, 1985).

It was these authors' intention to put under scrutiny whether the accuracy just referred to was to be improved by: choosing more suited method (involving more terms in Terner equations); increasing the number of reference stars; selection of reference stars such that the object's position is an near the centre of gravity as possible; minimizing the effect deriving from the mode the plate is measured.

2. CHOICE OF THE OBSERVING MATERIAL

To implement the task set forth we chosed the plate OL 44/1983 with the centre's coordinates A = 3h4m29s and D = +23°6.7, which were taken in the reduction also as optical centre's coordinates. The plate incorporates three exposures brought about by shifting the instrument in declination. Trails of brighter stars, helpful at putting the plate in right position for measuring, are also recorded in that the instrument's daily motion was temporarily stoped.

Selected for measurement were 35 stars on the plate, ail belonging to the ACK 3. Their distribution around the geometric centre within a 1.5 radius is nearly even, a crucial circumstance at selecting this plate. Star images outside this region display strong come, which accounts for their being omitted from the processing. No particular attention is paid to the photographic magnitudes nor to spectral types of the stars at their selection.

From among 35 selected stars 16 were designated to be reference stars. They were formed into systems of 3, 6, 9, 12 and 16 stars, whereby each subsequent system enclosed stars from the preceding one. Care was taken at this selecting that each one of the systems possessed as even a distribution with reference to the plate's centre as only possible. The remaining 19 stars were to serve as the "objects" whose coordinates were to be determined. The technically obsolete measuring engine, with readings made visually, caused that 35 stars only were chosen, as a prolonged measurement would have entialed stronger temperature effects. In order to bring out the effect of the mode of measuring on the final accuracy, mean values of measures, made at two plate positions differing by 180°, are used at carrying out the reduction.

3. METHODS OF REDUCTION

Instructions dispatched to the participants in the "Leningrad Programme" includes among others the request to use in the reductions 5 to 7 reference stars, Schlesinger method being employed. This method, which in fact is but modified Terner method involving only linear terms (3 terms), is well suited to ulterior correcting the object's coordinates should it occur that meanwhile more accurate positions of reference stars have been provided.

Schlesinger's method is otherwise used for the reductions of observations made with long-focus astrographs. The polygon featured by reference stars in these observations occupies a small area (1.5 square degrees).

With the short-focus astrographs, however, the areas covered by these polygons may even exceed 6 square degrees. In this case the relationships between the so called "ideal" (standard) coordinates X and Y and the corresponding measured coordinates x and y can become more complex. This is why use is made, instead of Schlesinger's method or the Terner's one involving three coefficients (T(3), ot Terner's equations involving more than 3 coefficients. The extra terms (higher order terms) are aimed at removing all manners of systematic errors which the linear ones cannot do, or cannot do fully.

Terner's equations in their general form read

$$X = \sum_{i+j=0}^{n} a_{ij} x^{i} y^{j}$$
; $Y = \sum_{i+j=0}^{n} b_{ij} x^{i} y^{j}$ (1)

where i + j + k, k = 0, 1, 2, ..., n - 1 denotes the polynomial's power. For instance for n = 1 a linear relation is obtained (T(33)), for n = 2 a quadratic (T(6)) etc.

Having regard to the small number or reference stars, decided on for considerations given above, it was deemed logical to confine ourselves to n = 2, i.e. to compare accuracies of coordinates resulting from the reduction made according to linear (hereafter labeled T(3) and quadratic T(6) Terner's relation).

To evaluate accuracies one calculated quantities $|\Delta \alpha|$ and $|\Delta \delta|$ representing departures of the catalogue values from those calculated for each one of the reductions. However, submitted to analyzis will be the quantities $|\Delta \alpha| \operatorname{and} |\Delta \delta|$ specified by the relation (2) calculated for the zones a, b and c. Namely, in order to examine the dependence of the quantities $|\Delta \alpha|$ and $|\Delta \delta|$ on the object's distnace D from the gravity centre of the corresponding system of reference stars (N(RS)) we introduced three zones: zone a - D < 10 mm, zone $b - 10 \text{ mm} \leq D < 20 \text{ mm}$, and zone $c - D \ge 20 \text{ mm}$ (10 mm = 43').

$$|\Delta \alpha| = \frac{1}{f} \sum_{i=1}^{m} \sum_{j=1}^{n=3} |\alpha_{0i} - \alpha_{ci}^{j}|;$$

$$|\Delta \delta| = \frac{1}{f} \sum_{i=1}^{m} \sum_{j=1}^{n=3} |\delta_{0i} - \delta_{ci}^{j}|$$
 (2)

Here: m - number of objects within the zone; j - ordering number of the exposure; α_{0i} and δ_{0i} catalogue coordinates of the i-th object; α_{ci}^{j} and δ_{ci}^{j} - calculated coordinates fo the i-th object in the j-th exposure; f - frequency (f = m x n). (Objects in the present case are having three exposures).

4. RESULTS AND CONCLUSIONS

Results of the performed calculations are summarized in Table 1 and 2. Data in Table 2 are a result of plate measurement in one position only. Tables enclose also the quantities σ_{α} and σ_{δ} which are standard deviations. The measuring unit in both coordinates is the arc second.

Data in Table 1 make it apparent that the quantities $|\Delta \alpha|$ and $|\Delta \delta|$ are increasing with the growth of the object's distance from the gravity centre in both of reductions (T(3)) and (T(6)), i.e. the accuracy gets lower as one is farther from the centre (See Debehogne, 1974, and Kiselev, 1981). By increasing the number of reference stars (N(RS)) the impact of the distance D on the accuracy is reduced but remains evident up to N(RS).

This statement is confirmed more convincingly by the standard deviations σ_{α} and σ_{δ} .

Being given that objects under consideration are mostly in the vicinity of the plate centre, thanks to their orbits being fairly known, it is always possible to find out such a distribution of reference stars to make it placed in the vicinity of the gravity centre (within the zone a) securing therewith its coordinates to be calculated with the minimum error.

Figures 1 and 2 illustrate deviations $|\Delta \alpha|$ and $|\Delta \delta|$ for the zone a, furnished by reductions T(3) and T(6). They also clearly demonstrate that the reduction according to T(3) has advantage in respect to accuracy over T(6). One should mention as supporting this result the

-			Т	r(3)	a ann agus Sanna taon de			T(6)		
N(RS)	D	ι ΔαΙ	σα	اهط	σδ	لمط	σα	٥٤١	σ_{δ}	f
3	a	0.81	± 0.51	0.50	± 0.37		a loof is			6
	b	1.30	0.99	1.60	1.61					27
	с	2.60	2.11	1.75	1.37					24
6	а	1.14	0.63	0.30	0.30	1.59	±0.78	1.01	± 0.45	9
	b	1.23	0.94	0.66	0.47	4.21	3.17	4.54	4.10	27
	с	2.02	1.70	1.04	1.01	11.76	6.70	6.43	4.49	21
9	а	0.94	0.72	0.33	0.30	1.10	0.48	0.77	0.51	9
	b	0.80	0.54	0.99	1.08	1.63	1.57	2.56	2.16	24
	с	1.26	0.98	0.93	0.83	4.34	3.62	4.52	2.45	24
12	а	0.77	0.81	1 0.36	0.30	0.96	0.78	0.31	0.30	9
	b	0.84	0.73	0.77	0.62	0.90	0.78	0.99	0.68	27
	с	1.16	0.87	1.27	1.05	1.03	0.82	1.50	1.24	21
16	а	0.71	0.69	0.40	0.30	0.88	0.75	0.52	0.27	9
	b	1.03	0.78	0.57	0.59	1.03	1.03	0.68	0.64	24
	с	1.35	0.98	1.27	0.88	1.72	1.37	1.64	1.13	24

Table 1. Mean absolute deviations $|\Delta \alpha|$ and $|\Delta \delta|$. N(RS) – number of reference stars, D – distance from the gravity point, f – frequency, σ_{α} and σ_{δ} – standard deviations.

Table 2. Mean absolute deviations $\Delta \phi$ and $\Delta \delta$ at measuring the plate in only one position.

			T	(3)	1000 AL	-g-approl	alesseert.	T(6)	ode eff	
N(RS)	D	المما	σα	IΔ§	σδ	لمط	σα	Δδ	σδ	f
3	а	0.86	±0.63	0.97	±0,47		5. 1. 1. N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1000	6	
	b	2,18	2.02	1.77	2.02					27
	с	2,59	2.33	1,95	2.33,	•	0			24
6	а	1.14	1.03	0.45	0.36	1,27	±1.13	0.86	±0.57	9
	b	1.43	1.27	0.87	0.62	5.81	4.49	4.33	3.71	27
	с	1.66	1.07	1.58	2.04	11.52	9,33	5.20	5.07	21
9	а	1.21	0.97	0,53	0.34	1.46	0.86	0.65	0.37	9
	b	1.35	0.94	1,38	2.13	3.94	4.06	2.94	3.39	24
	с	1.34	0,91	1.10	0.89	8.28	9.31	4.73	3.28	24
12	a	1.13	1.03	0.67	0.39	1.32	1.05	0.64	0.34	9
	b	1.64	1.15	1.03	0.78	2.06	1.92	1.13	0.93	27
	с	1.75	1.57	1,88	2.08	1.94	2.04	2.15	2,59	21
16	а	1.08	1.03	0.56	0.30	1.26	0.92	0.57	0.34	9
	b	1.27	0.90	0.80	0.55	1.39	1.42	0.74	0.50	24
	с	1.47	1.08	1.52	1.86	1.56	1.36	1.69	1.86	24

paper by Kiselev (1981), already quoted above, in which it is claimed that the accuracy, associated with the reduction by T(3), provided the object is situated close to the gravity centre, is higher than the one attained by the reduction T(6). This author puts foreward the suggestion that one should, in any particular case (instrument), check which one of the methods is the most suitable (most accurate) considering that shortfocus instruments induce all manners of systematic errors.

It is at once evident that our accuracy in declination is comparable with the one associated with the longfocus astrographs (Debehogne et al., 1983).

Our accuracy in right ascension is markedly lower, but it is still at the level of the one typical of long-focus astrographs (Chernich, 1970). Errors in this coordinate ACCURACY OF THE ASTROGRAPHIC POSITIONS OBTAINED WITH THE BELGRADE SHORT –FOCUS ASTROGRAPH

Fig. 1. $\Delta \alpha$ for the zone **a** objects, with T(3) and T(6) reductions.

have their origin, in these authors' oppinion, in the measuring engine. This conclusion is suggesting itself through instability noted at measuring this coordinate.

Next, results of lower accuracy are obtained by both methods when the measurement is made in one position only. This certainly is a consequence of the personal error not being removed if measurement is performed in only position of the plate (measurements made by the first author only). Since the object images were set upon several times the accidental errors are expected to be reduced to their minimum.

It is self-understood that the results are affected by the accidental errors in the catalogue used (AGK 3). The effect of these errors is minimized through the use of larger number of stars. The object s {coordinates, however, ,,inherit" systematic errors in the reference stars system.

If is obvious that by increasing the number of reference stars (12 at least), by performing measurement in two plate positions (0° and 180°) and by applying

Fig. 2 $\Delta \delta$ for the zone a objects, with T(3) and T(6) reductions.

T(3) reduction, results may be achieved which are usable also in high accuracy calculations. Surely, because of the small size of the instrument one would be obliged to make greater number of exposures and to secure more measurements of the object's image in order to supress the accidental errors hith otherwise enter in the coordinates by their full amount.

In concluding we regard it as being of interest to make analogous analysis upon plates measurements performed on some modern measuring engine.

REFERENCES

- Černych, N.: 1970, Bull. ITA, XII 1, 127.
- Debehogne, H: 1974, Astron. Astrophys. Suppl. 16, 181.
- Debehogne, H., De Sanctis, G. and Zappala, V.: Astron.Astrophys. Suppl. 51, 37.
- Fricke, W.: 1985, Celest. Mech. 36, 207.
- Kiselev, A.A.: 1981, Trudy XXI Astron. Konf. SSSR, Tashekent, 1981.
- Orel'skaja, V.I.: 1975a, Astron. Astrophys. 26, 11.
- Orel'skaja, V.I.: 1975 b, Bull. ITA 14(2), 155.

INVESTIGATION OF LEVELS OF THE BELGRADE VERTICAL CIRCLE

Dj. Bozhichkovich

Astronomical Observatory, Belgrade, Volgina 7, Yugoslavia

(Received July 15, 1985)

SUMMARY /Two levels attached to the Belgrade Vertical Circle have been investigated both on the examinator and on the instrument itself. Data obtained by both methods are analysed. It could be found that the results provided by the measurements on the instrument itself, using the mercury horizon, were notably more realistic than those obtained with the examinator under laboratory conditions. In addition to the accounting for the temperature and the bubble length effect on the level division value determination and accounting for the systematic effects of the irregulativies in the inner sliding surface and its graduation is suggested.

1. INTRODUCTION

The level and the graduated declination circle constitute two measuring applicances of the Vertical Circle (VC) whose intrinsinc features enter on essentially equal terms into the measured zenith distance, i.e. declination. Through these two appliences, therefore, the accuracy of determination of the absolute declinations is importantly conditioned in both random and systematical sense. The effect of the levels is commonly more pronounced with the larger instruments (the VC of the Belgrade Observatory belongs to this category) as these are often distinguished by a stronger inclination instability of their vertical axes.

The level investigation has hitherto been implemented chiefly according to Wanach and Vassilev methods under laboratory conditions, using an examinator. The investigation provided, as a result, the mean angular value of the level division including a qualitative-quantitative assessment of the inner sliding surface of the level tube. (The latter investigations, under roughly equal conditions, are known to often yield contradictory results). The analysis of a series of investigations was principally aimed at determining the dependence of the division value on the air temperature and the bubble length. Other possible reasons of the division value variability have earlier been rarely searched for owing, on one hand, to an apriori awarness of their being essentially petty, and on another, the lack of electronic computers entailed their determination and their subsequent utilization to be highly cumbersome.

Numerous investigations confirm the presence of the simillar and larger irregularities in the sliding surfaces inside the level tubes and in their graduations. Habitually, these errors may, conditionally, be divided into random and systematic ones. The effects of the former

on the observing results (zenith distances, declinations, latitudes) may to a considerable degree be reduced. Namely, the vertical circles and zenith telescopes are commonly provided with a pair of levels and the measured inclinations, the bubble lengths, as well as the utilized level graduations are different from one stars to next during the same night. This is all the more true of different nights when the inclinations may differ even in sign. Even the effect of the systematic irregularities just reffered to on the mean measuring results is reduced, although not comletely removed. These effects keep being present since the mean inclination from a series of mesurements of the same star is not necessarily close to zero nor the same in the north and south stars and, equally, the level bubble positions are not necessarily symetrical with respect to the middle of the graduation.

With this in mind we dedicated the present paper to finding out the ways of determining the systematic irregularities in both sliding surfaces and in graduations of our levels and, more broadly, to the problems connected with the calibration of the angular value of the level division.

2. INVESTIGATION OF LEVELS OF THE BEL-GRADE VC WITH THE EXAMINATOR

Discussion of all the past laboratory investigations of levels of our VC, implemented according to Wanach's and Vassilev's methods, was performed by Mijatov and Trajkovska (1984). The two authors established the division value variability with time, temperature and the bubble length.

In contrast to them we separated in the present paper the latest, relatively large group of laboratory measurements, those from 1981, having processed them in a somewhat different way. In the period from 24. January to 25. February 1981 there have been effectuated on each of our levels 18 sets of measurements adjusted to the handling according to the Wanach method. The temperature run through the interval +1° to +15°C, while the bubble length varied from 16 to 22 divisions (our levels' graduations embrace 40 divisions). Depending on the bubble length, individual sets of measurements include from 16 to 22 meaned positions of the bubble middles. Only 16 positions, roughly symetrically distributed with respect to the graduation middle, were processed in our analysis. We acted so for several reasons!

- a) This conditions the values of the mean positions of the bubble middles to be evenly distributed within the interval 11th to 29th division irrespective of the bubble length.
- b) It is on extremely rare occasions only that the bubble ends come near to the graduation ends during the regular work with our VC and that only when the bubble lengths happen to be uncommonly large.
- c) There is always the same number of measurements entering the calculus irrespecitve of the bubble length,

Data handling for each one of the levels was carried out in the following fashion. We first determined by the least square method, for each of the sets \mathbf{j} of measures, the coefficients \mathbf{a}_i and \mathbf{b}_i in the linear set of 16 equations

 $(i - 8.5) \cdot E_j = a_j + b_j \cdot (S_{ji} - 20) (i = 1, 2, ..., 16; j = 1, 2, ..., 18) E_j = 0.99983 + 0.00013 \cdot (T_j - 13.8)$

where:

- i ordinal number of the measurement zero position on the examinator's disk. This equating is used in order to simplify the calculus without its results being affected, since any following zero position of the examinator screw differed from the preceding one by one division on its disk. To be sure, in order to minimize the effects of errors in the examinator's screw use has been made of different screw's turns and disk's sections.
- Ej-Angular value of the examinator disk's division for the temperature during the investigation (Mijatov, Sadžakov, 1968).
- a_j -correction to the coordinates' zero, i.e. to the adopted mean position of the disk (8.5 x E_j) in the set j of measurements.
- bj-Mean value of the level division in the particular investigation.
- S_{ji}- Mean position of the bubble middle from two measurements at the same disk position i (bubble s' displacement from left to right and vice versa).
- 20 the middle of our levels' graduation.

With the coefficients a_j thus determined one made the coordinates' zeros be mutually conforming in all the sets of measurements, forming thereater new sets of j x i = 288 equations for each of the levels

$$\begin{array}{l} Y_{ji} = & [A_o + A_1 \ (T_j - 8) + A_2 \ (B_j - 19) + A_3 \ (S_{ji} - 20) \\ + & A_4 \ (S_{ji} - 20)^2 + A_5 \ (S_{ji} - 20)^4 \](S_{ji} - 20) \\ Y_{ji} = & [A_o + A_1 \ (T_j - 8) + A_2 \ (B_j - 19) \](S_{ji} - 20) \\ Y_{ji} = & (i - 8.5) \cdot E_j - a_j \end{array}$$

where T_j and B_j – examinator's temperature and the bubble length, respectively, in the particular investigation j, 8 and 19 being their means from the totality of sets.

Using the method of least squares one determined the values of the unknown coefficients in the formulae (1) and (2). Table I summarizes the coefficients values obtained as well as their rms errors for the upper (U) and lower (L) levels (according to their position on VC).

As apparent, these results reveal both of our levels as having virtually the same dependence of their division values on temperature and bubble length (coefficients A_1 and A_2).

At variance with these, the coefficients A_3 , A_4 and A_5 , typifying the systematic irregularities in the level sliding surfaces and in their graduations, have opposite signs, implying their effects on the final results to be mostly comparatively slight (below 0.1). It is on extremely rare occasions that these features of our levels make themselves felt, when the levels happen to be mutually or otherwise poorly adjusted.

Attention is to be drawn to the notable difference of the coefficient values A_0 in the formulae (1) and (2) in both levels, even though they follow from the same observational material. This difference is a consequence, in a way, of different meaning of these coefficients. Specifically, the coefficient A_0 in (2) embodies the mean value of the level divisions resulting from the whole of the investigated graduation, while that in (1) is the mean division value as it results from the graduation around its middle. It is precisely this value that is mostly needed in the everyday practice.

For illustration we formed from 18 sets of measurements, for different combinations of instrument's inclinations, the mean differences examinator - level readings, computed by way of (1) and (2) using the coefficients from Table I.

$$O-C = \frac{1}{18} \sum_{j} [(k-i) \cdot E_j - (Y_k^* - Y_i^*)_j]$$

(i = 1, 2, ..., 15; k = i + 1, i + 2, ..., 16)

These departures in hundredths of second of arc are listed in Tables II, III, IV and V.

Level	Set	A ₀	A ₁	A ₂	A ₃	A ₄	_ A ₅	E
TI	1	0''.982 ±.005	.0028 ±.0003	.0070 ±.0007	0018 ±.0003	00082 ±.00027	.0000061 ±.000031	±0.107
. 0	2	0:959 ±,002	.0029 ±.0003	.0068 ±.0007	-	-	-	±0.116
т	1	0'.920 ±.006	.0022 ±.0003	.0080 ±.0009	.0009 ±.0003	. 00176 ±.00031	- .0000212 ±.0000037	±0.122
L	2	0°948 ±.002	.0025 ±.0003	. 0084 ±.0009	-	-	-	±0.127

Table I: Coefficients and their rms errors delivered by (1) and (2) for the upper (U) and the lower (L) level.

Table II: The (O–C) values in 0^{8} O1 for the upper level computed according to (1)

k	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{c} 0 \\ 1 \\ -3 \\ -2 \\ -7 \\ 3 \\ 4 \\ 3 \\ 1 \\ -3 \\ 0 \\ -2 \\ -1 \\ 0 \\ 0 \end{array}$	$ \begin{array}{c} 0 \\ 1 \\ -3 \\ -3 \\ -7 \\ 3 \\ 4 \\ 3 \\ 1 \\ -3 \\ 0 \\ -2 \\ -1 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 1 \\ -3 \\ -3 \\ -8 \\ 2 \\ 4 \\ 3 \\ 0 \\ -3 \\ -1 \\ L \end{array} $	$ \begin{array}{c} 1 \\ 3 \\ -1 \\ -4 \\ 6 \\ 5 \\ 2 \\ -1 \\ 1 \\ -1 \end{array} $	2 4 0 -4 5 7 6 3 0 2	$ \begin{array}{c} 0 \\ 1 \\ -3 \\ -2 \\ -7 \\ 3 \\ 4 \\ 3 \\ 1 \\ -2 \end{array} $	2 4 0 -4 6 7 6 4	$ \begin{array}{r} -1 \\ 0 \\ -4 \\ -4 \\ -8 \\ 2 \\ 3 \\ 2 \end{array} $	$ \begin{array}{r} -3 \\ -1 \\ -7 \\ -6 \\ -11 \\ 0 \\ 1 \end{array} $	-5 -3 -8 -7 -12 -1	$ \begin{array}{r} -3 \\ -1 \\ -6 \\ -6 \\ -10 \end{array} $	7 9 4 4	2 4 0	3 5	-1

Table III: The (O–C) values in 0.01 for the upper level computed according to (2).

	2006 - 10 - 2007 FT	1 12 17 19 19 19 19 19													
ik	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{r} -7 \\ -5 \\ -10 \\ -15 \\ -6 \\ -6 \\ -10 \\ -15 \\ -20 \\ -18 \\ -19 \\ -15 \\ -9 \\ -4 \end{array}$	$\begin{array}{r} -2 \\ -1 \\ -6 \\ -6 \\ -11 \\ -1 \\ -2 \\ -6 \\ -10 \\ -16 \\ -13 \\ -15 \\ -11 \\ -4 \end{array}$	$ \begin{array}{r} 1\\ 3\\ -1\\ -6\\ 2\\ 2\\ -1\\ -5\\ -11\\ -9\\ -10\\ -6 \end{array} $	8 9 4 5 0 9 8 5 0 -5 -2 -4	12 13 9 4 13 12 9 4 0 1	10 12 7 2 11 11 7 3 -2	13 14 9 10 5 14 13 10 5	7 9 -4 4 0 8 8 8 4	3 4 0 0 -5 4 3	0 0 -3 -8 0	0 0 4 4 9	8 9 4 5	3 4 0	3 4	1

INVESTIGATION OF LEVELS OF THE BELGRADE VERTICAL CIRCLE

ik	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2
1 2 3 4 5 6 7 8 9 10 11	$\begin{array}{c} 0 \\ -2 \\ -1 \\ 1 \\ 0 \\ -1 \\ -2 \\ 1 \\ 4 \\ 2 \\ 1 \\ 1 \end{array}$	1 0 3 2 0 0 3 6 4 2 0	1 0 3 2 0 0 3 6 4 3 0	2 0 3 2 0 0 3. 6 4 3	0 -1 0 2 1 0 -1 2 5 3 2	$ \begin{array}{r} -1 \\ -3 \\ -3 \\ 0 \\ 0 \\ -2 \\ -3 \\ 0 \\ 3 \\ 1 \end{array} $	$ \begin{array}{r} -2 \\ -4 \\ -4 \\ -1 \\ -2 \\ -4 \\ -5 \\ -1 \\ 1 \end{array} $	-4 -6 -3 -3 -5 -7 -2	-1 -3 -3 0 -1 -3 -4	2 0 0 4 3 1	1 0 2 1	0 -2 -2 0	-1 -3 -3	10	1
12 13 14 15	-1 -2 -1 -1	0 0	0	1					100 S		n Sin Usi yen				12

Table IV: The (O-C) values in 0.01 for the lower level computed according to (1).

Table V: The (O-C) values in 0.01 for the lower level computed according to (2).

k	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2
1	-4	4	3	0	-5	-10	-11	-12	-6	0	0	-2	5	-4	5
2	0	9	8	4	0	-5	-6	-7	-1	5	5	2	0	0	
3	0	9	8	4	0	-5	-7	-7	-1	5	5	2	0		
4	0	9	8	5	0 .	-4	-6	-6	0	5	5	3			
5	-2	6	5	1	-3	-8	-9	-10	-4	2	2				
6	-5	4	2	0	-6	-10	-12	-12	-6	0					
7	-4	4	3	0	-6	-10	-12	-12	-6						
8	1	10	9	6	0	3	-5	-5							
9	7	16	15	11	6	1	0								
10	7	16	15	11	6	1									
11	5	14	13	9	4										
12	1	10	9	5											
13	-4	4	3												
14	-8	1													
15	-9														

The O-C values for an inclination roughly equal to k-i ($E_j \approx 1$ ") appear at the intersections of the k-th columns and the i-th rows.

The comparison of Table II and III (for the upper level)as well as Tables IV and V (for the lower level) reveal that the terms with the coefficients A_3 , A_4 and A_5 in (1) represent fairly well the systematic irregularities in our levels. The values in Tables II and IV come already close to the random errors in determination,

 $\frac{\epsilon \sqrt{2}}{\sqrt{18}} = \pm 0$, 04. One might conclude that (1) yields

markedly better results than the well-nigh classical formula (2).

In concluding this Section let it be noted that we analysed these laboratory measurements by other functional dependences as well, but the coclusion was reached that (1) was the best in representing **both** of our levels.

3. INVESTIGATION OF LEVELS ON THE INSTRU-MENT

The applicability problem of the laboratory results is well known and often very acute in the astrometric practice. A settling of this problem is essential when it comes to the absolute star position determination. This is all the more true of the levels in view of their sensitivity and capriciousness on one hand, and the important difference between the conditions prevailing about them during observations with the instrument and those under which they are investigated on the examinator, on the other. Specifically, the heterogeneity of those conditions is reflected by:

- a) On the instrument, the illumination devices are beneath the levels, being steadily kept on during observation, the bubble ends being read off in the small mirrors placed above the levels. On the examinator the levels are illuminated by a battery lamp held by the observer, the bubble ends are read off directly (without intermediary of the level mirror).
- b) At working with the instrument there takes place, between two successive readings of the bubble ends, une shaking of liquid in the level tubes, their bubbles crossing over from one end of the graduation to another before returning to their proper positions. On the examinator, however, the bubble slowly glides from one position to its next following gentle displacements of the examinator's disk.
- c) On the instrument, the levels are exposed to generally harsher external influences.

The solving of this and similar problems is usually sought in investigations, performed wherever possible under conditions made as close as possible to those prevailing during the regular observation with the instrument. In our particular case this would imply: under conditions prevailing in the instrument's pavilion in the course of standard work, without dislodging the levels from their place. That is just the kind of investigation we decided on.

In carrying out measurements necessary for clibrating the angular value of the level division on the instrument itself use was made of two mercury horizons in the nadiral direction. The illumination of threads in the eye-piece micrometer was accomplished by Lj. Paunović's, rather than with the Gaussian, eye-piece. This because the illumination of micrometer threads provided by Paunović's eye-piece proved incomparable superior to the one offered by that of Gauss.

These measurements were performed from time to time, usually following regular astronomical observations. The preparation run roughly according to the following scheme: Paunović's eye-piece was mounted on the eye-piece micrometer and the instrument turned toward nadir. If necessary, the mercury mirror horizons were cleaned up. The cardboard cylinders protecting the mirror horizons against the air disturbances were put on, covering the room between the mercury horizons' cicular priphery and the instrument's dew cap turned downwards. By suitable gentle pushing the instrument one achieved the coincidence of the micrometer moving thread with its image in the mercury horizon, that position being fixed by the instrument's clamps. Thereupon the threads of the I and IV microscope-micrometers were set in succession upon the junior and the senior division lines in order to periodically verify the instrument's position with respect to the microscope-micrometers. Then followed the reversing of instrument, the same procedure, after two minute time, being once again performed.

Necessary measurements were caried out in the following manner. First, the movable thread was brought to coincide five times with its image, its position being read off each time. Then followed readings of the left and right bubble ends in the upper and the lower level. Then the instrument was reversed and the same measurements were taken up after about two minute time ect.

The measurements were undertaken mostly with the inclination nearly the same as it was during the astronomical observation, provided it has not been less Usually after about ten of these than 2 divisions. measurements, somewhere about the middle of the procedure, one changed the inclination's sign. The change of inclination proceeded relatively simply since one of the legs of the pilar's support, the one lying in the meridian, is leaned against a metalic lever, which is easily lifted or lowered by means of a screw. The inclination's sign is changed in order to enfeeble possible systematic personal error of the observer in the micrometer measurements, being given that his using one auxiliary staircase caused him to be continually to the south or to the north of the instrument. The reversing prism was not used.

In the period from 18 September 1980 to 15 March 1984 one accomplished 47 sets of measurements. The temperature was confined between -8.2 and +23.3°C. while the bubble length run from 15.3 to 25.1 divisions. At the beginning of this experimenting (18 sets) only one mercury horizon was used. The measurements were mostly made in accordance with the usual method as the one applied on the examinator, the inclination being varied all the while. In the later 29 sets of measurements, in order that the measuring procedure be likened as much as possible to that followed in the star observations, we started using both mercury horizons and reversing the instrument between two measurements. As no perceptible difference could be noted between the results of the two procedures, all the measurements were processed in the same manner.

The data processing proceeded in such a way that the same micrometer readings were compared once with the reading of the upper, then with that of the lower level. In helping ourselves with the method of least squares we derived the mean coefficients in the equations of conditions of the form:

$$(M_{W}-M_{E})_{i} = \{ (S_{E}-S_{W}) \cdot [A'_{o} + A'_{1} (T_{j}-13) + A'_{2} (B_{j}-19)] + A'_{3} [(S_{E}-20)^{2} - (S_{W}-20)^{2}] + A'_{4} [(S_{E}-20)^{3} - (S_{W}-20)^{3}] + A'_{5} [(S_{E}-20)^{5} - (S_{W}-20)^{5}] \}_{i} (i = 1, 2, ..., 444; j = 1, 2, ..., 47)$$

$$(3)$$

The above formula is obtained as a difference of two formulae (1) applied to each two measurements, the notations therein being:

- $M_W M_E$ the difference of the mean micrometer readings of nadir at two opposite clamps (E and W). In the measurements carried out on one instrument clamp, the inclination alone having been varied, this in most instances is the difference between two contiguous readings with the eye-piece micrometer.
- i-the ordinal number of the pair of any contiguous measurements.
- $S_E S_W$ the difference of the bubble middles at two instrument clamps of one of the investigated levels.
- T_j , B_j the mean air temperature and the bubble length, respectively, in some of the sets of measurements.

In Table VI are displayed the coefficients values thus obtained as well as their rms errors for both levels. These results, delivered by measurements on the instrument itself, reveal the angular value of the level division to be only weakly dependent on temperature and the bubble length (coefficients A_1 ' and A_2 ') but more noticeably (the upper level in particular) in what portions of the graduation one performed the measurements (coefficients A'_3 , A'_4 and A'_5).

4. DISCUSSION AND DERIVATION OF THE FINAL VALUES

One realizes from Table I (results from the examinator) and Table VI (results from the instrument itself) that the values obtained are more or less differing. This is in a way understandable on considering the diversity of the purposes, modes and conditions of measurements. The investigation with the aid of examinator is organized in such a way (even distribution of the bubble middle positions, nearly constant temperature but varied bubble length) that the possible division value dependence on temperature, bubble length and irregularities in the sliding surface and the graduation is brought out rather dependably. Owing to reasons cited in Section 3 the applicability of the mean division value A_0 obtained with the examinator to measuremens made with the instrument is highly questionable. The applicability issue as far as the rest of the coefficients is concerned, is not so acute considering their values and effect on the measurements.

The objective of the level investigation on the spot. i.e. on the VC itself, was deducing the division value under conditions as close as possible to those prevailing during the reggular astronomical observations. As one had essentially to deal with what one had caught, the distribution of the bubble positions along the levele graduation within individual sets of measurements, and throughout, was found far from being an perfect one for a trustworthy derivation of the coefficients A3', A4' and A_5 ' appearing in (3). Hence we take these values rather as a proof of the presence of the systematic irregularities in the level tube sliding surfaces and in the level graduations and also of the adequacy of their representation. As apparent, for the case of the upper level, the coherence of the three coefficients is fairly well. With the lower level the coherence is considerably poorer. Concidering the temperature and the bubble length coefficients, the results obtained are in fact contradictory. The investigation on the examinator showed the levels as bieng strongly, and those on the VC as only weekly, dependent on temperature and bubble length. This disparity is apparently a consequence in the first place of the fact that the bubble length, in the regular work with the VC, is adjusted practically seazonally (i.e. four times a year). As the temperature and the bubble 'ength are known to be correlated quantities, this adjustment entails the coefficients A'1 and A'2 to be inconclusively determined from the measurement on the instrument. For the same reason one cannot accept the mean division values A'o either, albeit deduced from the VC measurements.

Table VI: Values of coefficients in (3) and their rms errors for the upper and lower level

Level	A'o	A1'	A'2	A'3	A'4	A'5	ε'
U	0.949 ±.005	0008 ±.0003	0027 ±.0011	- .0021 ±.0004	00150 ±.00021	.0000067 ±.0000017	±.289
L	0,923 ±.006	.0007 ±,0003	,0028 ±.0013	.00 19 ± 00 05	.0002 1 ±,00 02 5	0000057 ±.000021	±.327

(4)

The matter was settled in the following way. On considering the reasons quoted above one accepted as more realistic the coefficient values, specifying the angular division variability, obtained on the examinator. The measurements performed on the VC were thereafter corrected by the values of these effects, thereby those only which were obtained when the instrument was reversed during investigation (29 sets of measurements involving 296 measurings of inclination). Then one determined, using the least square method, the mean angular division value. There resulted for the upper level $A_{oU} = 0.914 \pm 0.0027 (\pm 0.332)$ and for the lower one $A_{0L} = 0.900 \pm 0.0030 (\pm 0.360)$. In addition, on having introduced corrections for only temperature and the bubble length effects as obtained on the examinator, one determined the mean division value for this particular case. For the upper level there followed $A_{0U} = 0.899 \pm$ $0.0029 (\pm 0.354)$ and for the lower one A₀₁ = $0.931 \pm$ $0.0033 (\pm 0.377)$. The rms errors are given in the brackets.

These mean values of the level divisions and the coefficients in Table I yield the following expressions for calculating corrections to the circle readings due to the presence of the VC vertical axis' inclination for any of our levels

$$C_{Ui} = +(S_i - 20)[0!914 + 0.0028(T - 15) + 0.007(B - 19)]$$

$$-0.0018 (S_i - 20) - 0.00082 (S_i - 20)^2 +$$

 $+ 0.00006(S_i - 20)^4$]

$$C_{I_i} = -(S_i - 20)[0!900 + 0.0022(T - 15) + 0.008(B - 19)]$$

 $+ 0.0009(S_i - 20) + 0.00176(S_i - 20)^2 -$

 $-0.000021(S_i-20)^4$]

i = E, W $C_{Ui} = -(S_i - 20)[0!899 + 0.0028(T - 15) + 0.007(B - 19)]$ $C_{Li} = -(S_i - 20)[0!931 + 0.0022(T - 15) + 0.008(B - 19)]$ (5)

As apparent, the angular division values thus obtained are lower than those resulting from the investigations on the examinator (Table I). This is particularly plain with the upper level. In order to verify how these results for the two levels were mutually harmonizing, the following test was carried out.

From the 1983 and 1984 observations we selected 51 nights on which the observing conditions differed among themselves at the most. From each of the nights one picked out 8 star observations. Being given that at any particular observation the VC occupies one inclination, measured by both upper and lower levels, $I_U = (S_E - S_W)_U \cdot A_{\rm eff}$, $I_L = (S_E - S_W)_L \cdot A_L$, the measured inclinations should be equal among themeselves apart from their random errors, provided the level division values A_U and A_L have been correctly determined. We therefore formed the differences of inclinations as supplied by the upper and the lower levels for any individual observation. In order to obviate these differences being dependent on the inclination's magnitude and to make sure they depended solely on error in the adopted division values, we divided them by mean inclination $\Delta A_i = ((I_U - I_L)/I)_i$, $I_i = ((I_U + I_L)/2)_i$. In order, further, to minimize the effect of the random errors we averaged the values obtained $\Delta A_i =$

 $\frac{1}{8} \sum_{i} \Delta A_i$, i = 1, 2, ..., 8. Thereafter one determined

the mean value from all the nights and the rms of individual values

$$\Delta \mathbf{A} = \frac{1}{51} \sum_{j} \Delta \mathbf{A}_{j} \quad , \quad \boldsymbol{\epsilon}_{j} = \left[(\Delta \mathbf{A}_{j} - \Delta \mathbf{A})^{2} / 50 \right]^{\frac{1}{2}}$$
$$\mathbf{j} = 1, 2, \dots, 51$$

The actual calculations according to the procedure just laid out was implemented using four different division values. The results obtained are summarized in Table VII.

Table VII: Mutual agreement of the division values obtained by the method applied

Set	$\Delta \mathbf{A}$	€j
1	0.065	±0,068
2	0.065	±0.077
4	0.015	±0,067
5	0.015	±0.077

In the above Table VII 1 and 2 denote the values used from Table I (results supplied by the investigations with the examinator). 4 and 5 indicate that the computations have been performed according to (4) and (5) using coefficients therein of which A_o – mean angular division values are obtained from the investigation made on VC.

Being given that the division values of our levels are roughly about 1" we find $\Delta A \approx \Delta A_{\rm o\,U} - \Delta A_{\rm o\,L}$. The agreement of the results obtained on the instrument itself – in Table VII ΔA = 0.015 – points to the possible errors in the division values in both levels being very small, or if larger vitually equal. In our view the former case is true as no larger systematic departure was noted in the more recent star observations whose origin could be attributed to the level division values. The unimportant value 0.015 might be neglected, as it is on the very limit of the measuring accuracy ($\epsilon_i/\sqrt{51}$). Moreover, the method itself, being but an approximate one, involves errors of that order. The reason of so highly concordant division values acquired by the measurements on VC itself lies in the fact that the same micrometer readings have been used in both levels, the latter being simultaneusly under the external conditions nearly identical with those prevailing during the star observation. In contrast to them the mean division values, resulting from the investigation on the examinator, display considerably poorer mutual agreement. The value 0.065 derives chiefly from the upper level. The same value 0.065 of the divergence of the two systems 1 and 2 as well as 0.015 in the systems 4 and 5 is understandable for two reasons:

SE

red

art

ion

We

as

iny

ffe-

ıde

the

ean

In

om

=

ned

of

ure

ent

l in

by

lues

ons

the

and

ean

iga-

are

The

nent

ible

erv

mer

oted

ould

- a) The mean division value used in the present test are a result of different processing of the same observing material alike on the examinator and the VC;
- b) The sample formed from inclinations during the star observation an 51 nights did not substantally affect the test results thanks to its having been selected rather well both in respect to the magnitude of inclination and in respect to symetry of measurements with respect to the level graduation middle.

As apparent from Table VII the use of the coefficients A_3 , A_4 and A_5 , typifying the systematic irregularities in the sliding surfaces of level tubes and in the level graduation, in the systems 1 and 4 results in a diminishing of the errors ϵ_j by about 13% with respect to those in the systems 2 and 5, which is another proof of their reality and the legitimacy of their use.

We would like at this place to pass a few words about the accuracy of measurements on both the examinator and the VC proceeding from the rms errors ϵ and ϵ' in them (see Tables I and VI). One may claim both procedures to be of about equal accuracy. Namely considering that the values S_i in (1) are obtained from two bubble middle positions (involving the bubble motion from left to right and vice versa) and that in (3)one is dealing with the position differences $(S_E \rightarrow S_W)$, we have $\epsilon = \pm 0.11$ and $\epsilon'/2 = \pm 0.15$. This small difference is due principally to the circumstance that the measurements on VC are affected also by the error in the difference of the eye-piece micrometer readings. This difference is ceratainly twice as great as the error in the mean of two installings of the examinator disk on some particular division. (The reading of some position is always less precise than the installing into that position).

In closing this Section let us note that in the actual employment of the formula (4) which is recommended, or eventually of the formula (4), there might emerge minor difficulties owing to the accounting of the cited dependence of the division values on temperature. This dependence is deduced from the measurements on the examinator under conditions enabling the level to assume the temperature shown on the examinator. At carrying out measurements on he VC one reads off the air temperature in the pavilion which sometimes may differ considerably from the true temperature of the level. One thing is certain: the range of level temperature fluctations during the year is undoubtedly narrower than the one of the air temperature fluctuations in the VC pavilion. Therefore, unless in the future work data on the level temperature are secured, the values specifying the level division dependence on temeprature is perhaps to be somewhat scaled down (by about 0.7 times in our free estimate). In addition to the need of being clear about this temperature matter one is advised to perform, in the future too, measurements designed for keepeing under control the value of the level division. The intricate nature of our levels, brought to light by these investigations, makes it necessary in the future work that our measurements be evenly distributed along the entire working range of the level graduation.

5. CONCLUSIONS

- 1. From the present work it appears that the level division as determined from the measurements on the examinator may differ considerably from the one furnished by the measurements on the instrument itself, involving therewith appreciable depending on the amount of instrument's inclination random and systematic errors in the star zenith distances, i.e. in star declinations and local latitudes. Moreover, the investigation on the examinator is a delicate and laborious undertaking (Teleki et al., 1968) only rarely carried through. Nevertheless, the measurements on the examinator are capable or rendering good sevices in investigating and studying diverse sources conditioning the angular division value to be variable.
- 2. It is demonstrated by our investigations that the level division may successfully be determined on the instrument itself and that, moreover, level examination in general is thus practicable. One should thereby adjust more rigorously than we did, the organization of measurements to the desired purpose (investigation one clamp position of the instrument but even distribution of the bubble middles along the working range of the level graduation; calibration of the angular value of the level division reversing (E W) the instrument with the use of two mercury horizons).
- 3. An old rule has once again been reaffirmed by this determination of the angular value of the level division on the instrument itself: by an investigation

under conditions close to those under which regular star observations are carried out, quite fitting results are obtained.

- 4. Being given that both levels in such investigations on the instrument itself are sumultaneously treated, the furnished division values are mutually harmonizing, which implies that their possible errors are essentially equal. This has its bearing in the case a systematic error has been found in a prolonged observing run, having its origin in the levels, i.e. in the adopted division value. It may then easier be deduced and the results of observation corrected for its amount thanks to its affecting both levels equally.
- 5. It is our view that the actual measurements are fairly well representable by formulae (1) and (4). The same formulae allow these measurements to be corrected for effects of the systematic irregularities in the ampule sliding surface and the level graduation. The complexity of these formulae does not at the present time involve any trouble in veiw of the modern computing facilities, concerning both the determination of the coefficients and the reduction of the actual astronomical observations.

6. Striving after keeping the inclination as small as possible by properly adjusting the instrument is to be continued. The mean values of the inclinations from several observations of the same star at least should be close to zero.

ACKNOWLEDGEMENTS

The author wishes to thank D. Šaletić for the fruitful discussion on the matter studied here and G. Teleki for the support and suggestions in the course of preparation of the present paper.

REFERENCES

Mijatov M., Sadžakov S.: 1968, Publ. Obs. Aston. Belgrade, 14, 81.

- Mijatov M., Trajkovska V.: 1984, Bull. Obs. Astron. Belgrade, 134, 9.
- Teleki G., Sadžakov S. Mijatov M.: 1968, Publ. Obs. Astron. Belgrade, 14, 41.

UDC 523.84

Bull, Obs. Astron, Belgrade, Nº 136 (1986)

NEW DOUBLE STARS DISCOVERED AT BELGRADE OBSERVATORY WITH THE ZEISS REFRACTOR 65/1055 cm

SUPPLEMENT VII

G.M. Popović

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

(Received October 15, 1985)

SUMMARY Reported are positions and measurements of 32 new double or multiple systems discovered in Belgrade with the ZEISS refractor 65/1055 cm.

The present Supplement comprises 32 new double or multiple systems, listed in Table 2. These systems have in part been discovered in the process of systematic checking of BD stars in the zone $+34^{\circ}$ to $+44^{\circ}$ declination, and in part in the course of measurements of my earlier discovered systems or systems from the Belgrade standard programme.

Table 1. Distribution of the systems according to ρ

Suppl.	ρ <1"	$1^{"} \leq \rho < 3^{"}$	ρ≥3"	Σ
I-VI	18	51 .	84	153
VII	1	12	19	32
I-VII	19(10,3%)	63(34,0%)	103(55,7%)	1 85

19 systems from Table 2 with $\rho < 4$ " are published in Circulars of IAU Commission 26.

9 systems in Table 2 have BD number, indicating their composite brightness to be above 9^{m5}. The rest of the systems are fainter.

It is worthwhile to point out the position of the system GP 192. This system, with components at $\rho = 2.77$ separation and preliminary brightness estimate at 11.0 - 11.5, is at scarce 2' distance west of the familiar planetary nebula NGC 6720 in Lyra. The proximaty of this pair to the well known nebula is likely to contribute to its being measured more frequently than others.

Table 1 displays distribution of the systems according to ρ separately for the present Supplement and separately for all of them published previously.

The Supplement VI is published in Bull. Obs. Astron., Belgrade, No 131, in 1981.

Table 2. New double stars

Double star	1900 α1950 δ 2000	t	θ	ρ	m or Δm	mgf.	W	BD $\Delta \alpha \Delta \delta$	C.I. UAI Comm. 26
GP 158	00104N5156	80.709	186.6	3,12	11.0-11.1	5 00	1+1	+51°32(9 ^m 5)	85
	00130N5212								
	00156N3229							$\Delta \delta = -4'$	
CD 102	00 20 5 1 42 55	70 (72	280.3	5 17	110-130	5.00	1+1	$+420110(9^{m}1)$	
GP 182	00303N4233	19.013	209.5	5.47	11:0 15:0	0.00			
	00358N4331							$\Delta \alpha = -7s, \Delta \delta = -3$	
								ALC: Dist. 12	
GP 181	00312N4238	79.673	106.4	5.77	11.8-12.6	500	1+1	+42°112(9 ^m 5)	
	00338N4255								
	00365N4311							$\Delta \alpha = \pm 17$ s, $\Delta \delta = \pm 1$ '	
CD 10.2	01105310904	02 7 25	1172	9 17	10.0 10.1	5.90	1+1	$+380236(9^{m_5})$	
GP 183	01135N3824	82,135	11/.2	0,17	10.0-10.1	590	1 • 1	150 250 (7.5)	
	01163N3840								
	01191N 385 6								

Table 2. (cont	tinued)								
GP 178 AB	01214N4254 01243N4310 01260N4326	8 3.745 85.757 84.751	268,4 266.2 267.3	1.35 1.26 1.30	9.7–10.0 10.0–10.0 9.8–10.0	700 500	1+1 1+1 2n	+42°307 (9 $\frac{m}{5}$) $\Delta \alpha = -18s, \Delta \delta = -2'$	91
AC		83.745	248.4	20.9	9.7-10.0	700	1+1		
GP 180	02014N4237	83.822	141.1	5.18	11.0-12.0	700	1+2	+42 ⁹ 446(8 ^m 6)	
	02044N4251 02075N4305							$\Delta \delta = +3$ '	
GP 162	02205N4104 02236N4118	80.829	95.3	1,54	12.0-12.2	590	1+2	+40°517(8 ^m ₂)	85
	02267N4132							$\Delta \alpha = -35 \mathrm{s},$	
GP 163	02217N4102 02248N4116	80.829	53,	2.5	13.0-13.2	590	1+1	+40°522(8 ^m 8) = ADS 1895	85
	02279N4129							$\Delta \alpha = +13s$	
GP 161	02267N4224 02298N4238	80,829	265.5	2.	12.5-12.6	590	1+2	+42°547(9 ^m 0)	85
	02330N4251							$\Delta \alpha = -10s$	
GP 174	03220N4022	82.896	95.	5.	4,0	560	1+1	+40°759(9 ^m 5)	
	0325 3N4033 03286N4044	82,902	100.7	7.66	9.5-13.0	5 60	1+1		
GP 173	0322 3N 3953	82,896	76.1	2,74	13.0-13.0	590	1+1	+39°790(7 ^m 3) =	91
	0325 6N4004 03288N4014	85,727	70.7	2.85	12.5-12.8	500	1+1	= ADS 2553 $\Delta \alpha$ = 2s, $\Delta \delta$ = +2'	
GP 169	05294N4304	82,129	44.4	0.69	10.0-10.3	5 90	1+1	+43°1312(9 ^m 4)	88
	05 3 30N 4 306 05 3 6 6 N 4 3 0 9	82.189 82.165	48.8 47.0	0.71 0.70	10.0-10.2 10.0-10.2	590	2+1 2n		
GP 166	17064N4047	84,675	281.7	5,98	9.5-13.5	5 00	1+1	+40°3109(5 ^m 2)	
	17080N4043	85.363	280.7	5.96	9.0-12.0	700	1+1	$\Delta \alpha = +6s, \ \Delta \delta = -7'$	
	1 /09 / N 40 39	85.366 85.168	279.3 280.4	5.80 5.90	9.0–12.0 9.2–12.5	700	1+2 3n		
GP 175	17280N3538	83.482	33,6	5.77	9.0-12.0	5 90	1+1	$+35^{0}2994(9^{m}_{1}1)$	
	17298 N 3535 17316 N 3533	83.583 83.532	33.3 33.4	6.00 5.88	9.0–14.0 9.0–13.0	590	1+1 2 n	$\Delta \alpha = -4s$. $\Delta \delta = -3$ '	
GP 152	18277N 3443	78.570	317,	2.	13.3-13.0	590	1+1	+34°3225(8 ^m 7)	79
	18295N 3445	80.640	314.0	2.78	13.0-13.2	420	1+2	$\Delta \alpha = +2s, \Delta \delta = -2'$	
	18313N3447	84.580 82.610	314.2 314.1	2.82 2.80	13,0-13.3 13.0-13.2	5 00	1+2 2n		
GP 192	18496N 325 5	85,705	33,8	2.85	11.0-11.5	5 00	1+1	NGC6720	98
	18515N3259 18533N3302	85 .754 85 .730	34.7 34,2	2.50 2.68	12.5 – 13.0 11.8–12.2	500	1+1 2 n	$\Delta \alpha = -16s, \ \Delta \delta = +1$	
GP 171	19590N 37 39	82.614	295.9	1.07	10,9-10.7	590	1+2	+37°3735(7 ⁱⁿ o)	88
	20008N 37 47 2002 6N 37 55	82.652 82.633	295.9 295.9	1.06 1.06	10.0–11.0 10.0–10.9	590	2+1 2n	$\Delta \alpha = -7s, \Delta \delta = +7$	

G.M. POPOVIĆ

50

NEW DOUBLE STARS DISCOVERED AT BELGRADE OBSERVATORY WITH THE ZEISS REFRACTOR 65/1055 cm.

GP 193	20009N3434	85.705	97.8	3,98	9.5-11.5	5 00	1+1	+34°3862(8 ^m 6)	98
	20028N 3442 20047N 3451							$\Delta \alpha = +11$ s, $\Delta \delta = -9$ '	
GP 185	2002 3N 38 04	82.614	259	2.	12.0-12.0	590	1+1	+37°3762(9 ^m 5)	96
	20041N3813	84.675	261	2. ,	0.3128 <u>-11</u> 30	500	1+1		
	20060N3821	85.639	272.5	2.12	13.0-13.5	, 500	1+1	$\Delta \alpha = +10$ s, $\Delta \delta = -0.5$	
GP 189	20037N3721	84.675	329.5	7.09	10.0-12.0	5 00	1+1	+37°3774(8 ^m 3)	
	20055N3729	85.634	329.2	7.22	10.0-12.0	500	1+1		
	2007 3N 37 38	85.639	328.2	7.17		500	1+1	$\Delta \alpha = -8s, \Delta \delta = -0.5$	
		85.748 85.424	327.2 328.5	6.68 7.04	12.0-13.0 10.7-12.3	500	1+1 4n		
GP 191	20038N 37 34	85.639	64.3	3.78	1997 - 1997 1997 - 1997	500	1+1	+37°3774(8 ^m _• 3)	98
	20056N3743								
	20074N3751							Δδ = +13'	
GP 187	20038N3802	84.675	92.7	4.70	10.0-11.0	5 00	1+2	+38°3910(8 ^m 9)	
	20056N3810	85.642	90.7	4.78	10.0-11.0	500	1+2	and the second second second	
	2007 4N 38 19	85.158	91.7	4.74	10.0-11.0		2n	$\Delta \alpha = +5 \mathrm{s}, \Delta \delta = -9 \mathrm{'}$	
GP 188	20039N 37 32	84,675	60.6	3.68	10.0-12.0	500	1+2	+37°3775(9 ^m 0)	98
	20057N3740	85 642	68.6	3.68	10.0-12.0	500	1+1		
	20075N3749	85.062	63.8	3.68	10.0-12.0	Ten	2n	$\Delta \delta = +12'$	
GP 190 AB	20040N 3652	84,675	189.9	4.37	11.0-13.0	500	1+1	+36°3884(9 ^m 5)	98
	20059N3700	85.642	187.1	5.42	10.0-12.0	500	1+1	$\Delta \alpha = +15$ s, $\Delta \delta = -1$ '	
	20077N3709	85.158	188.5	4.90	10.5-12.5		2n		
AC		84.675	230.	81.5	11.0-12.0	5 00	1+1		98
CD		84.675	309.6	3.38	12.0-13.0	500	1+1		98
		85.642	307.2	3.89	11.0-12.5	500	1+1		
		84.158	308.4	3.64	11.5-12.8		2n		
GP 157	20505N3603	80.634	224.1	3.24	11.8-13.0	5 00	1+1	+35°4313(9 ^m 5)	85
	20524N3614	80.651	228.4	3.27	12.0-13.0	5 00	1+1	$\Delta \alpha = -4s, \Delta \delta = +10'$	
	20544N3625	80.656 80.647	228.1	3.98 3.50	12.5-14.0	420	1+1 3n		
			220.0	0.00	12.17 10.0		on		
GP 170	21119N4110	81.770	79.0	1.36	10.0-11.5	590	1+1	$+41^{\circ}4062(8^{\circ},7)$	88
	21138N4122	82.652	75.2	1.24	11.0-12.0	590	1+1	$\Delta \alpha = -25$ s, $\Delta \delta = -3$ '	
	21157N4135	82.211	77.1	1.30	10.5 - 11.8		2n		
GP 186 AB	21131N4115	84,599	298.9	, 10.39	9.0-10.0	500	1+2	$+41^{\circ}4071(9^{\circ}2)$	
	21150N4127	84.681	299.0	9.92	9.5-10.0	5 00	1+2		
	21169N4140	84.640	299.0	10.16	9.2-10.0		2n		
AC		84.681	131.4	60.4	-	500	1+1		
CD		84.599	91.2	3.92	10.5-11.0	500	1+1		
		84.678	90.2	4.45	11.5-12.0	500	1+2		
		84.681	89.7	4.11	11.5-12.0	500	1+2		
		84.683	91.0	5.00	12.0-12.5	590	1+1		
		84.664	90.4	4.35	11.4-11.9		4n		

51

Table 2. (continued)								
GP 184	21501N4238	82.742	245.8	_	_	590	i+1	+42°4244(9 ^m 2)
	21521N4253	84.787	242.9	10.99	9.0-10.0	500	1+2	
	21541N4307	83.969	244.1	10.99	9.0-10.0		2/ 1n	
GP 165 AB	22147N4155	80.900	265,5	38.1	8.7-10.0	700	1+1	+40°4778(9 ^m 2)
	22169N4110							
	22190N4125							
BC		80.900	32.8	2.13	10.0-11.5	700	1+1	
GP 176	22202N4212	84.788	100.7	11,91	9.5-11.0	5 00	1+1	+41°4483(9 ^m 5)
	22224N4227							
	22245N4242							
GP 177	22219N4157	83.706	312.4	7.17	9.5-12.0	500	1+1	$+41^{0}4498(9^{m}4)$
	22241N4212	84.788	316.7	6.14	9.5-12.0	5 00	1+1	
	22262N4227	84.247	314.6	6.65	9.5-12.0		2n	
GP 172	2 3 38 3N 42 40	82,653	348.8	1,21	10.0-10.2	590	1+1	+42°4741(8 ^m 3)
	23407N4256	83,896	354.4	1.17	0.1	590	1+1	
	23432N4313	83.274	351.6	1.19	0.2		2n	$\Delta \alpha = +13$ s, $\Delta \delta = -1$ '

SOLAR AND STELLAR ACTIVITY PHENOMENA

M. Vukićević-Karabin

Department of Astronomy, Faculty of Sciences, Belgrade University, Studentski trg 16, 11000 Belgrade, Yugoslavia

and J. Arsenijević

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

(Received October 10, 1985)

SUMMARY. A review is presented of highlights in the solar and stellar activity researches based on laterst information, published in the works of other authors, and on the measurements carried out at the Belgrade Observatory.

New assumptions are advanced concerning discrete magnetic solar field of 1-2 KG strength in tubes of 200-400 km diameter. Dependence is outlined of the stellar rotation rate and magnetic activity on stellar age. It is demonstrated that stars with covective zone display magnetic activity which in some of the stars is cyclically repetitive.

INTRODUCTION

It is no overstatement saying that the astrophysicists's conceptions of stellar activity did thoroughly change after 1980. Two problems were conjointly being solved during seventies:

1) The problem of the solar magnetic field and

2) The problem of the atmospheric mass losses in the stars.

Two seemingly unrelated problems worked on by a score of people for full ten years. The solution of both problems came about simultaneously and as if only Wilson's paper (1978) was awaited to realize that all these were but links of a chain called: stellar activity. The scientists interest in the problems of stellar dynamo and activity was revived; that is, in those fundamental problems to which astrophysicists are returning over and over again – now perhaps on a fair way to get them solved. We will mention only some of the authors whose works are of particular importance for this problem. Apart from currently so often cited Wilson's paper, these are: Skumanich (1972), Deubner (1975), Linski and Ayres (1978), Parker (1979a and 1979b, Robinson 1980 and Hall (1981).

Satellite measurements of the ultraviolet and X radiation with the aid of IUE and Einstein Observatory marked (1978) the beginning of the golden age in the stellar astronomy. All this prompted solar and stellar researchers to get out of their isolation and to join their forces in seeking solution to the problem.

Solar physics abounds in evidence highly valuable for the stellar exploration but as if the scientists were lost in deatils.

Stellar astrophysicists, again, as if they were forgeting the sun to be also -a star. However, what inspires encouragement that the situation is going to change are joint researches and scientific meetings bringing together, after 1979 in particular, both the solar and stellar astrophysicits around the same problems. Joint efforts are already yielding results, although these still are only qualitative.

Thus, the following "scenario" was suggested for the stellar activity:

Stellar rotation and convection through dynamo mechanism generate the surface fields. Convection produces chromosphere and corona, while their structure is maintained by the surface fields. The stellar wind leaves such corona, "starched" by the magnetic field, at distances greatly exceeding the stellar radii. This, in consequence, involves the loss of considerably larger angular momentum whereby the rotation is slowed down, the dynamo and surface field are weakened, therewith the stellar activity as well.

We will try to systemize the information on the stellar activity in the following order:

I Stellar activity theoretical foundations

- 1) Solar activity, the role of the magnetic field and convective zone
- 2) Atmospheric mass losses and Scumanich's relation

II Detection methods and observing results

- 1) Methods of detection of stellar magnetic field and activity
- 2) By what right do we translate our insisths in the Sun to the stars?
- 3) Observations of stellar magnetism and activity (examples from literature and measurements of our own at the Belgrade Observatory)

Instead of conclusions – lines of further researches: A: Solar physics

B: Stellar physics

STELLAR ACTIVITY THEORETICAL FOUNDATION

I - 1) Solar activity, role of the magnetic field and convective zone

Solar activity's basic property is its quasi-periodical cycle, the course of which is attended by all the genres of activity, most important of which being: spots, faculae, active prominences and flares. These activity phenomena are all located in the active regions, representing vertical structure of the horizontal inhomogeneities. The activity forms just mentioned and many more others (pores, loops, spiculae, arcs, bright spots, knots, coronae, holes and so on, and so forth) are visual manifestations of the magnetic field at different levels. Accessible to measurement through Zeeman effect, from among all of these, appears only the strong local field inside an active, and averaged one inside a quiet, atmosphere. As to the magnetic field as the prime cause of all the forms of solar activity, the scientists set it out during seventies as on imperative to explore it more closely. The problem associated with the measuring of the solar magnetic field consists in the deficient resolving power of contemporaneous magnetometers, failing to resolve details in the photosphere lesser than 700 km.

The magnetic field is generated through the dynamo mechanism deep inside the convective zone, whereupon, in consequence of the vertical motion, it ., sloshes out" to the surface. By way of a veritably detective work of a number of theoreticians of whom we quote but some: Frazier and Stenflo (1972), Giovanelli (1977), Spruit (1977), Zwaan (1978) and Parker (1979a and 1979b) wholy unexpected results were reached. Instead of a relatively homogeneous and weak magnetic field of 1-2, maximum 10 gauss strength outside of active areas, a strong magnetic field was uncovered of 1 to 2×10^3 G, concentrated inside the so called "magnetic tubes" of 200 to 400 km diameter. These magnetic tubes are mutually insulated by plasma having no magnetic field, on much larger scales (10-100 times) than are diameters of the "magnetic tubes".

In consequence of the strong magnetic filed within the tubes the motion is supressed, hence these are stable, "magneto-static" as if frozen inside the photospheric plazma. They are believed to be distributed along the S.G. cells of the photospheric field. This is about all presently known about the discrete strong field of the quiet photosphere. It is only better resolving power of the magnetometer that may help exploring the fine structure of this discrete magnetic field. It is for the time being unknown what kind of force transcended the density of the photospheric plasma's kinetic energy ($1/2 \rho v^2$), concentrating and supressing the magnetic tubes, calling forth phenomena known as the solar activity. So active regions are currently defined as associations of the magnetic tubes. Any star with the convective zone probably possesses such a discrete surface magnetic field. And what stars were having convective zone?

For stars on the zero line of the main H-R sequence the convective zone thikness depends on the radius and spectral class. Without any convective zone are the O, B, A to F_2 class stars, this zone getting ever wider as it is proceeded towards the late class stars. In the G class it reacheds 20% to 30% R, extending over the entire envelope in the M class. The convective zone's thickness is changing. What reason makes the convective zone in the stellar envelope that important?

- a) It is within it that magnetic fields are formed or strengthened (non-linear dynamo theory);
- b) It is by convection taht the chromosphere and corona are created, maintained and heated by way of transfering the matter, energy and magnetic field through the envelope.
- c) A smaller fraction of energy and momentum leaves this zone in the form of waves generating surface velocity field, p - mod (Deubner, 1975; 1979).

By these compression waves we are, for the time being, accorded the sole, means of studying the solar interior – solar seizmology. Measurements of the photospheric five-minute oscillation, extended onto global scales and long, continuous 120 hour series (Grec et al., 1980) allowed the thickness of the convective zone (dc) to be calculated from compression vaves. Results of several authors after 1980 are on the whole accordant around the value dc $\approx 30\%$ R; this is consistent with the theoretical evaluations. Much is expected from this method. It enables solar interior to be studied, which the elctro-magnetic waves were unable to offer.

By the interaction of the solar rotation and convection there takes place differential rotation (D.R.), which on the surface can be measured but its change with depth remains unknown. The theoretical dynamo models are all dependent on Rossby's number, itself a function of the angular velocity, i.e. which we fall knowing even for the sun, let alone for the stellar interiors. With the aid of solar seizmology Fossat (1981) established taht 30000 km within the convective zone the velocity increased with depth.

The fact that the rate of rotation of the solar interior is still unknown should not be found astronishing as it is only recently that the mechanism of the sharp deceleration of the solar envelope was uncovered.

I-2) Atmospheric mass loss and Skumanich relation

This is one of the basic problems which the stellar astrophysics has been trying to solve during seventies, making use of insights into solar corona structure. Magnetic filed carried by convection pervades all the stellar envelopes, maintaining the corona structure by ably possesd what stars

-R sequence e radius and are the O, B, vider as it is ne G class it the entire z's thickness tive zone in

formed or

and corona by way of metic field

itum leaves ing surface 979).

r the time g the solar the photonto global Grec et al., > zone (dc) Results of accordant it with the from this which the

nd convec-R.), which ange with namo mor, itself a n we fail he stellar at (1981) tive zone

the solar d astronim of the ncovered.

lation

he stellar eventies, tructure. s all the cture by means of the closed and open fields. The closed magnetic field through its arcs and loops, maintains the configuration of hot plasma in the corona $(T \ge 10^6 \text{K})$. The open magnetic field along whose lines of force the solar wind is flowing out and cooling corona, is manifested as "holes" in the corona (Skylab, 1975). In the course of rotation the solar wind leaves the corona at a distance (R_A) much greater than the solar radius (R_o)

 $R_A \approx 20 R_0$

 R_A – is called Alfven's radius, being a function of the magnetic field strength.

At Alfven's radius distance the rate of mass loss is a good deal higher owing to the angular momentum being strouger. Therefore, in a star having convective zone and surface fields (magnetic and velocity ones) the rotation of its envelopes is slowed down relatively more rapidly. Slower rotation weakens the dynamo, which in turn generates weaker magnetic field, all resulting in the stellar activity being diminished.

Following this idea, tested on a minor number of the main sequence stars, Skumanich advanced in 1972 the empirical relation: "the rates of stellar rotation and magnetic activity decrease with the stellar age as $t^{-1/2}$ ". This in recent time so offen quoted relation can graphically be illustrated as in Fig. 1.

Fig. 1. Relative variations in the rate of rotation V_r and in the calcium emmission flux Ca II with the age $v_{\rm I} \sim t^{-1/2}$ for some stars (Skumanich, 1972).

Measurements executed in 1972-84 confirmed this relation of Skumanich to which, if confirmed on a greater number of stars, the importance of fundamental relations in astrophysics is predicted.

Apart from inferring the age from the rate of stellar rotation, this relation might be helpful in clearing up the problem: is the Sun having that activity level which is in harmony with its age.

On analysing Skumanich's relation Whitehouse in 1983 put out an original idea according to which the young sun has been a lot more active than at present, having emitted x-radiation thousand times more intensely. This radiation, in hitting the earth, precluded the life from coming into being all through until in due course the activity level had significally droped. This is an interesting idea indeed, needing confirmation.

DETECTION METHODS AND OBSERVING RESULTS

II - 1) Methods of detection of stellar magnetic field and activity

The most commonly used indexes of solar activity are the relative sunspots number (Wolf number) and the magnetic field intensity in terms of Zeeman effect. These indexes cannot, for the time being, be employed with the stars, being particularly inadequate with the late spectral class stars. This is just why particular importance is assigned to the new method of calibrating magnetic field known as:

- 1. Robinson method (1980). Although it is workable with only bright and highly active stars, the method is valuable for scaling other, less direct methods of measuring activity, such as:
- 2. Broad band photometry by which temporal intensity variations of the photospheric continuum attributed to the stellar spots and faculae is measured. The solar flux constancy (solar constant) is accounted for by the extremely minor replenishing factor (0.01-0.02 for the Sun; 0.4-0.8 for stars) entailing the variation effect to be below detectability.
- 3. Spectroscopic methods proved to be highly valuable for detecting solar activity, especially via strong resonant lines Ca II and Mg II in the optical spectral domain. Since linear correlation has been established in the Sun between these lines's intensity and the magnetic field strength, both of them are accepted as indexes of stellar activity.
- 4. IUE and Einstein Observatory. Satellite measuring of the ultraviolet radiance emanating from the transition regions via C IV and Si IV lines, and detection of Xradiance from the Einstein Observatory disclosed a large number of cool stars as having hot coronae T ≥ 10⁶K. Successful measurements of the ultraviolet and X-radiations from these two spacecrafts marked the beginning of the stellar astronomy's ,golden age".
- 5. VLBI microvave radio-measurement. It is only since recently (Gibson, 1980, Gary and Linsky, 1981), as a result of refining new observing technique (VLBI) that began in more earnest the radio astronomers's concern with individual stars. Thus was initiated the

study of active phenomena in the stars by monitoring the increased radiation (radio-impulses) within cm-range. The impulses take from a few minutes to several hours, displaying peculiar pattern. The circularly polarized radio-radiance (80-90%) is suggestive of a coherent non-thermal mechanism. It is from this evidence that the strength of the magnetic field (10^3 G) was inferred.

II - 2) By what right do we translate our solar insights to stellar activity

Until 1970 the answer to the question thus posed had been: no other choice is left while at the same time we happen to possess a wealth of observational material on the solar activity. As the strong resonant line Ca II in the Sun is a good activity indicator (Fig. 2), it started being used as an index also of the stellar activity, without any more serious arguments being forwarded. It is only by satellite measurements that a confirmation was provided of the soundness of using this line as an index of the stellar activity. The result announced by Rodono in 1983 made world round in a short time (Fig. 3).

Fig. 2. The number of sunspots and the emission line Ca II as fine indicators of the activity cycle (Wilson, 1978).

It is apparent from Fig. 3 that:

- modulation of the photospheric brightness is present in rhythm with the stellar rotation, presumably due to the ,,starspots".
- the increased intensity of lines originating in the chromosphere, transition regions and corona, corresponds to the minimum photospheric brightness (accordance of indexes resulting from 2, 3 and 4 methods,

- Fig. 3. Some of the activity indicators for II Peg measured by various methods from the ground and from artificial satellites (Rodono, 1983).
- the flux of the Mg II resonant line may be exploited as an index of stellar activity;
- active region on a star (as in the sun) represents a localized vertical structure of horizontal inhomogeneities.

The number of researchers engaged in these problems shows a sudden increase, after 1980 and the results are not missing.

II - 3) Stellar magnetism and activity observations

Prior to Wilson stpaper (1978) it was maintained that the activity was a property of some stars only. These, apart from the sun, were

- UV Ceti stars and
- eruptive dwarf-novae

SOLAR AND STELLAR ACTIVITY PHENOMENA

Fig. 4. The outburst of the UV Ceti star (Oskanjan, 1964).

V

11

IV

by

cial

as

s a

ge-

ob-

ilts

ned

ly.

We take as an example the outburst of UV Ceti star registered on 25 Sept. 1952 at the Belgrade Observatory by V. Oskanjan. It was the most violent outburst ever observed on a star (Fig. 4).

What new has been brought about by Wilson's work and measurements carried out following 1980 by all the methods available? After 17 years of continuous observation of 91 stars of diverse spectral classes the following results havebeen reached:

- a) Activity is a property of stars of late spectral class from F through M.
- b) Photospheric brightness exhibits rotation modulation suggestive of the presence of stellar spots covering 30% 50% of the disk. Nothing is known of their nature.
- c) About 1/3 of the stars observed display activity cycle similar to the one in the Sun, with periods from 5 to 60 days
- d) Of all the stars observed most active are binaries of RS Canum Venaticorum type (RS CVn). Their activity mimicks the solar one, being however incomaparably more intense.

Results of stellar activity observations are shown in Figure 5, 6 and 7.

It transpired from Fig. 5 that the activity is not displayed by the early O-B-A spectral class stars, but by the late F-G-K-M stars, whereby by both main sequence stars (the Sun among them) and those having separated from the main sequence: subgiants, giants and supergiants. This was a surprising result for all those who, in view of the strong magnetic field of changing

Fig. 5. Activity similar to that of the Sun measured on the stars having convective zone (hatched area in H-R diagram) (Zwaah, 1981).

character, expected the activity to be a property of the so called magnetic Ap class stars. However, the mere presence of the magnetic field is not a sufficient condition for an activity. It has been registered in those very stars of late F-M class in which it is not until 1980 that a magnetic field was measured. This accounts for the result having been unexpected to many. However, provided Fig. 5 is closely inspected and the boundary of the convective zone recognized, the result should not appear as a surprising one. After 1980, using Robinson's method, the magnetic field was measured in the F-M class stars of about 2 x 10³G strength, of nearly constant intensity, covering about 10% to 30% of the stellar disk. Many of these stars display activity typified by increased Ca II emission or radiation or else by photospheric brightness modulated through rotation. In some of them there is an unmistakable activity cycle (Fig. 6).

Still few are stars whose activity was recorded by all currently available methods. One such is V 711 Tau (HD 1099) (Fig. 7). It has been established from aboard Einstein Observatory that both components (G5 + K1) were having hot coronae $T = 40^7 K$, while VLBI radio measurements at 2.8 cm and 6 cm over five years (1978–82) disclosed this star to be the strongest yet recorded source of the non-thermal microwave radio-

57

Fig. 6. Samples of stellar activity cycle (Wilson, 1978).

radiation. This radiation exhibited a cyclic pattern with maximum intensity in 1978 (1 Jy), which is in conformity with the photometric measurements.

Such a complex exploration of activity in a star is of major importance for infering true nature of the stellar spots and active regions.

Cool giants and supergiants of G-M class are stars in which, having regard to Fig. 5, one would expect activity, but for which observational data are extremely scarce. For exactly this reason the result acquired at the Belgrade Observatory (Arsenijević, 1985) constitutes a very valuable contribution. Namely, the star μ Cep., a cool, red supergiant, was observed photometrically in the V region (method 2). On August 2, 1981 an outburst

1.04 1.02

1.00

1.0

1.0

1.0

1.1

1)

Ŧ

Fig. 7. Variation in the photospheric brightness in the star V 711 Tau (HD 1099) as a consequence of the star's rotation in the course of its activity cycle (Rodono, 1983)

was recorded on this star of some 20 minutes duration. As apparent in Fig. 8, the outburst followed a typical course: a violent rise and slow decline of intensity. The monitoring was performed by an automatic photoelectric polarimeter, 100 times more sensitive than the one with which the 1952 outburst was recorded at this same Observatory. The calculated flux strength of μ Cep amounts to 10^{31} J s⁻¹, which is between the strongest solar outbursts $(10^{25} \text{J s}^{-1})$ and the outburts in novae $(10^{38} \text{J s}^{-1})$. According to an estimate of change in the photometric brightness of this same star (Djurašević. 1981; Polyakova, 1982) the outburst took place near minimum phase of its cycle.

INSTEAD OF CONCLUSIONS – LINES OF FURTHER RESEARCHES

The years ahead will see the picture presented here completed by data from observations so that it will become a quantitiative one. Then the theory, too, will

M. VUKIĆEVIĆ – KARABIN, J. ARSENIJEVIĆ

Fig. 8. The flare in the cool suprgiant Mi Cep (Arsenijević).

presumably provide some amendments or, posisbly, minor modifications but the basic picture's structure is likely to remain unaltered. It is already now evident which course will the researches take.

A. Solar physics

'11 ion

As

cal

he

20.

ne

ne

ep

est

/ae

he

ίć.

ear

ER

ere

zill

√ill

- 1. Solar magnetism forming the pith of the solar activity, the nead appears for the magnetograph resolving power to be increased so as to enable us to ,,see" the fine structure of the surface magnetic fields and to understand the nature of the magnetic tubes, bright points, knots etc. In other words – the descriptive terminology is to be replaced by a physical one.
- 2. Exploring the photospheric large scale velocity field (S.G. cells, giants, meridian circulation, D.R.) their dependence on activity cycle in particular.
- 3. Thorough study of the coronal structure, plasma motion within open and closed magnetic field. finding out the energy sources of the solar wind accelaration.
- 4. Greates possible attention to be devoted to the solar rotation, alike the surface and the depth rotation. Making use of solar "seismology" new methods to be developed that would allow solar core below 0.6 R to be tested on whether it was rotating twice as fast as the surface.

5. Making use of the geophysical, planetary, lunar and meteorite sources, to collect as much data as possible on the young Sun.

B: Stellar physics

- 1. Measuring intensely the rotation of stars, of all classes, of the late F5 M ones in particular.
- 2. Continuing researches into stellar activities by all techniques. Particular attention to be devoted to cool giants and supergiants, aimed at uncovering stellar winds. To include in the observing programme southern stars, α Centauri in the first place.
- 3. Detecting the stellar and solar magnetism by the now available and new techniques by extended series. Cheking whether the Ca II and Mg II indexes were having that correlation with the surface magnetic field on the stars which they do have on the Sun.
- 4. Testing the Skumanich's empiric relation on as many coeval stars as possible (binaries, open clusters). Apart from its fundamental significance, the dilemma would thereby be settled: whether the Sun was possessing that rotation and activity which is typical of its age.

By such joint researches the astrophysicists expect to solve the problem of stellar activity as a general feature of a large number of stars at a particular evolution stage.

REFERENCES

- Arsenijevich, J.: 1985, Astron. Astrophys. 145, 430.
- Belvedere, G., Chiuderi, C., Paterno, L.: 1982, Astron. Astrophys. 105, 133.
- Belvedere, G.: 1983, Astrophys. J. 268, 246.
- Deubner, F.L.: 1975, Astron. Astrophys, 44, 371.
- Deubner, F.L., Ulrich, R.K., Rhodes E.J.: 1979, Astron. Astrophys, 72, 177.
- Djurashevich, G.: 1981, private communication.
- Fossat, E.: 1981, Solar Phenomena in Stars and Stellar Systems, Bonnet, R.M., Dupree, A.K. (eds), NATO Advance Study Institute, D. Reidel, Dordrecht, 75.
- Frazier, E.N., Stenflo, J.O.: 1972, Solar Phys, 27, 330.
- Gary, D.E., Linsky, J.I.: 1981, Astrophys, J. 250, 284.
- Gibson, D.M.: 1980, Radio Physics of the Sun, IAU Symp. 86,
- Kundu, M.R., Gergely, T.E. (eds.), Reidel, Dordrecht, 209.
 Gilman, P.A.: 1983, Solar and Stellar Magnetic Fields Stenflo, J.O (ed), Reidel, Dordrecht, 247.
- Giovanelli, R.G.: 1977, Solar Phys, 52, 315.
- Grec, G. Foassat, E., Pomerantz, M.: 1980, Nature, 288, 541.
- Hall, D.C.: 1981, Solar Phenomena in Stars and Stellar Systems, Bonnet, R.M., Dupree, A.K. (eds), NATO Advance Study Institute, D. Reidel, Dordrecht, 431.
- Linsky, J.L., Ayres, T.R : 1978, Astrophys. J. 220, 619.
- Noyes, R.W.: 1983, Solar and Stellar Magnetic Fields Stenflo J.O. (ed), Reidel, Dordrecht, 133.
- Oskanyan, V.: 1964, Publ. Astron. Obs. Beograd, 10, 32.
- Parker, E.N.: 1979a Astrophys. J. 230, 905.

59

Parker, E.N.: 1979 b, Astrophys. J. 231, 250.

- Parker, E.N.: 1979 c Cosmical Magnetic Fields, Clarendon Press, Oxford.
- Paterno, L.: 1983, Active Phenomena in the Atmosphere of the Sun and Stars, Japan-France, Seminar, Pecker, J.C. Uchida, Y (eds.) CNRS 343.

Polyakova, T.A.: 1982, Vestnik L.G.U. 7, 92.

Praderie, F.: 1983, Active Phenomena in the Atmosphere of the Sun and Stars, Japan-France Seminar, Pecker, J.C., Uchida, Y. (eds.) CNRS, 96.

Robinson, R.D.: 1980, Astrophys. J. 239, 961.

Rodono, M.: 1983, Adv. Space, Res. 2, 225.

Skumanich, A.: 1972, Astrophys. J. 171, 565.

Spruit, H.C.: 1977, Solar Phys. 55, 3.

- Vaughan, A.H.: 1983, Solar and Stellar Magnetic Fields Stenflo J.O. (ed), 113.
- Vaiand, G.S.: 1983, Solar and Stellar Magnetic Fields, Stenfo J.O. (ed.), 165.
- Wilson, O.C.: 1978, Astrophys. J. 226, 379.

Zwaan, C.: 1978, Solar Phys. 60, 213.

Zwaan, C.: 1981, Solar Phenomena in Stars and Stellar Systems D. Reidel, Dordrecht, 463. Stenflo.

Stenflo.

Systems

UDC 525.

0

PRESENT – DAY POTENTIALITIES OF REFRACTION INFLUENCES DETERMINATION AND PERSEPCTIVE DEVELOPMENTS

G. Teleki

Astronomical Observatory, Belgrade, Yugoslavia

(Received October 15, 1985)

ABSTRACT: A critical survey and analysis is presented of those questions that are of acute interest in the astronomical refraction investigation. Special weight is accorded to the development and the present accuracy in the refraction determination as well as to the prospective ways of its further improvement. Regarding futher development put under scrutiny are: implementation of more accurate formulae in the refraction calculus; introduction of atmospheric models better matching the reality; accounting for the refraction influences within an instantaneous meteorological field; instrumental determination and the supression of refraction influences; prevention and more rigorous turning to advantage of the laws governing the radiation propagating. The effects associated with the radio refraction are discussed separately. The conclusion is derived that a marked accuracy improvement in the determination of the refraction influences might be expected in the years ahead.

1, INTRODUCTION

The radiation undergoes changes at its transmission from its source (celestial body) to the observer (registering instrument) at the Earth's surface. At its traveling through the inhomogenous media as: the interstellar and the interplanetary ones, the atmospheres of the parent star and around the Earth, including the observing optics, the radiation gets changed through the interaction with the medium traversed. Physical characteristics are modified and - of particular importance in astrometry - propagation direction.

The laws governing the radiation propagation are not known with full certainty. That is why one cannot speak but of approximation, i.e. of approximations to the actual propagation, since it is considered not integrally but by its portions. Because such a dependable pointer is lacking, formidable difficulties are met at weighing the trustworthiness of some radiation feature, this particularly if some of its general properties is dealt with. The same applies to the direction changes.

All this should, as a matter of cause, be kept in mind at examining the accuracy in refraction effects determination. The uncertainty is present not only at evaluating some – be it termed—absolute accuracy but equally so at confronting different methods by which it is determined.

In connection with the refraction determination one should be aware of the fact that currently only the effects of the Earth's atmosphere and the telescope optics and the registering equipment are accounted for. These, in all likelihood, are the most essential, but when the accuracy improvement is at stake, the quest of other potential effects is required.

The complexity of the refraction phenomenon is equally to be kept in mind. It is relevant in this respect to refer to the papers of Kolchinskij (1984; 1986) in which the author's conclusion is exposed of the refraction fluctuation spectrum having to be consistent with the analogous one of the air temperature. Parting from this he produced a sketch (Fig. 1) from which wide varieties of the refraction effects are apparent. A classification of the atmospheric disturbances is also related to by Goto (1983), with different spatialtemporal scales, affecting, in a compex way, the refraction value too.

In the following discussion we primarily draw on the latest investigations (as many as 126 papers or abstracts were available, more particularly on those acomplished in the period 1982–1985) after our preceding Report (Teleki, 1984) covering the period 1979–1982. In the latter period one more surveying article has appeared: Shamaev (1983). We quote here still another larger surveying article of Sergienko (1981), not mentioned in our earlier report, as well as his paper (1986) on the activities performed in the USSR.

From the greater Meetings one should mention those of the Soviet specialists at Tomsk (1983) and at Irkutsk (1984) (Sergienko, 1986), as well as the international one, organized by the Working. Group on Astronomical Refraction of the IAU Commission 8, held in June 1985 in Leningrad (Proceedings of this Meeting will appear as No. 35 of the Publ. Obs. Astron. Belgrade, 1986). At those three Meetings alone as many as 162 (= 72 + 48 + 42) papers have been presented.

Related to in the present review are but some of the published, i.e. of the reported on the above Meetings, investigations, first of all those of consequence in the astrometry.

It is interesting to mention some investigations connected with he geodetic refraction: Proceedings "Geodetic Refraction" (Brunner, 1984), Wunderlich (1985), Džeparoski and Vukmirović (1986), Kushtin (1986), Maksimcev (1986), Ostrovskaya (1986), Pojidaev (1986) and Ware (1986).

Quoted here are two papers: Fillipenko, 1982; Watson, 1984, more dealing with the calculation for the refraction effects in the spectroscopy, resp. spectrophotometry.

2. PRESENT POTENTIALITIES

According to an evaluation (Teleki, 1979) the refraction tables — most of the refraction calculations are made upon them — are capable of yielding 98% of the actual refraction influences for observations within 60° to 70° zenith distances. The 98% accuracy estimate is evidently not equally adequate over the zenith distances just stated: it may be too high in the zenith zone and to low at 70°. It should, therefore, be looked upon as some average value. It may be rated as pessimistic one (for at $z = 45^{\circ}$, say, it involves an error of about 1"), but if account is taken of all possible effects, and not only of those in the free atmosphere, of those in the surface layers in particular, (Medestova et al., 1986) it does not apear unrealistic either.

Entirely different are the curcumstances for the zone 70° to 90° zenith distance. Unless there are essential departures from the spheric-symmetric atmospheric model, the 98% accuracy estimate, up to 88° to 89° zenith distance, might appear still adequate. At z = 90° zenith distance, however, if account is taken of all effects (Alekseev et al., 1983), the estimate may run at 84%. If, on he other hand, the observations at the very horizon are omitted, then a typical accuracy estimate for the zenith distances from 70° to near horizon might amount to 96%.

It is pertinent at this juncture to recall an earlier paper of Kirichuk (1973) reporting on a relationship between the terrestrial refraction coefficients and the peri-horizontal refraction values ($80^\circ \le z \le 90^\circ$). The accounting for the terrestrial data is conductive to refraction effects being notably more accurate than those found without those data. Even though additional measurements (we thereby mean the terrestrial refraction coefficient) are therewith implied, the suggested way is possibly profitable in the practice. The accuracy of the refraction determination is customarily given for only $z = 45^{\circ}$. It is generally assumed that at this zenith distance, under the average meteorological conditions — i.e. excessive disturbances in the surface layer not present — the refraction tables furnish a ± 0 . I accuracy.

Alekseev et al. (1983) enumarate the errors, potentially evolving from the following factors: aerological data (methods, temperature and pressure changes along the radiation trajectory, variations in time of the data at the site of observation, humidity), statistical atmospheric models (standard and regional atmosphere), analytical atmospheric models, errors in geometric factors (earth's radius, zenith distance, altitude above horizon), spectral characteristics and the approximating formulae. All of these factors are given in terms of zenith distance. It transpires from this analysis too that the magnitudes of different effects for the zenith distances not higher than appr. 70° are rather slight, lending support to the well known Oriani–Laplace's postulation.

The Oriani-Laplace's theory has been dealt with also by Teleki and Sugawa (1986), with the conclusion of its being applicable to the real atmosphere (i.e. not merely to the one underlying the refraction tables), which has its physical explanation. The compensation of tilts of layers of equal density – playing decisive part in this theory – is interpreted as a concequence of the general circulation of atmosphere.

Regarding the accuracy a graph from Kurzynska (1986) as indicative might be here be reproduced, Employing the aerological data acquired at Poznan (Poland) in the period 1970 to 1979, she found - as evident from Fig. 2 - that at the refraction calculation the errors in the meteorological elements at the observing site were dominant all along till $z = 80^\circ$, the errors in the aerological data coming to the fore only near horizon. The magnitudes of the aerological effects are in harmony with those stated by Alekseev et al. (1983). It is to be emphasised that these effects reveal a relatively severe variability with seasons (e.g. at $z = 89^\circ$ the effect reaching 9.5 in summer and 14.1 in winter). Relevant to Fig. 2 is to note that the curve 3, according to Kurzynska (1986), represents the physical limit of the refraction determination.

Concerning the accuracy associated with the refraction influences calculation let us have another look at Fig. 1. One is reminded of the fact that the effects of the gavitational waves (within 5 to 50 cycles per hour domain), and of those of the temperature micropulsation (100 to 10000 cycles per hour domain) are not taken into account. The temperature variations give rise to the so called "accidental refraction" effects (with periods of a few tens of seconds of time) and to "image motion" (the periods ranging from a few seconds to a few tenths of second).

Fig. 1. The air temperature fluctuation spectrum (a) and the probable refraction fluctuation spectrum – according to Kolchinskij (1984). 1 – synoptic maximum, 2 – micropulsation, 3 – fluctuation from the refraction tables, 4 – gravitation waves effects, 5 – accidental refraction, 6 image motion. Notations: f – frequency, E(t) – spectral density; vertical axis in graph b) – squared fluctuation's semi-amplite (half the annual refraction variation).

3. DEVELOPMENT

The present-day accuracy of the refraction determination, by comparison to the one in the past, marks great progress. Consult in this connection Table 1 (Teleki, Atanacković, 1983) exhibiting the estimated determination errors in these effects in the course of time at $z = 45^{\circ}$, assuming average meteorological conditions, i.e. under not exceptional conditions (this specification applies first of all to the present-day error).

Table 1. Estimated error in the refraction effects determination at 45° zenith distance (Teleki, Atanacković, 1983).

Author	Year	Estimated error
Tycho	1587	60"
Kepler	1604	15
Cassini	1661	2
Bradley	1798	1
Gylden	1868	0,2
Today	1982	0.1

Another estimate was provided by Sergienko (1986) – see Table 2.

The two estimate are somewhat diverging - quite understandably - but both of them make it evident how significantly increased is our knowledge of the refraction phenomenon. The question, however, is to what extent are met the current astrometric needs. The unambigous answer surely is: not satisfactory. The limitations set to the atmospheric - implying those refractional - effects are brought forward by a comparative analysis of the growth of accuracy possessed by refraction tables and the stellar position catalogues (Teleki, Atanacković, 1983). It turned out that the refraction accuracy growth does not, in the course of time, follow that of the catalogue growth. Thus, the quality level of the present -day catalogues is not a result of the improvement of the refraction accuracy, but rather a result of the achievements in other fields (instrumentation, automation, prevention etc.). All this comes forth again by considering separately the errors in the stellar positions obtained with the classical and in those obtained with the up-to-date instruments. The errors have dropped from about 0.4 to about 0.2, the refraction effects having all along been calculated with nearly the same accuracy. The instrumental errors associated with the modern astrolabes and PZTs are of the order of 0.01. A rather large error, 0.1, in the group means of the observations defies interpretation - one suspects the refraction anomaly as having its say in it (Hu et al., 1984). Naito and Sugawa (1984) have shown that refraction influences in visual zenith-telescope and the astrolabe observations are of the other of 0.01.

It is curious that while the astrometry cannot be satisfied with the accuracy attainable in the refraction calculation, there are fields in which sufficiently accurate results are deduced from the measured refraction angles. In this, so called, indirect task (Alekseev et al., 1983) one is able to determine the refractive index, the density and the temperature, as well as the humidity. It could be demonstrated (Gaikovich, Summin, 1986) that the vertical profile of the meteorological parameters is thus deductible with the same accuracy as the one associated with the radiometric measurements (from the Earth's surface).

presently be given but one is bound to state that an

4. PO Earth's surface). The Table 2 gives the prospective accuracy of the refraction determination. How correct is the estimate runing to 0."1 to 0."001? No definitive answer can

intensive work is under way aimed at improving the present status. These new works, i.e. the required investigations, will be discussed in the following chapters.

4. POTENTIAL DEVELOPMENTS

The accuracy improvement in the refraction determination might be expected to follow from the investigations bearing on:

Table 2.	Improvement of	the accuracy of	f refraction	angles det	erminations	(Sergienko,	1986a)
----------	----------------	-----------------	--------------	------------	-------------	-------------	--------

Period	Atmosphere model	Atmospheric structure, calculations of n	Error of determina- tion, sec of arc	Meteorolo- gical data on the atmosphere	Author(s) of theory
Before the 17th cent.	one-dimen- sional	empirical instrument	10	hypoth.	Kepler
First half of the 17th cent.	one-dimen- sional	n=const.	1	hypoth.	Cassini
Before the mid-19th century	one-dimen- sional	n = 1 + 2 C	1	hypoth.	Newton
Till the begining of the 20th cent.	one-dimen- sional	n = 1 + 2 C	1	hypoth.	Gylden Radau
Till the '30s of the 20th cent.	initiation of studies of refr. anomalies using metor. and astr. data	n = 1 + 2 C	0.5	hypoth.	Harzer
1940-1960	one-dimens. model, obtained from radio sounding data	n = 1 + C	0.1-0.5	radio sounding	Garfinkel
1960–1970	attempts to apply the one- dimens. model atmosph.	Owens' formulae 1.10 ⁻⁸	0.1-0.5	rocket sounding	Garfinkel Nefed'eva
Toward the end of the 20th cent. (prediction)	many-dimens. model atmosphere of equal arbitrary order	Owens'-type formulae or special method	0.1-0.001	laser sounding, use of the art. satel— lite borne data	Sugawa, Teleki a.o.

PRESENT-DAY POTENTIALITIES OF REFRACTION INFLUENCES DETERMINATION AND PERSPECTIVE DEVELOPMENTS

- more fitting formulae for the calculation and closer reality atmospheric models;
- employing the instantaneous meteorological data;
- instrumental determination or elimination of the refractional influences at the time of observation;
- prevention;

ing the

equired

g chap-

1 deter-

investi-

thor(s)

heory

ler

sini

vton

lden

lau

zer

finkel

rfinkel

fed'eva

zawa.

leki

- accounting for the full variation in the radiative propagation.

Here is a summarized presentation of papers dealing with these problems.

4.1, Tables, formulae, atmospheric models. – Regarding Pulkovo Tables, Fourth Edition, criticism has been voiced concerning incorect refraction constant as well as inhomogeneity in accounting for the air temperature effects (the chortcomings of these Tables have lately been pointed out by Motrunich, 1984; Fukaya and Yoshizawa, 1985 and Yoshizava et al., 1986). All this has been rectified in the Fifth Edition of these Tables (Abalakin, 1985), fine results being achieved (Guseva, 1986b; Kharin, 1986). It is these Tables' great merit that the chromatic refraction is motably more properly accounted for. What important consequences in the astrometric observations follow from the accounting for the chromatic refraction is clearly demonstrated by Bagildinsky et al. (1986). It has been shown by these authors that the results obtained with the Pulkovo vertical circle over the zenith distances up to 60° were chromatically homogenous, a fact of great importance. In this connection an interest must be attached also to the paper of Stone (1984).

The central point at constructing the Pulkovo Tables has been the ensuring of the most adequate temperature profile (Guseva, 1986a). The following formula, expressing the daily and/or annual temperature (T) variation with height(h) has been used

$$T(h) = Tr(h) + (T_o - T_o^r)e^{-\alpha (h-h_o)}$$
 (1)

where $h_o - the$ altitude of the observing site above the sea level, $T_o - local$ temperature, $T^r(h) - the$ temperature in the adopted model – the Soviet standard atmospheric model 1976, $T^r_o - local$ temperature in the adopted atmospheric model.

It is well known that in calculating the refractional influences only local meteorological data are taken into account for the given instant. However, Equ. (1) allows it to include into tabular data some correction for the atmospheric model, making thereby the tables more effective than would have been the case if the model were rigid.

Similar ideas are expounded in the paper of Huang and Shen (1986). The refractivity (N = n - 1) according the these authors is represented by

$$N = N_0 e^{-ah}$$
(2)

The authors developed a formula giving the refraction in terms of Δa , i.e. dependent on changes in the refractive index profile. Employing the U.S. Standard Atmosphere they obtained for a the values -0.1170/kmand -0.1050/km on the basis of the aerological data for Shanghai. From this difference they deduced the local refraction variations.

It is worthwhile noting that earlier Teleki (1967) arrived at results resembling those of Huang and Shen. With the Belgrade aerological data there would follow for a the value -0.1337/km.

The question arises whether one is correct using (1)or (2) uniformly over the entire atmosphere or should it not be more appropriate to have the atmosphere divided into parts, calculating separate parameters (Teleki, Sugawa, 1986). It is at once to note that such a division is imaterial for zenith distances up to about 70°, but acquires its justification beyond this limit. Sugawa and Kikuchi (1973) were the first to suggest a two layer model - applying the formulae of the form (2)separately to the troposphere and the stratosphere. Recently, the two layer model was suggested by Rukina et al. (1986). These authors computed N for the optical and radio radiations for 16 regions of the central part of the European teritory of the USSR, drawing the conclusion that the radio-domain profile was more realistic if given for two layers: the first from 0 to 9 km and the second from 9 to 30 km. Analysing the seasonal and annual variations in both profiles they found them notably larger for the profiles in the optical than in the radio range. According to Blinov (1983) the usage - for astrometric needs - of the expression (2) as a mean for the troposphere and the stratosphere is common place.

The tables or, for that matter, the computation of refraction from the aerological data, imply one-dimensionality, for they pertain to one only vertical atmospheric cross-section. To be sure, one tends to pass over to the three-dimensional models or, more preferably, to the real atmospheric models. Universally recognized as the progenitor of the refraction three-dimensionality is Harzer, who compiled, as early as 1922 and 1924, corresponding tables. A critical analysis of Harzer's work by Yatsenko and Teleki (1985) enabled them to point out its merits and to come to realization that Harzer's basic conceptions – if simplifications used by him are ignored – might be turned to good account even at present. Yatsenko (1986) gave an algorithm of modern use of Harzer's theory for computer.

It is to be noted, however - as pointed out by Sibilev (1983) - that a formula for the light beam propagation in a three-dimensional continuum was given by Numerov as early as 1919, but it failed to be implemented. A transition from the one to the full three-dimensional refraction calculation was suggested by Yunoshev (1986) which would imply two parts: the first would be referred to some average (standard) atmosphere while the second would involve the vertical and the lateral departures in the free atmosphere relative to the adopted atmospheric model, computed on the basis of the aerological measurements. Using data at three aerological stations in the Central Russia he derived for stars at $z = 40^{\circ}$ the following values of the second part (related to above): 0.017 for azimuth and 0.03 for the zenith distance.

Various atmospheric models were thoroughly studied by Sergienko (1986a) which led him to the realization that currently, in the refraction calculations, one is able to employ three atmospheric models implying arbitrary layers of equal density: the one is two-dimensional (denoted MAS-2) wherein the variations of **n** in height and in the horizontal plane are known; the second is a simplified three-dimensional (MAS-3-S) implying the variations of **n** along the x- and the y- axes are known, the variations of **n** with height being constant; the third is a three-dimensional one (MAS-3), the variations of **n** in the vertical direction being expressible by AB^h and those along the x- and y- axes by ϵ

= $\frac{l}{n} \frac{\Delta n}{\Delta x}$ and $\omega = \frac{l}{n} \frac{\Delta n}{\Delta y}$, respectively. A transition

from the statical three-dimensional model to a dynamical one would necessitate the constant values of ϵ and ω being replaced by expressions furnishing the spatialtemporal variations of **n**, considerably more complex. According to Sergienko, for the observations at medium zenith distances, the meteorological data allow the astronomical refraction to be determined with an error less than 0.1 to 0.5 upon a dynamical atmospheric model.

Kushtin (1986) analysed in detail different methods of determination and calculation of optical refraction in the Earth atmosphere. The methods of refraction determination were classified by him as measuring, computing, measuring--computing and instrumental ones.

Employing local statistical atmospheric models in the refraction calculus is suggested by Nelyubin (1983), such that would embody the averaged annual profiles of the meteorological quantities at the given place, their variations in time, the cloudiness and the synoptic situation being accounted for. It is demonstrated by the author that the implementation of these models lead to the hitherto most accurate refraction results. Provided the humidity is taken into account, these models could be used in the radio band.

Taking the earth siglobal atmosphere as a reference in the refraction calculation is argued by Teleki (1986). The interconnection is thus promoted of the astrometric data as well as the determination of the local refraction effects.

Nefed'eva (1986) analysed the longitudinal and latitudinal distribution of the air density and concluded that tilts of layers of equal density as obtained by her are in accordance with the corresponding values given by Saastamoinen (1980). Shabel'nikov (1983) established formulae for a three-dimensional inhomogeneous atmospheric model Account is taken of the layer inhomogeneity and of the horizontal gradients of the refactive index n (note that such a model is termed two-dimensional MAS-2 by Sergienko) and corresponding formulae given for the refraction calculation. It is stated by the author that the horizontal gradients and the inversions can affect the refraction value by as much as 0.05 to 0.5 over zenith distances up to 70°, and considerably more at larger zenith distances. Applying his formulae to the observations near horizon separately he obtained good agreement with the experimental data,

In another paper Shabel'nikov (1986) analysed the calculation methods of the refraction influences in the three-dimensional inhomogeneous atmosphere, offering simpler formulae.

Vasilenko (1985) investigated possible refraction corrections proceeding from an ellipsoid atmospheric model. He found them to be larger than 0.01 only for observations at zenith distances over 75°.

K ushtin (1984) set forth formulae suited to determination of the refraction angle in the observations close to horizon.

Five novel refraction tables, i.e. five modes of calculating pure local refraction all resting upon aerological measurements, have appeared in the most recent time: in Shangai (Shen, 1984), Uzhgorod (Motrunich, 1984), Tokyo (Fukaya, Yoshizawa, 1985; Yoshizawa et al, 1986), Kazan (Nefed'eva et al., 1986) and the ones meant for the polar regions (Zablotsky, Kulish, 1986).

Saastomoinen (1983) extended his mathematical theory of the atmospheric refraction, published in 1972 and 1973 in Bull. Geod., achieving better data convergence for z above 80°.

Anything so far related to pertains to the calculation in some free atmosphere model. A step farther has been made by Sibilev (1983) who provided formulae for the light ray propagation in the surface layer. He derived the following approximate formula furnishing – with an accuracy not inferior to 5% – the anomalous refraction between the points **a** and **b**

$$\rho'' = C \int_{a}^{b} \frac{\overline{P}_{1}}{T^{2}} \left(\frac{\partial T}{\partial x} \sin z - \frac{\partial T}{\partial y} \cos z \right) ds + D s \sin z$$

where: C = 21.7 k/mm Hg, D = 0.0068 m, $\overline{P}_1 - \text{mean}$ surface pressure (in mm Hg) and T - temperature in K. The trouble with this formula, however, derives from the fact that, in consequence of the highly intricate nature

nal and ncluded by her ;iven by

for a model. d of the bet that S-2 by for the that the fect the t zenith t larger observa-

sed the s in the offering

l agree-

raction spheric nly for

etermiis close

des of aerolorecent runich, awa et ne ones 1986). natical n 1972 : data

ulation as been for the red the ith an caction

s sin z

- mean e in K. om the nature of the meteorological element field in the surface layer, it cannot actually be employed (Sibilev, 1986). He therefore utilized a simpler formula

"=
$$B\sum_{k=1}^{n} \left(\frac{D_{k+1}}{T_{k+1}} - \frac{D_{k}}{T_{k}}\right) tg i_{k}$$

where: i - incidence angle, $D = 1 - 1.184 \ 10^{-4}$ h and h - the height,

For the sake od comparison be it mentioned that in Tokyo (Yoshizawa et al., 1986) the pavilion refraction was computed by the formula

$$R = \int_{\substack{\text{path}\\ \text{length}}} Q(P, T) \text{ grad } T dl$$

where $Q(P,T) \approx 0.22/K$.

Hu et al. (1984; 1986) made use of a similar formula (originally due to Courvoisier)

$$r = 0.22 \frac{\Delta T}{2} h$$

where: $\Delta T/a$ temperature gradient, h - height.

Concerning the temperature and humidity structure in the boundary layer of the Earth atmosphere refer to Webb's review (1984).

4.2. Employing the instantaneous meteorological data is certainly preferable over the use of tables and various atmospheric models which, for all their accuracy provide but some average values. The acquisition of the instantaneous meteorological data involves a good deal of effort,

This becomes clear from the measurements already acomplished or those planed in Irkutsk, at the Observatory of Siberian branch of VNIIFTRI (Modestova et al., 1986). Detectors are already installed for measuring the meteorological field up to 16 m height (distributed at 3 to 6 m spacing in height and at 5 to 10 m horizontally). The lifting is planned of four balloons to heights between 300 to 350 m, carrying detectors to cover a 200 x 200 m² area. The whole assemblage will incorporate 144 detectors: 127 of them are temperature, 2 humidity, 5 wind parameters and 8 air refractive index. The measurements are to be performed at intervals not exceeding 3 seconds. As a matter of fact, the data acquisition and their treatment are performed automatically. Besides these on spot measurements, those from four nearby aerological stations are also used. The refraction angle is computed by the formula

 $R_z = \alpha_0 \alpha_\rho + \beta_0 \beta_\rho + \gamma_0 \gamma_\rho$

where α , β and γ are the ray direction cosines, the subscript 0 indicating those corresponding to airless state and the subscript ρ stands for the actual air at the observing point.

The comparison is made wih the results following from the use of the Pulkovo Tables for astrolabe observations: mean differences amounts to about 0,"9, fluctuating within 1" to 2" during the evening hours! These preliminary data demonstrate that once the whole of this system of acquisition and treatment of the meterological data – labelled ACTSMI – completed and operational, it will constitute a major contribution to the study of the refractional effects.

It is at this juncture to be recalled that the accuracy improvement in the refraction determination is first of all conditioned by better understanding of the surface air layer properties, of the one immediately surrounding the instrument in particular. It is therefore understandable for the researchers to have addressed exactly this task. Clearly, the data should be provided as close to the time of observations as possible.

Here will be presented but brief information on some recently published papers on this subject, complementing thereby Shamaev's (1983) review pertaining to the pavilion refraction.

In Tokyo (Miyamoto et al., 1985) the efforts are centered on measuring the temperature field within the very pavilion of the photoelectric meridian circle. 40 termistors measuring the temperature differences are installed, their readings being recorded every 25 seconds. It proved that the calculated anomalies were considerably wind-dependent. It was found that a ± 0.11 accuracy could not be secured if the wind velocity were less than 2 m/sec. The relative star coordinates, corrected for the anomalous refraction, attest to the correcting procedure being justified,

Analogous results have been achieved in Nikolaev where Sibilev (1980) executed day-time measurements of the temperature fields within and immediately outside the pavilion (with 15 termistors up to 16 m height, at 5 minutes intervals) demonstrating that the determination accuracy of the star, Sun and Venus declinations were considerably improved by applying the corrections for the anomalous refraction. By applying the anomalous corrections, the random error in the star position was reduced by 20% in the course of day (amounting to 0.54 at $z = 45^{\circ}$). The like improvement has been achieved in the observations of the Sun and Venus.

Fedorov (1984) carried out measurements of the temperature differences (at 11 points) along the line of sight in the transit instrument pavilion at Nikolaev, followed by those in Kislovodsk, deriving the lateral refraction. It turned out that these anomalies were dependent on the Sun's hour angle, reaching their maximum about noon. While bieng insignificant during night, they become considerable during daytime, thus calling for their being accounted for.

At Kazan, Yatsenko (1985) measured using classical thermomers the temperature inside meridian circle pavilion at 21 points (every 20 minutes), calculating inclinations of the layers of equal density and anomalous refraction. The anomalies were found comparatively slight – in most cases (98%) – less than 0.15. It could be established that on accounting for these anomalies in the star and planet observations the (O-C) values got reduced

Exact temperature differences measuring appears imperative in all of these investigations. Hu and associates (Hu et al., 1984; Hu, Jiang, 1986) suggested the technique and method of determining the minute temperature differences, ensuring a 0.003 sensitivity. Anomalous refraction has been studied inside a telescope tube in its horizontal and vertical positions as well as at a 30° inclination. Anomalies taking place inside the dew cap were stated (0.03 to 0.07). Temperature differences outside pavilion up to 4 m height were measured also. This technics will be implemented at the Tienjin latitude station (China).

The air pressure measuring at three points close to pavilion, in addition to that of the temperature differences, is suggested by Hu (1986). Provided the microbarographs yielding a 0.01 mb precision, installed at 0.5 km separation, were used an accuracy of the anomalous refraction determination of about 0.01 would be attained. In the macro- and meso-scale atmospheres, under the average meteorological conditions, an anomaly of about 0.0467, and with drastic conditions one of about 0.0467 would follow. Greater effects may occur in a micro-scale atmosphere. In this author's oppinion, the pressure and the temperature differences should conjointly be determined, their combined effects being applied. It is planned to put this into effect at a number of observatories throughout China.

In the papers just referred to contact methods are envisaged for calibrating the meteorological elements. The use of non-contact methods, e.g. of LIDAR, in the atmospheric structure investigations, in particular when surface layer is concerned, are to be expected.

4.4. The refraction influences determination from astrometric data is handicapped by a series of at present unsolved problems (Teleki, 1984; Zablotsky, Kirichuk, 1986; Redichkin. 1986), but the matter is continuously being worked on and the solutions searched for.

Ostrovsky et al. (1986) studied the refraction from the star and Sun observations near horizon, concluding their results as having confirmed the already known anomalous effects.

A method affording prompt refraction determination near horizon by exploiting the photographic recordings of the shape deformations due to refraction of the extended celestial objects (Moon, Sun, stellar pairs) is advanced by Archangelskij and Velshanin (1986). The method has been tested on the Sun. The near-horizon refraction is obtainable with a 4" to 8" accuracy.

These and similar measurements reveal the atmosphere as not being spherical in shape. It is on the strength of these measurements that Fedyanin and Vasilenko (1984) approximated the atmosphere by a three—axial ellipsoid. Proceeding from this ellipsoidal atmosphere, Fedyanin and Tyuterev (1986) computed the lateral anomalous refraction.

Mao et al. (1986) outlined a method of the refraction determination from star observation in the prime vertical, using a new meridian instrument designed for the medium and low latitudes.

Measuring the angular distances between selected stars forms the foundation of a method of refraction determination suggested by Efimov et al. (1986). The arc values could be extracted from the space (Hipparcos) measurements, by VLBI techniques or from the prolonged ground based measurements. A specially designed instrument, permitting an arc measuring accuracy of about \pm 0,1 (in three minute time) is envisioned for the method. The determination of the chromatic effects is made feasible by suitable filters.

4.5. Instrumental refraction influences determination. By this methods are understood serving for the determination, and authomatic exclusion from the astrometric observations, of the refraction effects.

According to Martensson (1985; 1986) the elimination of the refraction effects from geodetic measurements is approachable in two ways: theoretically and practically. The theoretical approach implies the search for the more or less complex atmospheric models, while the designing and implementation of suited equipment constituded the practical component. In neither of areas has complete success been achieved, yet the instrumental developing is slightly ahead. Underlying the instrument construcition is the principle of dispersion of various wave lengths, the instruments on that account being termed dispersiometer. These are designed for measuring the angular difference between two wave lengths after the latter have completed their passage through the atmosphere. In the paper from 1985 are set forth the characteristics of the NPL and of Tengström's dispersiometers. New technics is developed by the author as the extent one proved incapable of yielding the desired results owing, first of all, to the atmospheric turbulence. The new technique is aimed at minimizing the difference in turbulence between two light beams, at employing the temporally integrated measurements and at promptly furnishing the instantaneous refraction angle. Preliminary results proved satisfactory.

A two color refractometer has been developped at the Maryland University (Currie, Wellnitz, 1986), directly yielding full atmospheric dispersion by measuring stellar cetroids within two spectral bands. The internal error in dispersion amounts to 0,02 with 30 minutes measurings, Currie (1986) is working out a new astrolabe, which would incorporate this two color refractometer enabling the refraction influences to be authomatically removed.

Э

S

3

1

e

1

3

1

1

2

1

1

1

e

)

t

f

e

S

1-

e

3-

1-

d

h

e

It

S

1

t

IS

g

g

r

e

e

)-

e

d

2.

e

le

y

a-

Description is supplied by Sorokin and Tokovinin (1986) of a chromatic micrometer, yielding image photocenter positions in two colors simultaneously.

Sibilev and Shulga (1986) analysed the determination of the refraction influences by dispersion method, taking into account the humidity of air. They gave exact formulae,

Putting the instrumental optical system inside a vacuum chamber, with a horizontal entrance window, as suggested by Hu (1985). constitutes potentially, an important step towards suppressing pure refraction. dispersion and refraction influences taking place in a telescope tube. In such a case, under the standard air conditions, the refraction correction is: -0.076 (tg z + tg^3 z). It is the difference between the refraction influences in the plane parallel layer model and in the spherically symmetric shell model. It means that the astrometric results would continue to be loaded by the anomalous refraction (which is the correction of the spherical model influences). The vacuum chamber is able to reduce the atmospheric dispersion to a completly negligible amount. The engineering problems relating to the vacuum chamber are: deformation of entrance window, temperature difference between the inner and outer surfaces of the entrance window. fabricated wedge' angle of the entrance window and residual air in the chamber. Independently of these sources of possible negative effects, the observational results obtained by vacuum photoelectric astroiabes and a vacuum photographic zenith tube - both constructed in China - are very positive. Namely, the observational errors are significantly reduced in comparison with the instruments without vacuum chamber.

All these papers taken together are potentially of great value for the ground based astrometry, since ways are indicated in them for considerable improvement of accuracy of the observational results.

4.6. Prevention keeps being an important factor regarding elimination of some refractional influences.

The importance of the site selection for the astrometric instruments has in recent time been considered by Shamaev (1983) and Teleki (1985).

The elaboration of a method of predicting the most probable optical refraction values, i.e. of predicting ,,the refraction weather" is attacked by Alekseev (1984). This concerns both the site selection and the working efficiency at a particular place. The long-term prediction involved the calculation of the most probable values of n in the surface layer and of the vertical gradient dn/dh for the whole USSR territory. The short-term predictions require, additionally, the accounting for the solar radiation flow, which brings about a redistribution of the temperature field in the surface layer. It should be remarked that such an analysis concerns primarily the geodetic measurements.

The pavilion issue, i.e. of its most suitable shape has been treated by Shamaev (1983) and Miyamoto et al. (1985). According to Shamaev, currently there is no unambigous and clear stand concerning the most appropriate shape of the astrometric pavilions. Thus it is as yet impossible to be clear as to the recommendable prevention.

Removing external effects implies first their being thoroughly understood. Such an empiric and statistical analysis is due to Goto (1983) and it deals with meteorological environment effects in Mizusawa (pertaining essentially to PZT). It could be shown that nearly 50% of the systematic errors in the time and latitude group values were generated by the mountain wind and the ..lee waves". The contribution of the microturbances in the surface layer in the PZT observations comes to ± 0 ."I. All this is to say how essential a part is played by the meteorological environment at the observing site.

4.7. Fundamental refraction researches are of prime import much at the present development stage. It has been pointed out in Introduction that the radiative transfer laws are not fully known. This accounts for the refraction researches being still at the geometric optics stage, thus in a static status. Dynamical parameters usually are only enumerated, but one obstains from making their actual use. This is a consequence of our being denied a complex theory of the radiative transfer through the inhomogeneous Earth's atmosphere - an, be it termed, astrometric - theory that would account not only for the annual and daily periods refractions (Fig. 1) but for all shorter periods and other possible effects as well (e.g. chromatic ones). A broader theoretical foundation appears necessary also when instrumental determination (elemination) of the refractional influences are concerned.

Clearly, relevant physical researches are necessary, i.e. the necessity is felt of exploiting the results of these studies in the refraction calculus. It is to be stated, moreover, that our undestanding of the atmosphere is lagging behind. The practice makes it clear that real time atmospheric parameters are to be employed. A prerequisite for this is the knowledge of these parameters on one hand, and adequate technique on the other. For instance, the gravitational waves effects in the atmosphere (Fig. 1) are practically ignored, although their amounts are not negligible. In this connection one is referred to the papers of Goto (1983) and Sergienko and Tatarinov (1984).

The following definition of the astronomical refraction is set forth by Sergienko (1986a): "Astronomical refraction is the phenomenon of varying geometricalenergetic parameters of electromagnetic waves as their propagation from the emitter to the receiver, under the action of the electromagnetic and gravitational fields in a spatio-temporal four-dimensional continuum". Evidently, this theory's implication is the knowledge of rather more physical and meteorological data than hitherto available or used. Sergienko stipulates all the effects which, in his opinion, are to be taken account of.

Woyk (1986). in contributing to these fundamental physical researches, points at the bad practice of overlooking some basic principles.

The fundamental and applied aspects of astronomical seeing are discussed in detail by Coulman (1985).

Ostrovsky (1986) pointed out the basic refraction determination problems and on their basis he searched for basically new methods of determination and registration of refraction influences,

Grafarend (1984) investigated the electromagnetic wave propagation in a refractive medium corotating with the Earth and gave adequate equations.

With this connected in some way is the question of establishing correct terminology (K olchinskiy, 1986; Teleki, 1986; Ostrovsky, 1986) and fixing the refraction standards (Teleki, 1986). The following standards are suggested: the spheric-symetrical atmospheric model (the one uderlying the Pulkovo Tables, Fifth Edition), the global simple three-dimensional model (outlined by Saastamoinen, see: Teleki, Saastamoinen, 1982), pure refraction (Pulkovo Tables, Fifth Edition, serving as standard) and the Oriani-Laplace refraction influences (values derived from all the current tables, algoriths and theories of the astronomical refraction up to 70° zenith distance).

5. RADIO-REFRACTION

In the preceding presentations it was, in the first place, the light ray refraction that was dealt with, Clearly, a few words should be passed on the radio--refraction in view of the ever greater importance of the radio observations (CERI, VLBI) in the astrometry.

A detailed survey of refractional effects in the radio astrometry was provided by Spoelstra (1986). Two aspects of the refraction problem are pointed out by this author: the first concerns the physics and the structure of the refraction medium, and the second – developing

the methods of treating the refraction corrections. Dwelling principally on the latter subject the author examines the effects of the regular or the large-scale atmospheric components (including the Earth's sphericity) and different atmospheric disturbances with diverse spatial and temporal characteristics. The refraction affects the image in the field of view in two ways: by displacing it in celestial coordinates and by distorting it. In single dish observations the former effect is decisive. Regarding the radio-interferometry (CERI, VLBI) the refraction problem is connected with the phase instability in the course of observation which is apt to produce a degradation of the image qulaity. Being given that, in radio-astrometry, use is made not of a single, but of pairs of dishes, the basic problems are associated with the interference. It has been found out that the main source of accidental errors in these measurements was - the refraction-generated phase instability. Accordingly. a not small contribution to the refraction absolute error - typically 0,1 for CERI and 0,001 for VLB1 - is due to refraction,

An overview of the radio-refraction problems in VLBI observations may be found in Blinov's (1983) article. He points out that the radio-refraction, in this field, was the No. 1 problem.

A contribution to the astronomic radio-refraction prediction is due to Gaikovich et al. (1986), based on the radio-metric remote sensing observations performed from the Eath's surface. Rather good results have been obtained.

Atmospheric effects on radio-location. Doppler and the VLBI observations were discussed by Yakovlev (1984; 1986). He considered also the effects due to the propagation velocity being different for the troposphere, stratosphere and ionosphere – as yet not sufficiently understood,

6. CONCLUSION

From what has been stated in Sections 4 and 5 it follows that a realistic possibility presented itself for the current accuracy in the refraction effects determination to be improved. How great that improvement will be is dependent on many complex researches, particularly on those most promising stated in 4.2, 4.5, 4.6 and 4.7. To be sure, a progress may be brought about only gradually in the course of years. The astrometric practice will show what advance in this area is achieved.

The present progress report, compiled by the Chairman of the Working Group on Astronomical Refraction of the IAU Commission 8, has partially been presented at this Commission's Session at New Delhi, November 1985,

* * *
PRESENT-DAY POTENTIALITIES OF REFRACTION INFLUENCES DETERMINATION AND PERSPECTIVE DEVELOPMENTS

REFERENCES

- Abbrevation: LENINGRAD-BELGRADE Proceedings of the IAU Workshop on the Refraction Determination in the Optical and Radio Astrometry, Leningrad, 3-5 June 1985 Publ.Obs, Astron. Belgrade, 35, 1986 (in press).
- Abalakin, V.K. (Editor), 1985, Tablitsy Refrakcii Pulkovskoj Observatorii, 5th Edition, Ed. Nauka, Leningrad, 1.
- Alekseev, A.V.: 1984 Refraction Conference (Abstracts), Irkutsk. 86.
- Alekseev, V.A., Kabanov, M.V., Kushtin, J.F., Nelyubin, N.F.: 1983a, Opticheskaya refrakciya v Zemnoj atmosfere (naklonnye trassy), Nauka, Novosibirsk, 78.
- Alekseev, V.A., Kabanov, M.V., Kushtin, I.F., Nelyubin, N.F.: 1983b, ibid, 210.
- Archangelskij, A., Volshanin, S.: 1986, LEINGRAD-BEL-GRADE
- Bagil'dinsky, B.K., Zhilinsky, E.G., Shkutov, U.D.: 1986, LE-NINGRAD-BELGRADE
- Blinov, N.S.: 1983, Itogi nauki i tehniki, Astronomiya, 23, VINITI, Moskva, 26.
- Brunner, F.K. (Editor): 1984, Geodetic Refraction, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1.
- Coulman, C.E.: 1985, Ann. Rev. Astron. Astrophys, 23, 19.
- Currie, D.G.: 1986, LENINGRADE-BELGRADE.
- Currie, D.G., Wellnitz, D.D.: 1986, LENINGRAD-BELGRADE.
- Džeparoski, V., Vukmirović, D.: 1986, LENINGRAD-BEL-
- GRADE. Efimov, A.A., Rylkov, V.P., Shpitalnaya, A.A.: 1986, LENIN-GRAD-BELGRADE.
- Fedorov, P.N.: 1984, Refraction Conference (Abstracts), Irkutsk, 96.
- Fedyanin, M.R., Tyuterev, G.S.: 1986, LENINGRAD-BEL-GRADE.
- Fedyanin, M.R., Vasilenko, N.A.: 1984, *Refraction Conference* (Abstract) Irkutsk, 107.
- Filipenko, A.V.: 1982, Publ. Astron. Soc. Pacific, 94, 715.
- Fukaya, R., Yoshizawa, M.: 1985, Publ.Astron. Soc. Japan, 37, 747.
- Gaikovich, K., Markina, N., Naumov, A., Sumin, M.: 1986, LENINGRAD-BELGRADE
- Gaikovich, ,K.P., Sumin, M.I.: 1986, LENINGRAD-BEL-GRADE.
- Goto, T.: 1983, J. Geod. Soc. Japan, 29, 281.
- Grafarend, E.K.: 1984, *Geodetic Refraction* (Ed. F.K. Brunner), Springer Verlag, 189.
- Guseva, I.S.: 1986a, LENINGRAD-BELGRADE.
- Guseva, I.S.: 1986b, LENINGRAD-BELGRADE.
- Hu, N,Sh.: 1985, Proc. IAU Symp. 109, 469.
- Hu, N.Sh.: 1986, LENINGRAD-BELGRADE.
- Hu, N. Sh., Wang, Zh., Jiang, X.: 1984, Publ. Intern. Obs. Mizusawa, 17, 2, 35.
- Hu, N. Sh., Jiang, X.: 1986, LENINGRAD-BELGRADE.
- Huang, K.Y., Shen, W.F.: 1986, LENINGRAD-BELGRADE.
- Kharin, A.S.: 1986, LENINGRAD-BELGRADE.
- Kirichuk, V.V.: 1973, Geodeziya, Kartografiya i aerofotosemka, Lvov, 18, 21.
- Kolchinskij, I.G.: 1984, Astroklimat i effektivnosť teleskopov, Nauka, Leningrad, 104.
- Kolchinskij, I.G.: 1986, LENINGRAD-BELGRADE.
- Kurzynska, K.: 1986, LENINGRAD-BELGRADE.
- Kushtin, I.F.: 1984, Refraction Conference (Abstracts), Irkutsk, 13.
- Kushtin, I.F.: 1986, LENINGRAD-BELGRADE.
- Maksimcev, S.M.: 1986, LENINGRAD-BELGRADE.
- Mao, W., Li, Zh., Fan, X., Hu, X., Du, M.: 1985, LENINGRAD -BELGRADE.

Martensson, S.-G.: 1985, Report 28, Dept. Geodesy, Inst. Geoph., University, Uppsala, 1.

Martensson, S.-G.: 1986, LENINGRAD-BELGRADE.

- Miyamoto, M., Fukaya, R., Kuwabara, T., Suzuki, S.: 1985, Ann. Tokyo Astron. Obs., 2nd Ser., 20, No. 4, 393.
- Modestova, G.I., Molochkov, A.Yu., Oshchepkova, L.Yu., Sergienko, V.I., Kharakhinova, E.V.: 1986, LENING RAD-BEL-GRADE.
- Motrunich, I.I.: 1984, Refraction Conference (Abstracts), Irkutsk, 76.
- Naito, I., Sugawa, C.: 1984, Geodetic Refraction (Ed. F.K. Brunner), Springer-Verlag, 181.
- Naumov, A.P., Kitaj, Sh.D., Markina, N.N., Zinicheva, M.B.: 1986, LENINGRAD-BELGRADE.
- Nefed'eva, A.I.: 1986, LENINGRAD-BELGRADE.
- Nefed'eva, A.I., Borovsky, V.S., Avakumov, O.V.: 1986, LENIN-GRAD-BELGRADE.
- Nelyubin, N.F.: 1983, Astrometriya i Astrofizika, Kiev, 50, 66. Ostrovskaya, S.A.: 1986, LENINGRAD-BELGRADE.
- Ostrovsky, A.L.: 1986, LENINGRAD-BELGRADE.
- Ostrovsky, A.L., Zablotsky, F.D., Nelyubin, N.F., Sidorov, I.S.: 1986, LENINGRAD-BELGRADE.
- Pojidaev, E.: 1986, LENINGRAD-BELGRADE.
- Redichkin, N.: 1986, LENINGRAD-BELGRADE.
- Rukina, A.N., Vasilenko, N.A., Padun', N.N.: 1986, LENIN-GRAD-BELGRADE.
- Saastamoinen, J.: 1980, Report of a Study on the Latitudinal Distribution of Meridian Tilts in the Atmosphere, Working Group on Astr. Refraction of IAU Comm. 7.
- Saastamoinen, J.: 1983, Nat. Research Council of Canada, NRCC 22431, 1.
- Sergienko, V.I.: 1981, Savremennoe sostoyanie problemy astronomicheskoj refrakcii, Ed. Gosstandart. Moskva, 1.
- Sergienko, V.I.: 1986a, LENINGRAD-BELGRADE.
- Sergienko, V.I.: 1986b, LENINGRAD-BELGRADE.
- Sergienko, V.I.: Tatarinova, E.V.: 1984, *Refraction Conference* (Abstracts), Irkutsk, 51.
- Sibilev, V.P.: 1980, Astrometriya i astrofizika, Kiev, 42, 77.
- Sibilev, V.P.: 1983, Astrometriya i astrofizika, Kiev, 49, 71.
- Sibilev, V.P.: 1986, LENINGRAD-BELGRADE.
- Sibilev, V.P., Shulga, A.V., 1986, LENINGRAD-BELGRADE.
- Shabel'nikov, A.V.: 1983, Pis'ma v Astr. Zhurnal, 9, 695.
- Shabel'nikov, A.V.: 1986, LENINGRAD-BELGRADE.
- Shamaev, , V.G.: 1983, *Itogi nauki i tehniki, Astronomiya,* 23, VINITI, Moskva, 61.
- Shen, W.F.: 1984, Astron. Sinica, 25, 201,
- Sorokin, L.Yu., Tokovinin, A.A.: 1986, LENINGRAD-BEL-GRADE.
- Spoeistra, T.A.Th.: 1986, LENINGRAD-BELGRADE.
- Stone, R.C.: 1984, Astron. Astrophys., 138, 275.
- Sugawa, C., Kikuchi, N.: 1973, Proc. Intern. Lat. Obs. Mizusawa., 13, 7 (1974, Publ. Obs. Astron. Belgrade, 18, 193).
- Teleki, G.: 1967, Publ. Obs. Astron, Belgrade, 13, 76.
- Teleki, G.: 1979, Proc. IAU Symp. 89, Uppsala, 3.
- Teleki, G.: 1984, Bull. Obs. Astron. Belgrade, 134, 39.
- Teleki, G.: 1985, Kinematika i fizika neb. tel. Kiev, 1, 2, 85.
- Teleki, G.: 1986, LENINGRAD-BELGRADE.
- Teleki, G.: Atanacković, O.: 1983, *Report 19*, Dept. Geod., Inst. Geoph. University, Uppsala, 255.
- Teleki, G., Saastamoinen, J.: 1982, Sun and Planetary System, Reidel Publ. Comp., 455.
- Teleki, G., Sugawa, C.: 1986, LENINGRAD-BELGRADE.
- Veselinko, N.A.: 1985, Kinematika i fizika neb. tel. Kiev, 1, 5, 71.
- Ware, R.H.: 1986, LENINGRAD-BELGRADE.
- Watson, F.G.: 1984, Mon. Not. R. Astron. Soc., 206, 661.
- Webb, E.K.: 1984, Geodetic Refraction (Ed. F.K. Rrunner), Springer – Verlag, 85.

Woyk (Chvojkova), E.: 1986, LENINGRAD-BELGRADE. Wunderlich, T.: 1985, Geowissenschafliche Mitt. Tech. Univ.

Wien. 26, 1. Yakovlev, V.A.: 1984, Refraction Conference (Abstracts), Ir-

kutsk, 62. Yakovlev, V.A.: 1986, LENINGRAD -BELGRADE. Yatsenko, A.Yu.: 1985, Bull. Obs. Astron, Belgrade, 135, 16.

Yatsenko, A.Yu.: 1986, LENINGRAD-BELGRADE.

Yatsenko, A. Yu., Teleki, G.: 1985; Bull. Obs. Astron. Belgrade. 135, 1.

Yoshizawa, M., Fukaya, R., Miyamoto, M.: 1986, LENINGRAD -BELGRADE.

Yunoshev, L.S.: 1986, i.ENINGRAD-BELGRADE.

*

Zablatskij, F., Kirichuk, V.: 1986, LENINGRAD-BELGRADE, Zablotskij, F.D., Kulish, I.A.: 1986, LENINGRAD-BEL GRADE.

Bull. Obs. Astron. Belgrade, Nº 136 (1986)

SOLAR ACTIVITY EFFECTS ON THE DANUBE RIVER LEVEL

B.D.Jovanović

Waterarranging Institute, Faculty of Agriculture, Novi Sad University, 2, V. Vlahovića, YU 21000 Novi Sad Yugoslavia

(Received Oct. 15, 1985; revised Feb. 17, 1986)

SUMMARY An attempt is made to establish the existence of a correlation between the Sun activity (using the total area of sunspots on the visible solar disc as a parameter) and the Danube river level (using its fluctuations in Smederevo, Yugoslavia). The best fitting corresponds to one to two years lag.

1, INTRODUCTION

The fluctuations of different geophysical quantities such as: water flow in rivers, lake, sea or ocean level, atmospheric precipitations, air temperature etc. play an important role in agriculture, various branches of industry and economics.

An enormous benefit would follow could one rule over them, but the opportunities in this sense are for the time being very limited. Therefore one tries, as far as it is possible, to study all these phenomena and after having observed them in the course of many years, to predict their changes in near and, possibly, in more distant future.

This imposes the necessity to explain the mechanism of these phenomena usnig the present—day scientific knowledge, as well as involves a highly complex and tedious work, yet there are from day to day more and more useful results.

2. ORIGINS

From the papers and books dealing with the subject it follows that sudden, daily, seasonal and yearly as well as secular solar phenomena exercise influence on some geophysical quantities referred to above.

This was also the subject of many scientific meetings, i.e. the interconnection of the solar phenomena and their impact on Earth. Such meetings in more recent time took place e.g. in 1972 in Moscow, in 1976 in Leningrad, in 1978 in Columbus, Ohio, in 1979 in L'vov and in 1981 in Kirov etc.

The present paper will be devoted to only one of the effects: to the water level fluctuations, more specifically, to those of the Danube river (in Smederevo, Yugoslavia).

3. PREVIOUS RESULTS

Most of the works relating to this subject (they are not many) might, having regard to the methods of handling the problem, be divided into two groups. In the one, such as Afanas'ev (1967), Druzhinin et al. (1966), Eigenson et al. (1948), Miroshnichenko (1981), Rubinstein, Polozova (1966), Mac-Cormac, T. Selig (red.) (1982), comparisson is used of data and diagrams delivered separately for hydrologic phenomena and separately for the solar activity. In the second, such as Rodriguez-Iturbe, Yevjevich (1968), use is made of the statistic analysis methods – cross-correlation and cross -spectral analysis.

Most of the authors from the first group were affirmative as to the reality of the influence. The conclusion of the second group is a negative one, but they are dealing with the Earth as a whole (in such a treatment the mutually oppsoing effects or data may cancel each other).

The common feature of both groups is their using the Wolf's number as the solar activity's indicator. However, one must ask: is it really the best possible criterion? The conclusion depends on it, too, and one has to be cautious: does it provide a realistic picture of the solar phenomena scope sufficient to produce consequences on Earth, or not?

Vitinski (1973) wrote: "More objective index, with respect to sunspot number, is the total sunspot area on the visible solar disc."

Therefore, I decided to use this index. Systematic observation of this particular parameter started at the Greenwich Observatory as early as 1874. It is customary to express it in millionths of the visible hemisphere of the solar disc.

4. DEFINING THE PROBLEM

To start with I selected the Danube river because therewith are available data series covering a rather long time.

At choosing the site whose level fluctuation data I was to use I paid my attention to the following considerations:

- (1) its river basin to be as large as possible,
- (2) data series to be extended over long enough time,
- (3) data series not to be interferred with, to the extent possible, by the man-made construction.

Thus I selected SMEDEREVO, Yugoslavia. Its basin occupies an area 525 820 km² large. The data on the river level are being recorded since 1920 continuously to the present day. It is sufficiently far-off (in the hydrology experts' opinion) from the Djerdap hydroelectric power station dam for the interference of the latter to be of any appreciable effect.

5. RESULTS

As a rough measure of correlation I used the correlation coefficinet r_{XY} , X being the total area of the sunspots on the visible solar disk, and Y – the Danube river level at Smederevo.

Use has been made of data pertaining to the period 1947–1984. Data on the solar activity are borrowed from Slonim, Kuleshova (1982), and on Danube river level from Hidrološki godišnjak Jugoslavije 1947–1978, and Hidrološki godišnjak 1979–1984,

Table 1. Correlation coefficinets (sunspot areas - Danube river level at Smedervo)

Rvv	Phenomena Lag Sun - Earth						
	0 years	l year	2 years				
LL	-0.2149	-0.2864	-0,2908				
ML	-0.2459	0.35 36	-0.2463				
HL	-0.1784	-0.4068	-0.4069				

Data in Table 1 represent the correlation coefficients for the yearly lowest river level (LL), yearly mean level (ML) and yearly highest level (HL).

1

Ety

The highest correlation is found for the highest river levels with one and two years lag. Longer time intervals are obviously necessary for the results to be more conclusive.

NOTE. This paper is an excerpt of a short communication to the VIII National Conference of Yugoslav Astronomers, Priština, Yugoslavia, 23-26 IX 1985.

REFERENCES

- Afanas'ev, A.N.: 1967, Kolebaniya gidrometeorologicheskogu rezhima na teritorii SSSR, Nauka, Moskva, 1.
- Druzhinin, I.P., Konovalenko, Z.P., Kukushkina, V.P., Ham janova, N.V.: 1966, *Rechnoi stok i geofizicheskie processy*, Nauka, Moskva, 1.
- Eigenson, M.S., Gnevishev, M.N., Ol, A.I., Rubashev, B.M. 1948, Solnechnaya aktivnost' i ee zemnye proyavlenya, GITTL, Moskva, Leningrad, 1.
- Hidrološki godišnjak, 1979-1984, Pokrajinski hidrometeoroki ki zavod, Novi Sad, 1.
- Hidrološki godišnjak Jugoslavije, 1947-1978, Savezni hidm meteorološki zavod, Beograd, 1.
- Miroshnichenko, L.I.: 1981, Solnechnaya aktivnost' i Zemlya, Nauka, Moskva, 1.
- Rodriguez-Iturbe, I., Yevjevich, V.: 1968, The Investigation of Relationship Between Hydrologic Time Series and Sunspot Numbers, Hydrology Papers No. 26, Colorado State University, Colorado Springs, 1.
- Rubinshtein, F.S., Polozova, L.C.: 1966, Sovremennoe izmenenie klimata, Gidrometeorologicheskoe izdatel'stvo, Leningrad, 1,
- Slonim, YU.M., Kulesheva, K.P.: 1982, Indeksy solnechnoi aktir nosti dlja ciklov No. 17 – 20, Izd. Fan Uzbekskoi SSR, Tachkent, 1.
- Solnechno-zemnye svjazy, pogoda i klimat, 1982, pod red. B. Mak-Kormaka i T. Seliga, Mir, Moskva, 1.
- Shihlinksii, E.M. : 1982, Solnechnaya dejatel'nost' i klimat Zemli, Izv, AN AzSSR, Ser.nauk o Zemle, No. 6. 45,
- Vitinskii, YU.I.: 1973, Ciklichnosti prognozy solnechnoi aktiv nosti, Nauka, Leningrad, 1,

THE STABILITY ANALYSIS OF THE VACUUM MERIDIAN MARKS OF THE LARGE TRANSIT INSTRUMENT AT BELGRADE OBSERVATORY

I. Pakvor,

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

(received Sept. 6, 1985; revised July 20, 1986)

SUMMARY: The stability analysis of the vacuum meridian marks of the Large Transit Instrument at Belgrade Observatory is shown using the variation of the angle between the southern and northern meridian mark. The review of similar examinations at some other observatories and the comparison of the results are given. For Belgrade meridian marks a significant annual variation is determined.

1, INTRODUCTION

The most important characteristic of the meridian marks of every meridian instrument is their stability in relation to the meridian plane i.e. in relation to the variation component which is perpendicular to the meridian plane. From the literature, it is known that these variation can be examined by tracking the variations of the value of the angle between the meridian marks. This enables us to get an impression of the stability of each pair of meridian marks. Practically, this can be achieved by reading both meridian marks with the main instrument for a longer period (several years). The angle between the meridian marks is given by the following relation

$$S = \pm (2M_0 - M_n - M_s) \tag{1}$$

where S represents the angle between the meridian marks, M_0 noncollimation reading and M_n and M_s readings of northern and southern mark, respectivily. By this relation, at the same time, the influence of the main instrument is eliminated.

2. HISTORY

Up to the present time, various different authors have treated the problem of the stability of meridian marks mostly using observing material for the determination of star catalogues in various epochs. We will show the results obtained by examination of meridian marks of the Pulkovo Observatory Large Transit Instrument in the period of 60 years, during the compilation of five catalogues in 1845, 1865, 1885, 1900 and 1905 (Struve 1845; Nemiro 1958). The variations of the angle S are presented as follows
$$\begin{split} S_{1845} &= 0.70 \sin(L + 283^\circ) + 0.19 \sin(2L + 173^\circ) \\ S_{1865} &= 0.80 \sin(L + 297^\circ) + 0.15 \sin(2L + 123^\circ) \\ S_{1885} &= 0.777 \sin(L + 317^\circ) + 0.19 \sin(2L + 105^\circ) \\ S_{1900} &= 0.22 \sin(L + 173^\circ) + 0.47 \sin(2L + 273^\circ) \\ S_{1905} &= 0.30 \sin(L + 297^\circ) + 0.19 \sin(2L + 72^\circ) \end{split}$$

where L is the Sun's longitude. A certain variation in the values of amplitudes, Nemiro (1958) explained by the fact that variations of the angle between meridian marks have a complexed character and that they depend on many meteorological factors.

In the similar way the examinations of the stability of underground meridian marks of Cape Observatory in the period of 1918-1925 are given (Nemiro 1958):

$$S_E = a_0 + 0.16 \sin (L + 108^{\circ}) - 0.24T$$

$$S_W = a_0 + 0.17 \sin (L + 106^{\circ}) - 0.17T$$
(3)

for two clamp positions (E and W); a_0 is a constant and T is a time in years from a certain initial moment. Inspite of the fact that here the underground meridian marks are considered, and a priori has to be supposed that they are in firm connection with the Earth, the variation of the mutual angle between marks exists, so that the underground factor, alone by itself, does not solve the problem of stability.

The meridian marks of the Meridian Circle in Tashkent (Varina, Kim Gun-der 1964) have been examined twice in a period of ten years and the variations could be approximated in the following way

$$S_{1946-48} = -1.^{\circ}07 \sin (L + 15^{\circ})$$

$$S_{1955-56} = -0.^{\circ}93 \sin (L + 35^{\circ})$$
(4)

where the notings previously have been adopted. Here we can also discuss about a good accordance between the values of the amplitudes on the beginning and the end of the period and an undoubted presence of the annual variation of the angle between marks.

The author had an opportunity to be introduced to similar examinations carried out by Varina (1984) from Pulkovo Observatory, using the observation material collected in the period 1969–1973 at the Pulkovo Large Transit Instrument at the Cerro-Calan Observatory (Chile) (Varin et al. 1981). The results fully confirm the previous discussions.

At Belgrade Observatory some examinations of the stability of the astronomical pillars have been carried out in the past but in a different way (Brkić 1961, Đokić 1970). However, in this case the foundations of the pillars were much shallower so that the amplitudes are larger.

The main characteristic of all these examinations is that various authors have set down slightly different conditional equations which can be explained with different characteristics of the locality in the view of the ground and the climate.

3. THE EXAMINATION OF BELGRADE MERIDIAN MARKS

Collected six-year observation material (1978-1983) has been obtained in connection with the observation programme for determining absolute right ascensions of stars from the List of 308 bright polar stars, the first catalogue carried out at LTI in Belgrade. That material has been used to carry out a similar analysis of the variation of the angle between the marks. The special characteristic of these examinations is undoubtedly the fact that these are vacuum meridian marks and that they are relatively near to the main instrument (30 and 51 meters) (Mitić 1975; Pakvor 1975, 1981; Mitić, Pakvor 1976, 1977, 1978, 1979. 1984). This is the shortest distance of all above mentioned meridian marks. An idea to carry out such complex examination and to compare its results with ones similar at other observatories sprang to the authors mind by the obtained results of previous examinations of Belgrade meridian marks (Pakvor 1984). As is shown in Fig. 1 an undoubted annual variation exists. Using this theoretical method we wanted to confirm the existence of the annual variation and to discover possible causes.

Starting from these results we set down the following conditional equation

$$S = x_0 + x_1 \sin T_1 + x_2 \cos T_1 + x_3 t$$
 (5)

which according to our opinion most accurately and realisticly represents the variations of the angle S of our

meridian marks; x_0 is a constant term, x_1 and x_2 are the amplitudes of the periodical terms, x_3 is the temperature coefficient; T_1 (multiplied by 2π) is the time for beginning of the year in the units of the year which naturally can be connected with the Sun's longitude; the temperature given in units of °C. This term is equation (5) plays the role as the correction to the periodical terms in the function T_1 . It is obvious that S_1 and t are measured values and that 4 unknown x_0 x_1 , x_2 and x_3 have been determined by the method of least square from the 456 equations of the type (5) because we obtained 456 measurements in the about mentioned six—year period. The following relation has been obtained

$$S = 27.090 + 0.555 \sin T_1 + 0.300 \cos T_1 + 0.03 \pm 100 \pm 45 \pm 90 \pm 100 \pm$$

where the coefficient in front of t has the dimension "/°C. The figures in the second row represent the mean square errors of the corresponding coefficients given in units of milisecond of arc. To be able to compare these results with the results of other authors we had to cam out necessary mathematical transformations after which we obtained

 $S = 27.090 + 0.631 \sin (T_1 + 280) + 0.030 t$

Fig. 1. Graphical examinations of the variation of the angle's between southern and northern meridian mark of Belgnan LTI (Pakvor 1984).

Comparing these results with the results obtained by other authors immediately has to be point out already previously mentioned fact that the meridian marks of Belgrade Observatory are approximately 4 times neare to the main instrument than the marks of othe observatories, so our angle variations have to be reduced in that ratio to make the comparison adequate. This is the result of the fact that for the same angle shift the nearer meridian marks have relatively smaller physical displacement of the pillars than the farther ones.

Relation (7) shows an undoubted existence of the annual variation with the amplitude objectively smaller than the amplitude of the Pulkovo marks, that is at the same level with one of the underground marks at Cape Observatory and that is far smaller than the amplitude of the Tashkent meridian marks. By all means previous graphical examinations (Fig. 1) have been confirmed in view of the periodicity of the variation of the angle between marks. Concerning the semi-annual term, it has not been even forseen in the conditional equation (as at some other authors) because the previous examinations (Pakvor 1984) did not show so. The corrective temperature coefficient is relatively small and practically negligible. The mean square errors in relation (6) show a fairly good accuracy of the calculated values, specially in the first two terms.

A similar analysis has been tried with a different shape of the conditional equation, this time enlarged by linear and square term of time as follows

$$S = x_0 + x_1 \sin T_1 + x_2 \cos T_1 + x_3 t + x_4 T_1 + x_5 T_1^2$$
(8)

The notings are the same as in the previous case considering that it is clear that x_4 and λ_5 are the coefficients of the progressive term T_1 . The physical explanation for such enlargement of the conditional equation lies in the fact that in Fig. 1 a certain parabolical variation of angle S with the time T_1 can be noticed.

Using the method of the least square in this case again, we obtained

$$S = 26.520 + 0.330 \sin T_{1} - 0.345 \cos T_{1} - \pm 105 \pm 30 \pm 60 + - 0.0015 t - 0.0045 T_{1} + 0.0015 T_{1}^{2} = (9) \\\pm 4 \pm 9 \pm 3 = (9)$$

After necessary transformations we get

$$S = 26.520 + 0.0015 t - 0.0015 t - 0.0015 T_1 + 0.0015 T_1^2$$
(10)

The above expression in the two first terms mostly confirms previous considerations but the big difference show the coefficients which have to define linear corrective influence of temperature. The coefficient in the relation (7) is 20 times bigger than the one in relation (10), although both are absolutely very small. This fact results in the conclusion that linear influence in the whole variation of the angle between the marks is practically negligible. Last two terms in the relation (10), as the calculated dispersion of the value S corresponding relations (6) and (9) too, do not justify the enlargement of the conditional equation in the way as in (8).

Lastly it is necessary to mention that in all our considerations the time T_1 is calculated from the beginning of the year when L from the relations (2), (3) and (4) has the value of about 280°.

4. CONCLUSION

Adopting relation (7) as the best representative of our measurements, we can repeat the conclusion that the variation of the angle between the vacuum meridian marks of Belgrade Observatory Large Transit Instrument has a significant annual period with the amplitude which is less than the amplitude for the meridian marks at other observatories. This is the result of locality, climate but also of solid foundation of pillars of our marks.

The relative newness of Belgrade meridian marks does not allow, at the present stage, to carry out examinations over a long period of time as it was done e.g. at Pulkovo. This study points out such possibility so the further examinations are forseen.

The author wants to express his gratitude for the useful advise and help which was given during the work on this study, primarly to Prof. A.A. Nemiro, from Pulkovo Observatory, Dr. Lj. Mitić and Dr. G. Teleki, from Belgrade Observatory and to A. Valskij from the Computer Center at Pulkovo Observatory.

REFERENCES

- Brkić, Z.M.: 1961, Publ. Obs. astron. Belgrade, 7, 1.
- Djokić, M.: 1970, Bull. Obs. astron, Belgrade, 123, 15.
- Gill, D.: 1913, A History and Description of the Royal Observatory Cape of Good Hope, 1

Jones, H.S.: 1927, Ann. Cape Obs, 132, 17.

- Kim Gun-der: 1964, Izv.glav. astron. Obs. Pulkovo, 174, 45.
- Mitić, Lj.: 1975, Pubi. Obs. astron. Belgrade, 23, 47.
- Mitić, Lj., Pakvor, I.: 1976, Publ. Dept. astron. Univ. Belgrade, 6, 111.
- Mitić, Lj., Pakvor, I.: 1977, Bull. Obs. astron. Belgrade, 128,11. Mitić, Lj., Pakvor, I.: 1978, Trudy 20 astrometr. Konf, Leningrad.
- Mitić, Lj., Pakvor, I.: 1979, Publ. Obs. astron. Belgrade, 26, 197.
- Mitić, Lj., Pakvor, I.: 1984, Proc. IAU Symp. 109, Gainesville.
- Nemiro, A.A.: 1958, Trudy glav. astron. Obs. Pulkove, 71, 65.
- Pakvor, I.: 1975, Publ. Obs.astron. Belgrade, 20, 205.
- Pakvor, I.: 1981, Publ. Obs. astron. Sarajevo, 1, 79.
- Pakvor, I.: 1984, Mitt. Lohrmann Obs. Tech. Univ. Dresden, 51,
- Struve, F. G. W.: 1845, Description de l'Observatoire Astronomique Central de Poulkovo, St. Petersbourg, 1.
- Varin, M.P., Varina, V.A., Gubanov, V.S., Medvedeva, L.I., Nemiro, A.A., Polozhentsev, D.D., Polozhentseva, T.A., Timashkova, G.M.: 1981, *Trudy glav. astron. Obs. Pulkove*, 84, 4.
- Varina, V.A.: 1984, K voprosu ob ustoychivosti mir. (priv. communication).

Bull, Obs. Astron, Belgrade, Nº 136 (1986)

ORBITS OF FOUR VISUAL DOUBLE STARS (ADS 8718, ADS 8926, IDS 14012S4924, IDS 14571S4012)

V.Erceg and D.Olević

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

(Received Oct. 3, 1985)

SUMMARY. Presented are preliminary orbital elements, dynamical parallaxes, absolute magnitudes, masses, ephemeris and residuals of four visual double stars.

The orbits of four double stars: ADS 8718, ADS 8926, IDS 14012S4924 and IDS 14571S4012 are calculated using the list of measurements kindly supplied by Charles E. Worley from the U.S. Naval Observatory.

The orbital elements are deduced by the Thiele-Innes Van den Bos method. The dynamical parallax 0.015 of the ADS 8718 binary system was determined by Van Biesbroeck.

The orbital elements of the four binaries are published in Nos. 94, 95, 96 and 98 of C.I. Comm. des

etoiles doubles.

In Tables I, IV, VII and X are listed the orbital elements, Thiele-Innes constants, C and H constants, dynamical parallaxes, absolute magnitudes and the stellar masses,

In Table II, V, VIII and XI are the ephemeris for 10 years.

Tables III, VI, IX and XII contain data on observations, the observers names' abreviations, the references and the residuals.

ORBIT OF ADS 8718 = IDS 12534N5021 = HU 641

App. mag.: 10.3–10.3, Sp.–

Table I			Table II		
P = 323.48 years n = 1.1129	A = +0"1833	$\pi_{\rm dyn, orb.} = 0.006$	t	θ	ρ
T = 1963.41 e = 0.51 a = 0.366 i = 140°.8 $\Omega = 58°.3$ $\omega = 357°.8$	B = +0".3173 F = +0".2490 G = -0".1373 $C = \pm0".0089$ $H = \pm0".2309$	$ \begin{array}{rcl} M_{A} & = 4.1 \\ M_{B} & = 4.1 \\ M_{A} & = 1.22 \odot \\ M_{B} & = 1.22 \odot \\ a & = 63.4A \ U \end{array} $	1985.0 1986.0 1987.0 1988.0 1988.0	354.4 351.6 348.9 346.2 343.6	0,19 0.19 0.19 0.19 0.19 0.20
T_{Ω} , $\upsilon = 1963.97,1806.96$.	en estadores a la substancia a la substancia	n ja si a waken Marina Marina nga	1990.0 1991.0 1992.0 1993.0	341.0 338.5 336.1 333.7	0.20 0.20 0.20 0.21
			1004.0	221 /	0.21

Table III

N.	t	θ	ρ	Obs.	n	Reference	$(O-C)_{\theta}$	$(O-C)_{\rho}$
1.	1903,86	189.7	0."39	HU	3	Lick Obs. Bul. 2, 180, 1904.	- 3°.1	+ 0.06
2.	1923.467	150,9	0.22	VBS	3	Pub. Yerke; Obs. 5, Pt. 1, 1927.	-16.1	-0.03
3.	1943.30	138.2	0.19	VBS	1	Pub. Yerks Obs. 8, 159, 1954	+ 15.1	+ 0.01
4.	1945.34	118.7	0.16	VBS	2	Pub. Yerkes Obs. 8, 159, 1954.	+ 1.7	-0.02
5.	1946.53	93.2	0.17	VBS	1	Pub. Yerkes Obs. 8, 159, 1954.	-20.1	-0.01
6.	1950.33	(BO) - Date	Hough the	VBS	1	Pub. Yerkes Obs. 8, 159, 1954.	tele_ i losti	Car Hall
7.	1953.03	10. 1 . 1960	01	VBS	1	Pub. Yerkes Obs. 9, Pt. 2, 1960.	8 · · · · · · · · · · · · · · · · · ·	0.0
8.	1956.37	89_0 <u>2</u> 0040	0.1	VBS	1	Pub. Yerkes Obs. 9. Pt. 2, 1960.		0.0
9.	1957.27,	107_30 446	0.1	VBS	1	Pub. Yerkes Obs. 9, Pt. 2, 1960.	-	0.0
10.	1962.33	190 <u>0</u> -0040	12	VBS'	1	Pub. Yerkes Obs. 9, Pt. 2, 1960.	Contraction of the second	
11.	1974.34	188.*	0.15	HEI	3	Astrophys. J. Suppl. 29, 315, 1975	-18.	-0.03
12.	1980.30	202.*	0.1	HEI	2	Astrophys. J. Suppl. 51, 249, 1983	+14.	0.0

*Quadrant changed

UDC 521.31

ORBITS OF FOUR VISUAL DOUBLE STARS (ADS 8718, ADS 8926, IDS 14012S4924, IDS 1457IS4012)

ORBIT OF ADS 8926 = IDS 13255N0800 = A 1789 App. mag.: 9.3–9.3, Sp. A5

Table IV	i state		Table V	
P= 127.89 years	Ę.	COMPANY OF A CONTRACT OF A CONTRACTACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A	1.27 t A t	θ
n = 2.8130 T = 1841.97	$A = + 0^{11} 1150$	$\pi d_{\rm VIIII}$ orb = $0^{\rm H} 00.6$	1985.0	213°9 0°1
e=0.39	$B = -0^{\prime\prime}1690$	$M_A = 3.2$	1986.0	210.1 0.1
$a = 0^{11} 2 \frac{1}{3}$	$F = -0^{\circ}1775$	$M_{\rm B} = 3.2$	1987.0	206.5 0.1
i = 155°3	G = -0.0975	$M_{A} = 1.43 \odot$	1988.0	203.1 0.1
$\Omega = 163^{\circ}7$	$C = \mp 0,0597$	Mp = 1.43 ·	1989.0	199.9 0.1
$\omega = 222^{\circ}2$	H = ∓0."0659	a = 36.0A.U.	1990.0	196.0 0.1
To. 75 = 1877.55; 1835.60		Landare L. O etablish met in	1991.0	194.1 0.2
			1992.0	191.3 0.2
and her and			1993.0	188.7 0.2
			1994.0	186.3 0.2

Table VI

N	t	θ	ρ	Obs.	n	Reference	(0−C) _θ	(0-C) _p
1.	1908.28	123.2	0."26	A	2	Lick Obs. Bul. 5, 28, 1908.	+ 2.1	-0.02
2.	1914.47	119.0	0.20	A	2	Lick Obs. Bul. 14, 62, 1929.	+ 6.4	-0.08
3.	1916.32	106.4	0.26	A	2	Lick Obs. Bul. 14, 62, 1929.	- 3.6	-0.01
4.	1921.41	92.6	0.24	A	2	Lick Obs. Bul. 14, 62, 1929.	- 9.8	-0.02
5.	1926.42	88.2	0.19	Α	2	Lick Obs. Bul. 14, 62, 1929.	- 6.1	-0.06
6.	1932.81	85.4	0.25	FIN	3	Union Obs. Circ. 6, 104, 1951.	+ 2.6	+ 0.01
7.	1933.42	88.2	0.29	FUR	2	Greenwich Observations B1, 1937.	+ 6.6	+0.06
8.	1934.71	69.8	0.17	Α	4	Lick Obs. Bul. 18, 109, 1937.	- 9.2	-0.06
9.	1939.18	68.4	0.19	VOU	3	Ann. Bosscha Obs. Lembang, 6,	- 1.0	-0.03
						PT 4, D1, 1947.		
10.	1940.90	61.4	0.22	VBS	3	Pub. Yerkes Obs. 8, 159, 1954.	- 4.0	+ 0.01
11.	1944.25	51.3	0.16	VBS	2	Pub. Yerkes Obs. 8, 159, 1954.	- 5.7	-0.04
12.	1945.35	34.0	0.14	VBS	2	Pub. Yerkes Obs. 8, 159, 1954.	-20.0	-0.06
13.	1946.52	63.8	0.15	VBS	3	Pub. Yerkes Obs. 8, 159, 1954.	+ 13.0	-0.04
14.	1949.47	34.0	0.17	В	1	Union Obs. Circ. 6, 266, 1956.	- 7.0	-0.01
15.	1951.06	-	0.1	VBS	2	Pub, Yerkes Obs. 8, 159, 1954.		0.0
16.	1954.59	204.2*	0.11	VBS	3	Pub. Yerkes Obs. 9, Pt. 2, 1960.	0.0	-0.06
17.	1961.32	180.3*	0.11	WOR	1	Astron, J 67, 403, 1962.	+ 5.4	-0.04
18.	1967.263	261.7	0.19	WAK	1	Pub. U.S. Naval Obs. 22, Pt. 1, 1969	-59.7	+ 0.06
19.	1973.37	-	0.1	HEI	2	Astrophys. J. Suppl. 29, 315, 1975.	0.194 83	0.0
20.	1976.375	79.0*	0.13	WAK	2	Unpublished	0.0	0.00
21.	1977,528	55.0*	0.12	WAK	3	Unpublished	-16.6	-0.01
22.	1980.30	238.6	0.12	HEI	2	Astrophys. J. Suppl. 51, 249, 1983.	+ 3.0	-0.02

*Quadrant changed

ORBIT OF IDS 14012S4924 = SLR 19 App. mag.: 7.2–7.4 Sp. GO

Table VII				т	able VIII			
				-	t	θ		ρ
P = 233.28 years n = 1.5432				_	1986.0 1987.0	311°.8 312.5		1.35
T = 1841.74,	A = -0.4333 B = +0.9500	π _{dyn}	$orb_{.} = 0.021$		1988.0	313.2		1.34
a = 1.068	F = -0.7800	MB	= 4.0		1989.0	314.5		1.34
n = 44.0 $\Omega = 127.6$	G = -0.1867 $C = \mp 0.2274$	M _A M _P	= 1.29 © = 1.25 ©		1991.0 1992.0	315.2 315.9		1.32
$\omega = 342.1$ To $\omega = 1847.43.1070.24$	H = ∓0".7058	a	= 51.7A,U.		1993.0	316.6		1.31
10,0 - 1047.43,1979.34					1994.0	318.0		1.30

Bull, Obs. Astron, Belgrade, Nº 136 (1986)

ORBITS OF FOUR VISUAL DOUBLE STARS (ADS 8718, ADS 8926, IDS 14012S4924, IDS 14571S4012)

V.Erceg and D.Olević

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

(Received Oct. 3, 1985)

SUMMARY. Presented are preliminary orbital elements, dynamical parallaxes, absolute magnitudes, masses, ephemeris and residuals of four visual double stars.

The orbits of four double stars: ADS 8718, ADS 8926, IDS 14012S4924 and IDS 14571S4012 are calculated using the list of measurements kindly supplied by Charles E. Worley from the U.S. Naval Observatory.

The orbital elements are deduced by the Thiele-Innes Van den Bos method. The dynamical parallax 0.015 of the ADS 8718 binary system was determined by Van Biesbroeck.

The orbital elements of the four binaries are published in Nos. 94, 95, 96 and 98 of C.I. Comm. des

e'toiles doubles.

In Tables I, IV, VII and X are listed the orbital elements, Thiele-Innes constants, C and H constants, dynamical parallaxes, absolute magnitudes and the stellar masses.

In Table II, V, VIII and XI are the ephemeris for 10 years.

Tables III, VI, IX and XII contain data on observations, the observers names' abreviations, the references and the residuals.

ORBIT OF ADS 8718 = IDS 12534N5021 = HU 641

App. mag.: 10.3-10.3, Sp.-

Table I			Table II		
P = 323.48 years n = 1.129	A = +0.1833	$\pi_{\rm dyn \ orb} = 0.006$	t	θ	ρ
T = 1963,41 e = 0.51 a = 0.366 i = 140.8 $\Omega = 58.3$ $\omega = 357.8$ To $\pi = 1963.07$ 1806.06	B = +0".3173 F = +0".2490 G = -0".1373 C = ±0".0089 H = ±0".2309		1985.0 1986.0 1987.0 1988.0 1988.0 1990.0	354°4 351.6 348.9 346.2 343.6 341.0	0,19 0.19 0.19 0.19 0.20 0.20
122: 13 - 1903,97,1000 90.		n in and) The ing in chief	1991.0 1992.0 1993.0 1994.0	338.5 336.1 333.7 331.4	0,20 0,20 0,21 0,21

-				
	200	0		
10	າມ	16		2
		_	-	

N,	t	θ	ρ	Obs.	n	Reference	$(O-C)_{\theta}$	$(O-C)_{\rho}$
1.	1903,86	189.7	0.39	HU	3	Lick Obs. Bul. 2, 180, 1904.	- 3°.1	+ 0.06
2.	1923,467	150,9	0.22	VBS	3	Pub. Yerke; Obs. 5, Pt. 1, 1927.	-16.1	-0.03
3.	1943.30	138.2	0.19	VBS	1	Pub. Yerks Obs. 8, 159, 1954	+ 15.1	+ 0.01
4.	1945.34	118.7	0.16	VBS	2	Pub. Yerkes Obs. 8, 159, 1954.	+ 1.7	-0.02
5.	1946.53	93.2	0.17	VBS	1	Pub. Yerkes Obs. 8, 159, 1954.	-20.1	-0.01
6.	1950.33	Del 📃 Northe	cones de	VBS	1	Pub. Yerkes Obs. 8, 159, 1954.	1984 - 1 1989	100 -000
7.	1953.03	_	01	VBS	1	Pub. Yerkes Obs. 9, Pt. 2, 1960.	340-7-05	0.0
8.	1956.37	12 N 22 N 14	0.1	VBS	1	Pub. Yerkes Obs. 9, Pt. 2, 1960.	the second second	0.0
9.	1957.27,	121 June Parks	0.1	VBS	1	Pub. Yerkes Obs. 9, Pt. 2, 1960.	-	0.0
10.	1962.33	A COLSGER !	1000	VBS	1	Pub. Yerkes Obs. 9, Pt. 2, 1960.	10-1 <u>0</u> -00-0	-
11.	1974.34	188.*	0.15	HEI	3	Astrophys. J. Suppl. 29, 315, 1975	-18.	-0.03
12.	1980.30	202.*	0.1	HEI	2	Astrophys. J. Suppl. 51, 249, 1983	+14.	0.0

*Quadrant changed

UDC 521.31

ORBIT OF ADS 8926 = IDS 13255N0800 = A 1789

App. mag.: 9.3–9.3, Sp. A5

Table IV			Table V				
P = 127.89 years				t	θ	ρ	
$ \begin{array}{l} n = 2,8150 \\ T = 1841,97 \\ e = 0.39 \\ a = 0.213 \\ i = 155^{\circ}3 \\ \Omega = 163^{\circ}7 \\ \omega = 222^{\circ}2 \\ T_{\Omega}, v = 1877.55 \\ ; 1835.60 \end{array} $	A = + 0.1150 B = -0.11690 F = -0.1775 G = -0.0975 $C = \mp 0.0075$ $H = \mp 0.0659$	^π dyn MA MB MA MB a	sorb. = 0.006 = 3.2 = 3.2 = 1.43 \odot = 1.43 \odot = 36.0A.U.	1985.0 1986.0 1987.0 1988.0 1989.0 1990.0 1991.0	213°9 210.1 206.5 203.1 199.9 196.0 194.1	0.16 0.17 0.18 0.18 0.18 0.19 0.20 0.20	
				1993 . 0 1994 . 0	188.7	0.20	

Table VI

N	t	θ	ρ	Obs.	n	Reference	$(0-C)_{\theta}$	$(O-C)_{\rho}$
1.	1908.28	123.2	0.26	Α	2	Lick Obs. Bul. 5, 28, 1908.	+ 2.1	-0.02
2.	1914.47	119.0	0.20	Α	2	Lick Obs. Bul. 14, 62, 1929.	+ 6.4	-0.08
3.	1916.32	106.4	0.26	Α	2	Lick Obs. Bul. 14, 62, 1929.	- 3.6	-0.01
4.	1921.41	92.6	0.24	Α	2	Lick Obs. Bul. 14, 62, 1929.	- 9.8	-0.02
5.	1926.42	88.2	0.19	Α	2	Lick Obs. Bul. 14, 62, 1929.	- 6.1	-0.06
6.	1932.81	85.4	0.25	FIN	3	Union Obs. Circ. 6, 104, 195 1.	+ 2.6	+ 0.01
7.	1933.42	88.2	0.29	FUR	2	Greenwich Observations B1, 1937.	+ 6.6	+0.06
8.	1934.71	69.8	0.17	Α	4	Lick Obs. Bul. 18, 109, 1937.	- 9.2	-0.06
9.	1939.18	68.4	0.19	VOU	3	Ann. Bosscha Obs. Lembang, 6,	- 1.0	-0.03
						PT 4, D1, 1947.		
10.	1940.90	61.4	0.22	VBS	3	Pub. Yerkes Obs. 8, 159, 1954.	- 4.0	+ 0.01
11.	1944.25	51.3	0.16	VBS	2	Pub. Yerkes Obs. 8, 159, 1954.	- 5.7	-0.04
12.	1945.35	34.0	0.14	VBS	2	Pub. Yerkes Obs. 8, 159, 1954.	-20.0	-0.06
13.	1946.52	63.8	0.15	VBS	3	Pub. Yerkes Obs. 8, 159, 1954.	+ 13.0	-0.04
14.	1949.47	34.0	0.17	В	1	Union Obs. Circ. 6, 266, 1956.	- 7.0	-0.01
15.	1951.06	-	0.1	VBS	2	Pub. Yerkes Obs. 8, 159, 1954.	-	0.0
16.	1954,59	204.2*	0.11	VBS	3	Pub. Yerkes Obs. 9, Pt. 2, 1960.	0.0	-0.06
17.	1961.32	180.3*	0.11	WOR	1	Astron. J 67, 403, 1962.	+ 5.4	-0.04
18.	1967.263	261.7	0.19	WAK	1	Pub. U.S. Naval Obs. 22, Pt. 1, 1969	-59.7	+ 0.06
19.	1973.37		0.1	HEI	2	Astrophys. J. Suppl. 29, 315, 1975.		0.0
20.	1976.375	79.0*	0.13	WAK	2	Unpublished	0.0	0.00
21.	1977.528	55.0*	0.12	WAK	3	Unpublished	-16.6	-0.01
22.	1980.30	238.6	0.12	HEI	2	Astrophys. J. Suppl. 51, 249, 1983.	+ 3.0	-0.02

*Quadrant changed

ORBIT OF IDS 14012S4924 = SLR 19 App. mag.: 7.2–7.4 Sp. GO

1.2-	1.4	SD.	Ut	

Table VI i		Table VIII	Table VIII			
		t	θ	ρ		
P = 233.28 years n = 1 $^{\circ}$ 5432 T = 1841.74, e = 0.32 a = 1 $^{\circ}$.068 i = 44 $^{\circ}$ 0 Ω = 127 $^{\circ}$ 6 ω = 342 $^{\circ}$ 1 T $_{\Omega, U}$ = 1847.43;1979.34	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1986.0 1987.0 1988.0 1989.0 1990.0 1991.0 1992.0 1993.0 1994.0 1995.0	311°.8 312.5 313.2 313.8 314.5 315.2 315.9 316.6 317.3 318.0	1''35 1,35 1,34 1,34 1,33 1,32 1,32 1,32 1,31 1,30 1,30		

v.	ERCEG	AND	D.	01	LEV	/IC	

Table	able IX									
N.	t	θ	ρ	Obs.	n	Reference	$(O-C)_{\theta}$	(O-C) _p		
1.	1895.48	229.6	1.07	SLR	3	Astron. Nachr. 141, 137, 1896.	-2.9	+ 0.24		
2.	1901.58	244.0	0.89	I	1	Ann. Cape Obs. 2. Pt. 4, 1905.	+ 1.6	0.00		
3.	1913.42	259.9	1.27	DAW	4	Pub. La Plata Obs. 4. Pt. 1, 1918.	+1.8	+ 0.25		
4.	1913.46	261.4	1.02	VDS	2	Union, Obs. Circ. 1, 97, 1914.	+ 3.3	0.00		
5.	1914.53	254.7	0.95	VOU	4	Ann, Bosscha Obs, Lembang, 1, Pt 3, C1, 1925.	-4.7	-0.09		
6	1915 34	261.6	1 02	VOU	4	Union Obs. Circ. 1 205, 1915.	+1.3	-0.02		
7.	1917.48	263.2	1.06	VOU	4	Ann. Bosscha Obs. Lembang, 1, Pt. 3. Cl. 1925	+ 0.6	-0.01		
8	1920 65	267 4	1 18	DAW	2	Pub. La Plata Obs. 4 Pt. 2, 1922.	+1.6	+ 0.08		
9	1922 49	268 5	1 21	I	1	Union Obs. Circ. 5, 193, 1948.	+0.9	+ 0.09		
10.	1924.35	269.1	1.05	VOU	4	Ann. Bosscha Obs. Lembang, 1, Pt 2 B1 1926	- 0.2	-0.09		
11.	1927.21	272.4	1.19	VOU	4	Ann. Bosscha Obs. Lembang, 6 , Pt 1, A1, 1932	+ 0.5	+ 0.02		
12	1927 30	272 3	1.09	BRU	4	Ann. Bosscha Obs. 1. Pt. 4/ 1928.	+ 0.3	-0.08		
13	1927.40	2739	126	FIN	2	Union Obs. Circ. 3 35, 1928.	+ 1.8	+ 0.09		
14	1928 62	2739	1 30	RST	2	Pub. Univ. Michigan Obs. 11 , 1, 1955.	+0.7	+ 0.12		
15	1929.95	2746	1 24	R	4	Union Obs Circ 3 183 1931	+ 0.3	+ 0.04		
16	1930 17	274.6	1 30	WAT	4	Ann Bosscha Obs Lembang 6 Pt. 2, 1934.	+0.1	+0.19		
17	1932 42	2763	1.16	VOU	4	Ann Bosscha Obs Lembang 6 Pt 1 A1 1932.	0.0	-0.06		
18	1024 10	2787	1 22	P	4	Union Obe Circ A 362 1937	+11	+ 0.10		
10.	1935 48	270.7	1 25	FIN	4	Union Obs. Circ. 4, 362, 1937.	+12	+ 0.01		
20	1036.42	2803	1 16	SMW	3	Ann Bosscha Obs 9 Pt 1/1951	+ 0.8	-0.09		
21	1937.65	280.3	1 18	TAN	3	Union Obs Circ 5 193 1948	+03	-0.08		
21.	1942 10	2835	1 33	VOU	3	I Obe 28 109 1955	-0.2	+ 0.03		
22.	1942.10	28 3.5	1 20	WOH	3	Sydney Obs Papers N 6 D	_1.8	+0.08		
24.	1946.11	285.0	1.42	WOY	3	Mem. Commonwealth Obs. Mt. Stromlo,	-0.1	+ 0.10		
25	1946 15	287 5	1 43	HIR	1	MNR/Astron Soc 110 455 D	+10	+ 0.11		
26	1946.47	2833	1.62	WOH	2	Sydney Obs Papers N 6 D	-3.4	+ 0.30		
27	1947 36	287 4	1 33	SMW	3	Mem Obs Mt Stromlo 2 N 9/ 1948.	+ 0.1	0.00		
28	1949 45	289 1	1 27	B	2	Union Obs. Circ. 5, 371, 1950.	+0.4	-0.07		
29	1955 51	2934	1 40	HFI	4	M N/R / Astron. Soc. 116 248, 1956.	+0.7	+0.03		
30	195647	293.1	1 38	CHU	4	Union Obs. Circ. 6 298, 1958.	-0.2	+ 0.01		
31	1959 42	294.9	1 44	KNP	2	Union Obs. Circ. 6, 331, 1960.	-0.3	+ 0.06		
32	1960 49	298.6	1 27	MRO	3	Obs Nacional Brasil N 12 D	+ 2.8	-0.11		
33	1961 42	297.0	1 40	MRO	5	Obs. Nacional Brasil, N. 12, D.	+0.6	+ 0.01		
34	1963 25	208.3	1 30	MRO	4	Obs. Nacional Brasil N 21 1966	+0.7	0.00		
35	1965.23	290.5	1 40	KNP	2	Bepublic Obs. Circ. 7, 130, 1967	-1.6	+ 0.01		
36	1966 47	300.0	1 32	NRC	4	Republic Obs. Cric. 7, 135, 1967.	+0.4	-0.06		
37	1968 48	300.0	1 22	NRC	1	Republic Obs. Circ. 7 184 1969	-0.3	-0.07		
38	1075 266	301.1	1.52	HIN	2	Pub Astron Soc Pacific 87 945 1975	-39	+0.18		
30	1978 63	304.8	1.87	WRH	2	Astron Astronhys Sunni 39 197 1980	-2.3	+ 0.49		
40.	1980-228	305.5	1.39	WOR	2	Unpublished	-2.6	+ 0.01		

ORBIT OF IDS 1457 1S40 12 = I 1262 App. mag.: 9.4–9.6; Sp. F5

Table XI		
t	θ	ρ
1986.0 1987.0 1988.0 1989.0 1990.0 1991.0 1992.0 1993.0 1994.0	20°2 24.1 28.2 32.5 37.2 42.2 47.5 53.2 59.3	0''17 0.16 0.16 0.15 0.15 0.14 0.14 0.14 0.13 0.13
	t 1986.0 1987.0 1988.0 1989.0 1990.0 1991.0 1992.0 1993.0 1994.0	t θ 1986.0 20°2 1987.0 24.1 1988.0 28.2 1989.0 32.5 1990.0 37.2 1991.0 42.2 1993.0 53.2 1994.0 59.3

ORBITS OF FOUR VISUAL DOUBLE STARS (ADS 8718, ADS 8926, IDS 14012S4924, IDS 1457IS4012)

τ.,	1.1	1.0	VI	
18	D	Ie.	71	

N.	t	θ.	ρ	Obs.	n	Reference	(0−C) _θ	(0–C) _p
1.	1927.04	22 3.4	0.20	В	2	Ann. Leiden Obs. 14, P. D.	-7°4	-0'.02
2.	1930.18	232.2	0.22	VOU	4	Ann. Bosscha Obs. Lembang, 6, Pt, 1, A1, 1932.	-5.8	0.00
3.	1934.57	242.5	0.25	В	2	Union Obs. Circ. 4, 362, 1937.	-5.6	+ 0.04
4.	1934.78	244.9	0.27	FIN	4	Union Obs. Circ. 5, 74, 1941.	-3.7	+ 0.06
5.	1936.58	251.0	0.19	В	4	Union Obs. Circ. 4, 362, 1937.	-1.8	-0.02
6.	. 1937.17	255.1	0.20	VOU	4	Ann. Bosscha Obs. Lembang, 6, Pt. 4, D1, 1947.	+ 0.9	-0.01
7.	1939.17	216.0	0.19	VOU	3	Ann. Bosscha Obs. Lembang, 6, Pt. 4, D1, 1947.	+ 2.0	-0.02
8.	1945.13,	267.4	0.18	VOU	2	J Obs. 38, 109, 1955.	-5.8	-0.03
9.	1959.51	332.1	0.19	В	2	Union Obs. Circ. 6, 321, 1960.	+ 23.9	-0.02
10.	, 1976.312	158.0*,	0.22	HLN	2	Pub. Astron. Soc. Pacific, 89 , 582, 1977.	-12.1	+ 0.02

*Quadrant changed

REFERENCES

Bos, van den, W.H.: 1926, Orbital elements of Binary stars, Union Observatory Circ. N. 68.
Parenago, P.P.: 1954, Kurs zvezdnoj astronomii, Moskva.

The apparent position has an initial of initial and and antirelated normality are accuration distancement back mode for 1921, and data of the class are twen from the apparence Places of stars for 1921. Ippes to backge a sensement to the invocentry posteres of Veros to a alternatical top another back to the the 52,40 m and post of the correction of the star from the antipost of the Verous are as in the star from the antipost of the Verous are as in the star from the antipost of the Verous are as in the star from the antipost of the Verous are as in the star from the

OCCULTATION OF SIGMA SAGITTARII BY VENUS ON 17 NOVEMBER 1981 OBSERVED FROM HVAR OBSERVATORY

V.Protić-Benišek.

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

and

H. Božić.

Hvar Observatory, 58450 Hvar, Yugoslavia

(Received July 10, 1986)

SUMMARY: Essentials are reported of the occultation of Sigma Sagittarii (Nunki) of November 17, 1981, observed at Hvar Observatory (Yugoslavia). The parameters of the occultation are given and analysed.

According to the prediction of G. Taylor (Taylor, G., 1981), the occultation of Sigma Sagittarii $(2^m, 14, B3)$ by Venus on 17 November 1981 was to be visible from Yugoslavia. He kindly supplied all the data for the Belgrade and Hyar observatories, requisite for the observations of the event to be properly carried out: the times and position angles of disappearance and reappearance of the star behind the Venus disk, respective elevations of Venus and the star above the horizon. The predicted data implied a ten minute duration.

Since Venus was placed east of the Sun and its disk illuminated by 0.461 per cent, the disappearance of the star was to take place at the dark limb and its reappearance at the bright limb.

It is well known that the occultations of bright stars by the planets, by the inner ones in particular, are extremely rare occurences. This is why we were anxious not to miss the unique opportunity of observing, weather permitting, this exeptional phenomenon. The prospect of accomplishing comparative observations (the respective times at Belgrade and Hvar differed by about 12 seconds) was thereby specially important.

Unfortunately, dense clouds at Belgrade ruled out any possibility of observation. At Hvar, on the contrary, the weather conditions were quite favourable, so the times of both disappearance and reappearance, observed visually by H. Božić, could be duly registered. The trouble, however, was presented by the precise timekeepers on the spot being lacking. The difficulty could, to some extent, be alleviated by ascertaining, through telephone connection with the Belgrade Observatory, the clock correction immediately before and after the event. In addition, use has been made of the time signals of the Geophysical Institute, transmited hourly by the Zagreb Radio Station.

The observation has been implemented with a 65 cm Cassegrain telescope. The following times have been registered:

Disappearance:	15h	30 ^m	30,52	UTC.
Reappearance:	15	41	07.52	UTC.

All the computations, aimed at comparing the predicted with the observed values, have been performed at the Belgrade Observatory under the direction of V. Protić—Benišek.

Considering the geographical coordinates of the Hvar Observatory as:

$$L = -16027' = 1h5m48s$$

 $\varphi = +43010$

i.e.:

 $\rho \cos \varphi' = 0.730507$ $\rho \sin \varphi' = 0.679923$ tg $\varphi' = 0.679923$

and the correction to the sideral time:

$$\Delta \theta_1 = 10.81.$$

The apparent position data on Venus and ohter related parameters are taken from Astronomical Ephemeris for 1981, and data on the star are taken from the Apparent Places of stars for 1981. Upon reducing the geocentric to the topocentric positions of Venus disk, allowing for the correction $\Delta T = ET - UT = 52.40$, the theoretical topocentric distances of the star from the midpoint of the Venus disk $\Delta S'$ for both instances have been derived using the formula:

$$\Delta S^{\prime 2} = (\alpha_* - \alpha_v)_{app}^2 \cos \delta_* \cos \delta_v + (\delta_* - \delta_v)_{app}^2$$

Thus was found:

OCCULTATION OF SIGMA SAGITTARII BY VENUS ON 17 NOVEMBER 1981 OBSERVED FROM HVAR OBSERVATORY

 $\Delta S'$

Disappearance: 13.913 Reappearance: 13.510.

However, as these distances must be equal to the apparent semi-diameter r_V of he Venus disk in the registered instants of disappearance and reappearance which, at the geocentric position of the planet, amounted to $r_V = 13$.⁶²⁵, one readily finds the deviation:

$\Delta(\Delta S') = (O - C)_{top}.$

Disappearance: -0.288Reappearance: +0.125.

Making use of the classical Innes' method (Innes, R.T.A., 1924.) of treating the lunar occultations, we find the geocentric deviations Δ (Δ S):

$\Delta(\Delta S)$

Disappearance: -0.139Reappearance: +0.237

On the assumption of both deviations being accurate and the star position well determined, there follows:

1° The observed position angles of disapearance and reappearance diverge from the predicted ones by $+11^{\circ}.9$ and $-10^{\circ}.8$, respectively.

2° The planet did pass over the star by 2".2 more to the north (see Figure 1) than predicted.

3^o The planet's transit over the star took about 1^m longer than predicted.

The above conclusions are, in any case, to be considered as preliminary ones, keeping in mind that they have been obtained from observation at one single station, i.e. they are certainly affected by appreciable errors, introduced by the observer in the recorded times

Fig. 1. The apparent path of Sigma Sagittarii behind Venus (calculated and observed) as seen from Hvar.

("personal error"). It is, therefore, necessary to wait until more observations from other places are available. It seems, however, that owing to the adverse November weather, few observers (nothing, to our knowledge, has been published to date) have succeded. Hence, our failing to observe at Belgrade, in spite of all the preparations, is all the more to be regreted.

REFERENCES

Taylor, G.E.: 1981, private communications. Innes, R.T.A.: 1924, Astron. J., **35**, No. 835, 155. Astronomical Ephemeris for 1981. Apparent Places of Stars for 1981.

UDC 523.84

MICROMETER MEASURES OF DOUBLE STARS (Series 39)

G.M.Popović

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

(Received: August 27, 1985)

SUMMARY: Reported are 230 measurements of 64 double or multiple star

Measurements within this Series (Table II) have been carried out with the Belgrade Zeiss refractor 65/1055 cm, forming a continuation of the Belgrade measurements published under Series 38 (Zulević, 1984) and of my measurements under the Series 37 (Popović, 1984). The Series comprises 230 measurements of 64 double or multiple systems. The distributions of the measured pairs according to the distance is presented in Table I.

Table I Distribution of the measured pairs according to distance

$\rho < 0.50$	$50 \Sigma_{\rho} \leq \rho < 1.00$	$1.00 \le \rho \le 2.00$	ρ≥2 : 00	Σ
2m	37 m	104m	87m	230
0.9%	16.1%	45.2%	37.8%.	100%

19 pairs in the Series possess known orbital element while 20 pairs displey distinct variation in time of the position angle. Accordingly, many of these stars or rightly be expected to obtain before long their orbita elements.

The question of exact identification of the pair ADS 7186 = Brt 102 did not yet receive definite solution since S.G. Barton's measurements from the year 1893 can poorly be reconciled with my own from 1974 to the present.

The mean weights for the epoch of observations, ρ , m or Δm have been deduced as in the previous series.

The comparison with the orbits has been performed according the P. Muller and P. Couteau's (1979) ephemeris,

Table II Micrometer measurements of double stars

Sec. 1								
ADS	IDS DISC. m (IDS)	Mult.	Epoch 1900 +	Р	ρ	m or. ∆m	Weight	Notes
1001			00.017		100.4			store hadietter and stelle
1081	01147S0061	AXBC	83.816	15:0	1.94	1.0	1+1	
	STF 113		83.881	12.8	1.48	-	1+2	
	6.4 - 7.4		84.837	15.3	1.71	0.5	1 + 2	and a strate instantial first state
			84.848	14.3	1.68	8,0	3n	
1161	01225N4216		83,745	92.6	0.93	8.0-8.5	1+1	
	AC 14		83,804	90.3	0.83	0.5	1+2	
	8.1-9.1		84,949	90.8	0.74	8.0-9.0	1+2	
			84.219	91.1	0.82	0.7	3n	
1223	01288S1244		83,739	345.5	0.97	0.2	2 + 2	
	HWE 4		84.949	348.5	0.84	0.1	1+1	
	9.6-9.7		84.142	346.5	0.93	0.2	2n	Van dan Bos, 1951: +99, +0.1
1538	01507N0121		83.783	54.9	1.21	-0.3	1+2	
	STF 186		84.837	57.0	1.24	7.0-7.0	2 + 2	
	7.0-7.0		84,949	56.3	1.22	-0.1	1+3	Freitas-Mourao 1976:
	a concernent a been		84.590	56.3	1.22	-0.1	3n	+ 0.7, - 0.11
1615	01569N0217		83,794	281.5	1,80	1.0	1 + 2	
	STF 202		83,810	281.9	1.73	1.0	1+2	
	4.3-5.2		83,816	280.4	1,69	1.2	1 + 2	
	and the second of the second second		83,991	281.6	1.64	_	1 + 1	
			83.840	281.3	1.72	1.1	4n	Rabe, 1943: +3.1, +0.05

MICROMETER MEASURES OF DOUBLE STARS (SERIES 39)

Table 2, (continued)

ADS	IDS DISC, m (IDS)	Mult.	Epoch 1900 +	P	ρ	m or ∆m	Weight	Notes
1758	02120N2147	1+1	83.816	288.8	-43 C	8423611 8423617	1+1	LECHNER CO. S.C.
	STF 244		83.881	288.0	4.18	-0.1	2 + 2	
	9.3-9.5		84.837	290.1	4.30	9.1-9.0	3 + 2	
			84.304	289.1	4.25	-0.1	3/2n	
2377	03027N7110	AB	83,794	167.5	1.13	0.1 55.88	3 + 3	
-511	STT 50		83.879	169.1	1.11	0.1	1 + 2	
	8.5-8.5		83,822	168.0	1.12	0.1	2n	Popović, 1972: +3°1, +0.07
			00.540	1.0		6912, 68 84, 7, 88	2 . 2	
3329	0430/N1933		83.740	16.9	0.51	0.2	3+3	I ne angle has decreased
	STT 86		83.794	17.1	0.48	0.0	3+3	by 620 since 1845.
	8.2-8.2		83./6/	17.0	0,50	0.1	Zn	
4950	06132N5925	AB	83.740	134.5	. 0.68	1.0	2 + 2	
	STF 881		85.176	132.0	0.75	1.5	1 + 2	The angle has increa-
	6.2-7.7		84,355	133.4	0.71	1.2	2n	sed by 43° since 1830.
5269	06316N4140	AB	85.176	82.6	1.79	7.0-8.0	1+2	
0 = 0 >	STF 941		85.258	84.4	1.71	1.0	2 + 1	
	7.2-8.2		85.217	83.5	1.75	1.0	2n	
5021	0702412017	AD	95 176	217 1	1 11	9.0 10.0	1 + 2	
2031	07034N 3017	AD	85 256	216.6	1.11	1.0	2 + 2	
	SIF 1024		05,230	216.9	1.30	1.0	2 + 2	
	9.0-9.5		00.222	310.0	1.20	1.0	20	
5871	07066N2724	AB	85.242	319.2	1.21	0.1	2 + 1	
	STF 1037	194	85.245	316.9	, 1.20	0.1	2 + 2	Content and a state of the stat
	7.2-7.2		85,244	317.9	1.20	0.1	2n	Karmel, 1938: -0.9, -0.10
	STT 166 rej. -12.3	AB-C	85.242	80.1	- 1281 - 281 - 1281	m _c = 12.0	2 + 1	The angle has decreased by 31° since 1899.
6671	08 08 6N0177		85 247	163	0.92	0.7	2 + 1	
00/1	BII 1244		85 256	16.2	0.80	0.7	1 + 2	The angle has decreased
	8 3-8 5		85.258	16.9	0.89	0.5	1 + 1	by 34 ^o since 1891.
	0.0 0.0		85.252	16.4	0.87	0.6	3n	8631 MTS
						10 A. A.		
6727	08114N5646		85.242	169.6	1.57	0.3	2 + 1	The angle has decreased
	STF 1205		85.245	170.2	1.58	8.5-9.0	2 + 2	by 17° since 1831.
	9.6-9.9		85.248	166.6	1.58	0.5	2 + 2	The increase in
			85.245	168.7	1,58	0.4	3n	distance still continues.
6811	08207N2452	AB	84.234	49.3	5.59	2242.168	1+1	
	STF 1224		84.286	49.4	5.76		1+2	
	7.1-7.6		84.292	50.3	5.63	0.7	1 + 1	Slow direct orbital
			84.303	50.7	5.65	7.0-8.0	2 + 2	motion.
			84.284	50.0	5.67	0.9	4n	
710 6	00012314262		85 245	560	2 92	110 111	1 + 2	The position of the pair
/100	0901 5N4302 PPT 102		85 25 6	56.2	1 02	0.1	1 + 2 1 + 1	related to BD +4401827
	105-107		85 2 49	566	3 90	0.1	2n	$(9^{m}5) \cdot \Delta \alpha = +14s, \Delta \delta = +2'$
	10.0-10.7		00,2 40	00.0	0,00	64,045,6	0.4	My measurements from
								1974 up to date do not
								yield confirmation of
								the position angle va-
-	001 (7) 00 07	4.75	05 242	262.0	1.00	0.1	1 + 1	riations, thought this
7307	0914/N 383/	AB	85.242	203.9	1.08	-0.1	2 + 1	ted in respect to Par
	51F 1338		05.245	259.6	0.97	0.0	2 ± 1	ton's maguraments in
	0.0-0.0		85 256	260.0	0.97	0.5	2 + 1 1 + 1	1893 Lam possibly
			85 250	262.8	1 10	0.2	1+1	measuring a different
			85 240	261 2	1.10	0.1	50	nair after all !
			00.240	201.0	1.01	0.1		pan arter an :

Starikova, 1966: -7.7, +0.22

G.M. POPOVIĆ

Table	2. (continued)
	2

ADS	IDS DISC. m (IDS)	Mult.	Epoch 1900 +	Р	ρ	m or ∆m	Weight	Notes
7588	095 09N458 3 STF 1 394 9.0-10.0		8 4.232 8 4.235 8 4.286 8 4.292 8 4.303 8 4.274	25 1.4 249.3 248.0 249.2 250.1 249.5	3.68 3.76 3.84 3.67 4.17 3.85	- 2.0 - 8.0-9.0 1.5	1 + 1 1 + 1 1 + 2 1 + 1 1 + 2 5 n	Decrease in distance.
7704	10108N1774 STT 215 7.3–7.5		85,242 85,245 85,248 85,245	183.5 184.6 184.1 184 .1	1.31 1.28 1.37 1.32	0.1 0.0 0.2 0.1	1 + 1 2 + 1 1 + 2 3n	Wierzbinski, 195 3: +1.9, -0.09 Zaera, 195 7: +4.4, -0.07
7721	10137N2064 STF 1423 9.0-10.0		85 .2 45 8 5.25 6 85.250	4.3 7.0 5.6	0.74 0.75 0.74	1.0 0.5 0.8	1 + 1 1 + 1 2 n	Heintz, 1959: -0°2, -0"29
7874	10347N1946 STT 225 8.3–10.5–10.6	AB-C	84,205 84,286 84,303 84,308 84,368 84,368	357.8 357.4 357.9 357.7 357.5 357.6	4.73 5.77 6.59 6.26 6.26 6.00	$\begin{array}{c} - \\ 3.0 \\ m_{c} = 10.0 \\ 7.5 - 10.0 \\ 8.0 - 10.0 \\ m_{c} = 10.0 \end{array}$	1 + 1 1 + 1 1 + 1 1 + 2 2 + 2 5 n	
8119	11128N3166 STF 1523 4.4-4.9		85,245 85,256 85,250	89.3 88.8 89,0	2.34 2.20 2.27	0.7 0.5 0.6	1 + 1 1 + 1 2 n	Heintz, 1966: -0°.9, -0″.01
8 35 5	11511N3560 STT 241 6.8–8.7	AB	84.303 84.369 84.396 84.353	143.1 138.9 137.0 139.9	1.39 1.56 1.33 1.45	7.0–9.0 7.5–9.5 8.0–9.5 7.5–9.4	1 + 2 2 + 2 1 + 1 3n	P component is not seen.
85 39	12194N2568 STF 1639 6.6–7.8	AB	84.396 84.432 84.437 84.448 84.427	325.4 329.1 327.1 328.1 327.2	1.45 1.57 1.53 1.32 1.47	8.0-9.0 1.5 7.0-8.5 1.2 1.3	2 + 2 1 + 2 2 + 2 1 + 2 4 n	Aller, 1947: +2 . 4, -0.05
8553	12222N27 35 STF 1643 9.2-9.5		84.289 84.437 84.443 84.448 84.396	13.7 14.5 14.3 14.3 14.2	2.46 2.44 2.44 2.32 2.42	0.5 0.3 0.5 0.3 0.4	3 + 2 3 + 3 1 + 2 1 + 2 4 n	Since 1830 the angle has decreased by 57°.
8974	1 33 30N 3648 STF 1768 5.1-7.0	AB	84.453 84.470 84.462	99.9 101.6 100.8	1.57 1.50 1.54	1.5 _ 1.5	1 + 3 2 + 2 2n	Wierzbinski, 1955: -2.0, -0.29
		AC	84.454	321.4		-11.0	1 + 2	
9020	1 3418N41 32 STF 1783 8.1–10.3		84.383 84.437 84.443 84.424	49,0 48.8 50.2 49.4	2.08 1.97 2.01 2.01	8.0-10.0 9.0-11.0 2.0 2.0	1 + 2 2 + 2 2 + 2 3n	A component is red.
9174	14095 N2934 STF 1816 7.5-7.6		84.289 84.396 84.437 84.470 84.402	87.2 86.3 85.6 87.7 86.8	0.78 0.67 0.79 0.69 0.73	0.3 0.2 0.1 0.2	2 + 2 2 + 2 2 + 2 3 + 2 4 n	Distance is closing in.

Table 2. (continued)

ADS	IDS DISC. m (IDS)	Mult.	Epoch 1900 +	Р	ρ	m or ∆m	Weight	Notes
9338	14360N1651 STF 1864 4.9-5.8	AB	84.446 84.448 84.453 84.449	108.5 108.3 109.0 108.6	5.54 5.60 5.48 5.53	1.0 1.0 1.0 1.0	1 + 2 1 + 1 1 + 2 3n	
95 39	15095N4857 ES 7.4–10.6	AB	84.437 84.448 84.441	340.7 342.3 341.3	26.21 26.58 26.36	_ 8.0-11.0 8.0-11.0	2 + 1 1 + 1 2n	
	-	AC	84.437	61.	r.			
9571	15 1 34N41 39 ES 74 8.4–12.4		84.383 84.388 84.443 84.410	122.3 124.7 122.7 123.2	8.48 8.17 8.87 8.56	- 8.012.0 8.012.0 8.012.0	1 + 1 1 + 1 1 + 2 3n	
9639	152 30N442 1 STT 296 7.6–9.2	AB	84.289 84.437 84.448 84.454 84.459 84.416	281.4 281.6 281.4 280.6 282.1 281.2	1.83 1.89 1.93 1.68 1.88 1.88	2.5 7.0-9.0 1.5 8.5-10.0 -	2 + 2 1 + 2 1 + 1 3 + 3 1 + 1 5 n	The angle has decreased by 47 ^o since 1845.
ï	STT 296 7.4–12.5	AC	84.290 84.437 84.448 84.454 84.459 84.425	313.9 313.5 312.8 314.2 313.5 313.7	77.65 77.47 77.08 76.23	- 7.0-12.0 - 11.0 m _c = 11.3	1 + 1 1 + 2 1 + 1 2 + 2 1 + 1 5 n	Physical connection between A, B, C is still uncertain.
	-	AD	84.290	~346	-	-	1 + 1	
9716	15 325N 3968 STT 298 7.4–7.7	AB	83.482 84.290 84.454 84.462 83.482 84.413	2 30.4 2 3 3.0 2 3 4.3 2 3 6.5 2 3 0.4 2 3 4.7	0.56 0.61 0.63 0.46 0.56 0.57	0.1 0.2 8.0-8.0 -0.3 0.1 -0.1	1 + 2 2 + 2 3 + 3 3 + 2 1n 3n	Couteau, 1965 : +4°0, +0″04 Couteau, 1965 : +2°.8, +0″.10
9979	16109N 3367 STF 2032 5.8-6.7	AB	84.290 84.473 84.607 84.477	233.8 233.9 233.7 233.8	6.69 6.75 6.67 6.71	1.5 7.5 –8.5 1.0 1.1	1 + 1 2 + 2 1 + 2 3n	σC Bor Rabe, 1954: +0.1, -0.07
	STF 2032 5.8–13.3	AC	84.473 84.612 84.542	103.8 101.6 102.7		$m_c \sim 14$ $m_c \sim 14$	2 + 1 1 + 2 2/1n	C is optical.
	STF 2032 5.8–10.8	AD	84.473	83,5	84,8	$m_{\rm D}$ ~12.5	2 + 2	
10345	17033N5436 STF 2130 5,8–5.8	AB	83.624 83.629 83.638 83.643 84.607 83.839	41.6 40.4 40.1 40.4 38.5 40.1	2.01 2.06 1.96 2.10 2.10 2.05	-0.1 0.0 0.0 0.0 0.3 0.0	1 + 2 2 + 2 2 + 2 2 + 2 1 + 3 5 n	Heintz, 1965 : +4 ⁵ , +0 ⁵ 15
10394	17078N2121 STF 2135 7.5-8.8	AB	84.623 84.678 84.654	190.8 190.9 190.9	8.06 8.01 8.03	1.0 1.0	2 + 1 2 + 2 2n	The angle has incre- ased by 25 ⁰ since 1829.

· · ·

¢

Table	2.	(continued)

.

ADS	IDS DISC. m (IDS)	Mult.	Epoch 1900 +	Р	ρ	ın or ∆m	Weight	Notes
10429	17114S0020 A 2984 4.9-7.9		84.462 84.599 84.521	359.4 2.0 0.5	0.81 1.11 0.94	3.0 3.0	3 + 1 2 + 1 2n	The angle has in- creased by 62° since 1915.
11158	18 08 8N4013 LEO 1 10.5-11.2		83.709 84.675 84.678 84.434	142.9 144.3 148.8 145.1	1.19 1.44 1.70 1.44	9,0-9.7 10,5-11.5 10.0-11,0 10.0-10,9	1 + 1 2 + 2 ,1 + 1 3n	-
11483	18 314N1654 STT 358 6.8-7.2	AB	83.629 83.632 83.635 83.638 83.643 83.703 83.648	163.2 165.1 162.6 163.4 164.9 161.1 163.1	1.60 1.95 1.76 1.64 1.63 1.62 1.68		2 + 2 1 + 1 2 + 2 2 + 2 1 + 1 2 + 2 6n	Starikova, 1966: +4°.3, +0″.17 Hopmann, 1970: +3°.1, +0°.16
11811	18505N3715 BU137 8,2–8.7		83,586 83,629 83,635 83,638 84,599 83,844	157.4 157.2 157.2 157.9 158.5 157.7	1.43 1.47 1.40 1.46 1.56 1.46	0.3 0.2 0.2 0.3 0.5 0.3	1 + 1 1 + 1 3 + 2 3 + 2 2 + 2 5n	The angle has incre- ased by 34° since 1875.
,11869	18531N2558 STF 2422 8.0-8.1		83,586 83,643 84,599 84,107	74.9 75.6 75.5 75.4	0.83 0.81 0.86 0.84	-0.1 0.3 0.2 0.2	1 + 1 1 + 1 2 + 2 3n	The angle has de- creased by 31 ^o since 1832.
-	18546N4315 COU 1794		80.681 80.711 80.693	33.6 33.8 33.7	1,76 1,86 1,80	10 . 5 –10 . 7 0.0 0.1	1 + 2 1 + 1 2n	
12040	1902 3N 3017 STF 245 4 8,5-9.7	AB	84,599 84,675 84,678 84,678 84,659	281.6 280.6 280.1 280.7	1.17 1.14 1.08 1.13	8.5 –9.5 8.5 –9.5 2.0 1.5	1 + 1 3 + 2 1 + 1 3n	Baize, 1975: +0°7, -0″.11 Olević, 1977: +0°.3, -0″.01 (rect. trajectory)
12075	19044N3646 STF 2469 7.8-8.9	AB	83.742 84.462 84.566 84.599 84.307	122.6 125.1 122.0 123.8 123.2	1.31 1.20 1.20 1.32 1.27	8.0–9.0 1.0 – 1.0	2 + 2 1 + 1 1 + 2 2 + 2 4 n	
		AC	84.462 84.599 84.530	162.4 162.0 162.2	37.4 38.0 37.7	$m_c = 12.0$ $m_c = 12.0$ $m_c = 12.0$	1 + 1 1 + 1 2n	
12550	1927 3N 3454 ES 2241 = BD + 34° 3589	AB	73.612	298	27.71	9.0-11.0	1 + 1	
		BC	73.606 73.612 73.623 73.613	24.5 20.0 23.3 22.2	2.20 2.45 2.48 2.39	10.0-11.0 11.0-12.0 10.0-10.5 10.3-11.2	1 + 1 1 + 2 1 + 1 3n	
12581	19286N 3404		83.731 84.566 84.599 84.839 84.456	219.6 219.4 221.3 221.0 220.5	7.23 6.94 7.42 7.11 7.19	8.0-10.0 8.5-10.0 7.0-9.0 9.0-10.2 8.3-9.9	1 + 2 1 + 1 1 + 2 2 + 2 4 n	The angle has decre- ased by 21 ⁰ since 1904. Probably an optical pair.

MICROMETER MEASURES OF DOUBLE STARS (SERIES 39)

6

Table 2. (continued)

ADS	IDS Disc. m (IDS)	Mult.	Epoch 1900+	Р	Ŕ	m or ∆m	Weight	Notes
13277	19578N2439	• • • • • • • • • • • • • • • • • • •	84,777	118.6	0.95	0.3	2 + 2	The angle has increased
	STT 395		84.787	119.7	0.87	0.5	1+2	by 40° since 1844.
	5.9-6.3		84,781	119.1	0,92	0.4	2n	2.7-1.7
14558	20580N 3852		84,777	314.3	1.05	0.7	3+2	The angle has increased
14000	STF 2746		84.787	314.9	1.01	8.5-9.0	1 + 2	by 38° since 1830.
	8.0-8.6		84,781	314,5	1.04	0.6	2n	
14778	21105N4044		83,641	119.7	1.20	0.3	1 + 2	The angle has decreased
	STT 432		83.703	117.5	1.25	8.0-8.3	1+1	by 14 ^o since 1847.
	7.8-8.2		83.728	113.5	1.30,	0.5	1+1	
	and the second second		83.736	116.1	1.21,	0.3	1 + 2	
			84.866	113.1	1.26	0.1	1 + 1	
			84.870	115.3	1.11	0.2	1 + 1	
			84.033	116.2	1,22	0.3	6n	
								The pair has been ob-
								with the purpose of
								checking whether the B
								component were not
+4104049	21109N4118		84.580	270.2	55.42	-	1 + 2	identical with the
			84.678	269.0	55.62	9.5-10.0	1 + 1	star BD +4104053. The
			84.839	270.1	55.08	9.0-10.0	1+1	measurements in 1982
			84.842	269.3	55.14,	¥6	1 + 1	and 1984 do not verify
			84.718	269.7	55,33	9.2-10.0	4n	this identity. In the
								Series 37 Notes a mis-
							1	take has been commited
								instead of BD +419405
								reference is made to
								the star BD $+41^{\circ}4054$.
			29.23 P	8.1.35	4.55			
14894	21163N0228		83.638	230.9	0.62	0.3	2 + 2	The angle has increased
	STT 435		84.462	230.6	0.65	0.1	2 + 2	by 280 since
	8,1-8.6		84.///	232.6	0,57	-	1+2	1848.
			84.248	231,2	0.62	0,2	3n	
14990	21166N2202	۸D	02596	25.5	2.01	0.2	1.1.2	The angle have
1400 9	STT 437	AD	83 635	23.5	2.01	0.5	1 + 2 2 + 2	decreased by 430
	69-76		83.638	25.4	2.25	0.5	3+2	since 1845
	0.9 1.00		83 641	25.5	2.15	0.5	1.+2	since 1045
			84 760	24.3	2.17	0.3	1+2	
			84.866	26.6	2.04	0.6	1 + 2	
			84.870	25.6	1.99	0.5	1+1	
			84.872	25.7	2,13	0.2	1+1	
	·		84.111	25.2	2,14	0.4	8n	
14928	21188N3136		83.641	27.3	3.37	9.0-9.2	1 + 1	Direct motion
	HO 157		83.703	26.6	3.40	9.0-9.5	1+2	The measurements
	9.2-9.2		83.728	27.7	3.44	0.2	1+1	of ρ in ADS discordant.
	An and a second s		83.735	26.4	3.49	0.1	1+1	02.06 1912
			83,702	27.0	3,42	0.2	4n	
15007	21240N1039	AD	83 586	267.0	1 50	0.0	1 ± 1	The angle has de
10001	STF 2799	лD	83 624	267.9	1 72	0.0	1+2	creased by 660 since
	75-75		83 635	267 4	1 70	0.0	3+3	1831
			83638	267 3	1 72	0.0	3+3	TOTT. STORENSHER
			83.641	267.0	1.71	0.0	1+2	
			83.709	266.0	1.64		1+1	
			83,637	267.2	1.69	0.0	60	

G.M. POPOVIĆ

Table	2	(continued)
1 0 0 10	_	(Continuew/

ADS	IDS	mult.	Epoch	P	0	m	Weight	Notes
	DISC. m (IDS)		1900+	•	F	or Δm		
15407	21491N6517	AB	83.638	146.4	1.48	0.1	3 + 3	The distance has
	STF 2843		84.676	147.0	1.43	0.2	1 + 2	decreased by 1"
	7.1-7.3		84.760	146.1	1.54	0.2	1+2	since 1831.
			84.856	147.9	1.32,	0.2	1 + 1	
			84.859	145.7	1.35	0.5	1 + 1	
			84.348	146,6	1.45	0,2	5n	
15769	22100N2905		83.739	77.5	, 1.22	8.5-9.0	3 + 3	The angular decrease
	STF 2881		8 3.88 1	76.4	1.20	7.7-8.2	1 + 2	by 34 ⁰ since 1830
	7.6-8.1		84.676	77.9	1.19	0.5	1 + 2	with decrease in
	0		84.760	74.0	1.24	0.5	1 + 2	distance.
			84.870	79.8	, 1.05 ,	0.3	1 + 1	
			84,243	77.0	1,19	0.5	5n	
15971	2223780032		83.728	215.8	1.76	0.7	1 + 1	
	STF 2909		84.676	213.3	1.62	0.2	1 + 1	
	4.44.6		84,202	214.6	1.69	0.4	2n	Harrington, 1967: - 3:3,-0:11
15 98 8	22249N0355		83.745	115.1	0.70	7.0-8.0	1 + 1	
	STF 2912		84.681	112.8	0.61	1.5	1 + 1	
	5.8-7.2		84.213	114.0	0,66	1,2	2n	Knipe, 1960: -3.5, -0.33
16317	22474N6109	AB	83,813	285.3	1.42	1.5	1 + 2	The angle has decreased
	STF 2950		8 3,88 1	286.8	1.45	8.0-9.0	1 + 2	by 33 ^o since 1832.
	6.1-7.4		84.681	288.0	1.47	6.0-7.5	1 + 1	The distance closes in.
			84.760	285.1	1.42	1.0	1 + 2	
			84.839	287,6	1.41	7,0-8.0	1 + 1	
			84.856	285.1	1.42	1.3	1 + 1	
			84,408	286.2	1,43	1.2	6n	
	STF 2950	AC	83.813	354.8	39.14	$m_c = 10.0$	1 + 1	Unchanged.
	5.8-10.7		84,839	355.0	39.33	$m_{c} = 9.0$	1 + 1	
			84,326	354.9	39,23	m _c = 9.5	2n	
16561	2 3055 N 315 6	AB	83,622	88,5	0.70	7.8-8.5	2 + 1	The angular decrease
	BU 385		84.675	88.3	0.61	0.5	3 + 2	by 48° since 1876.
	7.3-8.1		84,280	88.4	0.64	0.6	2n	
16896	23339N4351	AB	83,895	73,8	1.59	9.0-11.0	3 + 2	ADS 16896 = BD + 43°4516
	D 26		84.681	76.6	1.73	9.0-11.5	1 + 1	The distance closes in.
	10.5-11.8		84.120	74.6	1.63	9.0-11.1	2n	
16902	23343N4322		83.895	134.4	, 3.55	9.0-11.0	2 + 1	
	COM		83.898	134.0	3.04	9.0-11.0	1 + 1	
	9.4-11.4		83.896	134,2	3,35	9.0-11.0	2n	
17037	23455N4252		80,793	103.7	5.09	8.5-10.0	1 + 2	
	STT 509		80.810	104.8	, 5.24	8.0-10.0	2 + 2	
			80.889	104.6	5.20	8.5-10.0	2 + 2	
			80.834	104.4	5, 18	8,5-10.0	3n	
17149	23544N3310	AB	83.881	312.8	, 1.49	0.2	1 + 2	
	STF 3050	•	84.788	314.9	1.68	0.2	1 + 1	•
	6.6-6.6		84.870	315.9	1.60	0.2 ,	1 + 2	Franz, 1954: -1.8, -0.23
			84,479	314,5	1.58	0,2	3n	Heintz, 1973: -0.9, 0.00

REFERENCES

Muller, P. Couteau, P.: 1979, *Quatrieme catalogue d'ephemerides d'etoiles doubles,* Pub. Obs. Paris, CERGA, Observatoire de Nice. Popović, G.: 1984, Bull. Obs. Astron. Belgrade, 134, 60. Zulević, D.: 1984, Bull. Obs. Astron. Belgrade, 134, 69.

Bull.Obs.Astron.Belgrade, Nº 136(1986)

MICROMETER MEASURES OF DOUBLE STARS (Series 40)

D.J.Zulević Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

(Received October 15, 1985.)

SUMMARY: Presented here are 289 measures of 103 double stars made with 65/1055 cm refractor of Belgrade Observatory

0 :

The present series of measures is the continuation of my own measurements published under Series 38(D.Zulević, 1984). The measures were made with the 65/1055cm refractor of the Belgrade Observatory between 1983 July 28 and 1985 May 5. In Table I the columns give ADS or DM number, double star designation, position for 1900 (IDS), mutiple, epoch omitting the century, position angle, separation, estimated magnitudes, number of nights and notes. In Notes comparisons have been made with the latest available orbits (Muller, P., Couteau, P. 1979). In the present work the distribution of 289 measures of distances is as follows:

1	Distances		Me	easures
	0."00 to 0."50			4
	0.50 to 1.00			96
1	1.00 to 1.50			117
	1.50 to 2.00			21
1	2.01 or greater			51
	2 2 R. ASS 22	6. T.s.	0.11	289

Table I Micrometer measures of double stars

ADS	Disc. IDS	Mult.	Epoch 1900+	P	ρ	Est. Mag.	n 5.8		Notes
48	STT 5 47	AB	83.704	175°.5	5:87	8.9- 9.0	1	55.242 . 14	20 1 1 1 1 2 1 1 2 E
	00002N4516		84.760	174.6	, 5.87	32.1	1	Guntzel-Lingner, 1954	$+0^{\circ}1/-0^{\circ}06$
			84,232	175.1	5.87		2	Hopmann, 1961:	-0.7, -0.02
61	STF 3062		83.704	296.2	1.44	6.4-7.2	1		
	00010N5753		83.742	297.5	1.45		1		
			84.760	298.1	1.43		1		
			84.834	297.3	1.44		1	96,200 10	
			84.864	301.3	1.39		1		
			84.381	298.1	1.43		5	Baize, 1957:	+1.4, -0.01
207	STF 13		83,704	58.6	0.87	6.8-7.1	1		
	00106N7624		83,742	59.4	0.88	-1.	1		
			84.864	58.0	0.89		1.0		
			84,103	58.6	0,88	86.0	3	Heintz, 1959:	+2.7,+0.01
283	HJ 1018		84.834	862	1 42	86-92	1		
	0015 4N67 07		84.864	85.0	1.43	0.0- 7.2	1		
			84,849	85.6	1.43		2	Muller, 1956:	- 0.7, -0.06
1223	HWE 4		83,704	340.3	0.90	9.4- 9.5	1		
	01288S1244		83.742	339.4	0.76		1		
			83.723	339.8	0,83		2	Van den Bos, 1951:	+ 3.1, + 0.06
1522	STF 183 01494N2818	AB	83.842	172.4	, 0.37	7,8-,8,5 ,	1.6	Couteau, 1973:	+ 0.1, + 0.08
15 38	STF 186		83,742	55.7	1.20	68-68	1	Palacios 1947.	+03+005
	01507N0121							Freitas-Mourao, 1976:	+ 0.4, -0.15
1709	STF 228		83.742	268,7	1.03	6.6- 7.1	1		
	02076N4701		84.864	271.3	1.04	1.6.5	1		
			84,303	270,0	1.04		2	Heintz, 1952:	+0.6, -0.02

D.J. ZULEVIĆ

ADS	Disc. IDS	Mult.	Epoch 1900+	Р	ρ	Est. Mag.	n	Notes	
2446	STT 53 03113N 3816		83.742	260.5	0"82	7.8- 8.3	1	Rabe, 1948: Zulević, 1983:	-3.2, -0.03 -0.1, -0.04
2612	STF 400 03268N5942		83.742	258.0	1,25	6.8-7.6	1	Baize, 195 1: VBs, 195 4:	-1.8, -0.07 -6.7, -0.08
2959	STF 483 03574N3914		83.742	74.0	0,96.	7.5 8.6	1	Couteau, 1958:	+ 1.8, +0.00
52 69	STF 941 06316N4140	AB	85.258	84.2	1.74 :	7.0- 8.0	1	Unchanged since 18 30.	
5831	STF 1024 07034N3817	AB	85.176 85.256 85.216	317.6 317 . 6 317.6	1.18 , 1.30, 1 .24	8.0- 9.0	1 1 2	Unchanged since 1831.	
5871	STF 1037 07066N2724	AB	85.176 85.242 85.209	318.9 32 0.8 319.9	1.22 1.22 1.22	7.27.2	1 1 2	Karmel, 1938:	+ 1.1, -0.08
6175	STF 1110 07282N3166	AB	85.176 85.261 85.219	85.6 87.1 86.3	2.77 2.54 2.66	2.0- 2.9	1 1 2	Muller, 1955: Rabe, 1957:	-0.5, -0.03 + 3.7, +0.05
6671	BU 1244 08086N1177		85,247 85,256 85,258 85,254	15.4 16.0 15.6 15.6	0.99 0.96 0.94 0.96	8 . 0—, 9 . 0	1 1 1 3	Changed 34 ^o since 1891.	
6727	STF 1205 08114N5646		85,242 85,247 85,261 85,250	168.3 168.8 168.2 168.4	1.53 1.46 1.50 1.50	8.5 - 8.8 ,	1 1 1 3	Changed 18 ⁰ since 1831.	
7067	STF 1280 08460N7071	AB	85.258 85.262 85.260	139.9 138.0 138.9	1.01 1.01 1.01	7.5 7.6	1 1 2	Heintz, 1973:	+ 0.1, -0.11
7186	BRT 102 09013N4362		85.256	236.5	3.76	10.0-10.1	1	Changed 110 ^o since 1893.	
7284	STF 3121 09120N2860		84.289 85.261 85.275	27.3 35.0 31.1	0.44 0.51 0.48	8.1- 8.1	1 1 2	Van den Bos, 1937:	-2.5, +0.00
7 307	STF 1338 09147N3837		84,289 85,242 85,247 85,259 85,059	261.6 260.8 263.7 263.9 262.7	0.97 1.14 1.00 0.97 1.02	6.6- 6.8	1 1 1 5	Starikova, 1966:	-4.9,+022
7704	STT 215 10108N1774		84,289 84,388 85,242 85,247 85,261 84,885	182.7 181.3 183.1 183.1 183.8 182.8	1.28 1.43 1.40 1.36 1.28 1.35	7.3 7.5	1 1 1 1 5	Zaera, 1957:	+ 3.0, -0.04
7721	STF 1423 10137N2064		84.289 85.245 85.256 85.261 85.013	6.4 6.9 5.5 7.1 6.5	0.96 0.94 0.91 0.98 0.95	9.3–10.0	1 1 1 1 4	Heintz, 1959:	+ 0.6, -0.08

Table 1, (continued)

92

_

Table 1. (continued)

ADS	Disc. IDS	Mult.	Epoch 1900+	Р	ρ	Est. Mag.	n	Notes	
8119	STF 1523 11128N3166	AB	84.371 85,245 85,256 84,854	91 . 4 96.7 92.0 93.4	2.24 2.21 2.22 2.23	4.4- 4.9	1 1 1 3	Heintz, 1966:	+ 3.°4,/-0.09
8128	STF 1527 11138N1449		85,259 85,261 85,260	40.4 40.4 40.4	1.14 1.16 1.15	7.0- 8.1	1 1 2	Hopmann, 1958:	+ 7.6,0.21
8148	STF 1536 11187N1065		85.259	1 35.8	1.13,	4.1- 7.3	1	Baize, 1951:	-6.4, -0.17
8539	STF 1668 12194N2568		85.245 85.261 85.253	325.6 326.4 326.0	1.40, 1.40 1.40	6.6—, 7.8 ,	1 1 2	Aller, 1947:	+1.3, -0.14
855 3	STF 1643 12222N2735		84.289 84.388 85.245 85.261 84.786	11.3 11.0 11.7 12.4 11.6	2.38 2.28 2.40 2.34 2.35	9.2 9.5	1 1 1 4	Hopmann, 1959:	+54.9, +0.46
88 87	HO 260 13189N2945		85.369 84.462 84.467 84.245 84.636	71.1 72.9 73.1 76.4 73.4	0.93 1.08 1.00 0.99 1.00	9.6- 9.8	1 1 1 4	Ambruster, 1955:	-1.4, -0.11
8949	STF 1757 13292N0012		84.478 85.245 84,861	115.8 117 . 2 116.5	2.18 2.02 2.10	7.4- 8.8	1 1 2	Heintz, 1955:	-1.0,+0.03
9020	STF 1783 13418N4132		84.470	48.7	2.24	7.8-10.0	1	Unchanged since 1832.	
9031	STF 1785 13445 N2689		84.478 82.522 85.245 84.748	161.3 162.5 164.2 162.7	3.27 3.21 3.42 3.30	7.9-, 8.2	1 1 1 3	Strand, 1953:	-0.1, -0.11
9174	STF 1816 14095 N2934		84.396 84.522 84.459	89,2 86,7 87,9	0.72 0.71 0.71	7.0-,7.1	1 1 2	Very changed in ρ	
9182	STF 1819 14103N0336		84.462	50,9	0.93	7.7-, 7.8	1	Baize, 1971:	+ 3.6, -0.11
9211	BU 1272 14141N4873	AB	85.245	137.2	, 1,01	$\Delta m = 0.8$	1	Unchanged since 1892.	
9229	STF 1834 14166N4858	·	84.369 84.478 84.423	101.9 100.4 101.1	1.17 1.13 1.15	7.9- 8.0	1 1 2	Van den Bos, 1936:	-3.9, -0.12
9380	STF 18 37 14414N0965		84.369 84.478 84.423	91.6 91.3 91.4	, 1.42	7.6-,8.6	1 1 2	Wierzbinski, 1956:	+ 2.6, -0.10
9418	STT 287 14478N4480		84.462 84.467 84.533 84.487	346.9 345.8 347.1 346.6	0.94 1.00 0.98 0.98	8.5- 8.6	1 1 1 3	Heintz, 1959:	-0.4, -0.10

•.

DJ. ZULEVIĆ

	Γa	ble	ə 1	. (con	tir	ue	ed
--	----	-----	-----	-----	-----	-----	----	----

ADS	Disc. IDS	Mult.	Epoch 1900+	Р	ρ	Est. Mag	. n	Notes	l B
9425	STT 288 14487N1567		84.369 84.380	175°.1 171.2	1.38,	6.9- 7.6	5 . 1 1		in what
			84.396	169.6	1.36		1		
			84.467	170.8	, 1.35 ,		1		
			84,395	171.7	1,38		4	Heintz, 1950:	+ 2.5, + 0.22
95 78	STF 1932	AB	84.380	252.1	1.46	7.1- 7.6	1		
	15140N2672		84.396	251.9	1.47		1		
			84.522	253.6	1.40		1		
			84.433	252.5	1.44		3	Heintz, 1964:	-0.1, -0.01
0617	STE 1027		84 5 20	76	0.76	56 50	1	Danion 1938.	+09+000
9017	15191N3039		04.3 30	7.0	, 0.76	3.0- 3.9	1	Dalijoli, 1956.	10.9,10.00
							1		
9626	STF 1938	BC	84.527	14.9	2.06	7.2- 7.8	, 1		
	15207N3442		84.530	14.3	, 2.13		1		
			84.533	14.2	2.12		1		
			84.549	14.3	. 2.18		1	D : 1051	. 0.2 0.09
			84,535	14,4	2,12		4	Baize, 1951:	+ 0.2, -0.00
9639	STT 296	AB	84.448	282.0	1.89	7.0-, 8.6	5, 1		
	15230N4421		84.522	283.3	1.94		1		
			84.524	283.0	1.88		1		
			84,498	282,8	1,90		3	Changed 45° since 1845.	
0716	STT 200	AD	81 151	222 1	0.50	71 77	1		
9/10	15225 N2068	AD	84.454	232.1	0.63	1.4- 1.1	1		
	15525145900		84.470	239.2	0.49		1		
			84,462	235.5	0.54		3	Couteau, 1965:	+ 3.1, + 0.07
9756	STF 1969		84.5 30	21.0	, 0.49	8.9- 9.6	5 1	Heintz, 1974:	+ 0.5, -0.01
	15 39 4N 60 18								
0025	DII 012		04520	1 10 2	0.70	0.2 0.2			
9923	BU 012		84,5 30	110.3	0.70	8.2- 8.2			
	1002011070		84,2 33	106.5	0.60		1	Channel 100 1991	
			64.940	108.4	0.68		2	Changed 19° since 1881.	
00.92	STE 202 (04 40 4	24.2	2 77	0 1 0 4			
9982	SIF 2026		84.484	24.2	2.11	9.1- 9.0) · 1		
	16111N0/3/		84.524	22.2	2.00		, 1		
			04.524	22.0	2.92		1	Haintz 1062.	+ 0.5 -0.04
			04,510	23,2	2.00		3	Hemitz, 1902.	1 0.5, -0.04
11.0	a.Y		1001.000						
10036	BU 951	ABxC	84.536	34.5	0.92	8.2- 9.6	0 1		
	16198N3335		84.538	35.5	0.87		1		
			84.549	34.2	, 0.92 ,		1		
			84 55 2	34.1	0.92		1	Changed 220 since 1970	
			84.544	34,6	0.91		4	Changed 22° since 1879.	
135	25		10.00						
10070	STF 2049		84 536	196.9	1.09	6.5 - 7.5	. 1		
	16238N2612		84.538	197.5	1.16		1		
			84.549	199.6	, 1.16	E. C.	1		
			84.552	198.8	1.16	3	1	DOCARS	
			84,544	198,2	1.14		4	Changed 17 ^o since 1829.	
	10.1		55.916		1.000	1.1.1			
10071	BU 813		84 5 39	174.9	1.01	8.4-, 8.4	1		
	16239N2646		84.550	172.9	1.09		1		
			84.555	175.3	1.11		1		
			84.548	174.4	1.07		3	Changed 90 since 1881.	- 0.00-0.000

MICROMETER MEASURES OF DOUBLE STARS (SERIES 40)

Table 1, (continued)

ADS	Disc. IDS	Mult.	Epoch 1900+	P	P	Est. Mag.	n	Notes	ic Disc. IDA
10075	STF 2052		84.380	131.4	1.38	7.8-,7.8	1	1 ⁵ 10 185.13	
	16245 N1837		84.396	132.8	1.46		1		
			84,448	132.8	1.35		1		
			84,454	132.7	1.39		1		
			84.419	132.4	1.40		4	Siegrist, 1950:	+ 0.7, - 0.15
10002	STE 2059		84 5 20	1047	0.96	82 82	1		
10095	1627 ANI 2017		04,0 37	1021	0.90	0.2- 0.3	1		
	102/419 301/		04,550	195.1	0.70		1		
			64.555	199.1	0.72		1	CI 1100 · 1000	
			84,548	195.7	0.79		3	Changed 130 since 1829.	
10188	D 15		84.484	140.0	1,04	9.1-9.1	1		
	16408N4340		84 542	141,1	1.06		1		
			84.524	140.3	1.06		1		
			84.528	141.0	1.06		1		
			84,514	140.6	1.06		4	Wierzbinski, 1955:	+2.5 -0.03
102.25	0775 0107		04 00 0	02.1	1.10	(7 0 2			
10235	SIF 2107		84.380	92.1	1.15	6.7- 8.2	1		
	16479N2850		84.397	91.2	1.10		1		
			84.448	91.1	1.19		1		
			84.454	90.3	1.23		1		
	and the second		84.419	91.2	1.17		4	Rabe, 1926:	+ 1.0,-0.22
10279	STE 2118		84.484	69.4	1.10	6.9 - 7.4	1		
10215	16559N6511		84 522	67.5	1 08		1		
	10555110511		84 524	67.5	1 07		1		
			84.510	68,1	1.08		3	Giannuzzi, 1955:	-0.2, -0.24
10341	BU 823	AB	84.5 30	131.0	0.94	8.7 - 9.7	1		
	17015N0047		84,533	130.2	0.92		1		the second sector
			84.531	130,6	0,93		2	Arend, 1955:	+7.7, -0.11
	nt sta								
10345	STF 2130		84.528	219.1	2.18	5.8- 5.8	1		
	17033N5436		84.531	219.7	2.14		1		
			84.533	219.8	2.09		1		
			84,534	39,5	2.14		3	Heintz, 1965:	+ 5.1, + 0.25
					0.44				
45025 0	5 KUI 79	AB	84 530	240.2	1.10	10.1-10.4	1		
	17092N4551		84.533	240.2	0.97		1		
			84.703	240.2	1.06		1		《明月月月月日 日子
			84.588	240,2	1.04		3	Baize, 1951:	-0 9↓-0.08
10786	AC 7	BC	83.706	50.2	1.45	10.3-10.8	1		
	17425N2747		83.738	49.5	1.46		1		
			84.397	51.0	1.44		1		
			84.470	52.4	1.53		1		
			84.078	50,8	1.47		4	Couteau, 1957:	+0.4, -0.01
11005	STF 2262	AB	83.706	277.9	1.79	5.2 - 5.9	1		
	17576S0811		83.738	278.6	1.84		1		
			84.524	276.5	1.77		1		
			83,987	277,7	1.80		3	Wierzbinski, 1957:	-0,2, -0.02
	STF 2289		83.706	221.1	1.21	6.5- 7.2	1		
11123	/		00.000	220.0	1 20	1. 18 St. 18	1		
11123	18057N1627		83.122	220.9	1.20		1		
11123	18057N1627		83.722 84.397	220.9	1.17		1		
11123	18057N1627		83.722 84.397 84.454	221.1	1.17		1 1		

D.J. ZULEVIĆ

Table	1	(continued)
10010		(continueu/

ADS	Disc. IDS	Mult.	Epoch 1900+	Р	ρ	Est. Mag.	n	Notes	
11186	STF 2294 18094N0009		84.484 84.522 84.524 84.697 84.557	97°4 94.3 94.8 97.4 96.0	0"97 1.09 1.11 0.96 1.03	8,58,8	1 1 1 1 4	Wilson, 1935:	+ 2°.5, +0 ⁴ .02
11235	J 759 18130N2023		84.552 84.555 84.705 84.604	81.2 85.6 81.4 82.7	2.11 2.05 2.21 2.12	9.2-, 9.3	1 1 1 3	Unchanged since 1912.	i
11334	STF 2315 18210N2720		83.744 83.788 84.454 83.995	129.3 132.3 134.8 132.1	0.68 0.68 0.70 0.69	6.5- 7.5	1 1 1 3	Heintz, 1958:	+ 4.0¥, −0.02
11483	STT 358 18314N1654		83.665 83.668 84.524 84.697 84.138	163.3 162.2 162.5 161.3 162.3	1.65 1.66 1.75 1.68 1.68	6 . 8-, 7 . 2	1 1 1 1 4	Hopmann, 1970:	+ 2.6, + 0.16
11568	STF 2384 18385N6702	AB	84.484 84.522 84.524 84.510	299,9 304,2 307,5 303,9	0,59 0,50 0,51 0,53	8.6- 9.1	1 1 1 3	Heintz, 1975:	-8.3, + 0.02
11623	A 253 18400N3135		83.744 83.788 84.454 84.470 84.114	120.4 124.7 121.9 123.0 122.5	0.81 0.75 0.73 0.82 0.78	9.4–10.0	1 1 1 4	Muller, 1954:	0.4,+0.01
11635	STF 2382 18410N3934	AB	84.531 84.533 84.675 84.700 84.716 84.631	35 4.8 35 4.4 355 5 35 4.7 355 5 35 4.9	2.52 2.60 2.67 2.52 2.45 2.55	5.0- 6.1	1 1 1 1 5	Guntzel-Lingner, 1955:	-1.0, -0 10
11635	STF 2383 18410N3934	CD	84.531 84.533 84.675 84.700 84.716 84.631	90.6 91.1 91.9 91.6 91.9 91.2	2.31 2.28 2.23 2.29 2.35 2.29	5.1- 5.5	1 1 1 1 5	Guntzel–Lingner, 1955 :	+ 9.6, -0.05
11871	BU 648 185 33N 3246	AB	83.744 83.782 84.454 84.471 84.113	40.9 42.0 37.3 36.9 39.3	1.13 1.13 1.05 1.07 1.09	5.4–, 7.5	1 1 1 4	Vlaicu, 1956:	-0.1,-0.08
11879	STF 2438 18558N5805		84.484 84 533 84.524 84.510	3.5 5.0 2.8 3.8	0,89 0,83 0.86 0,86	6.8-, 7.4	1 1 1 3	Jastrzeobski, 1956:	+ 2°3, -0'04
12033	HU 940 19018N 3343		84.533 84.550 84.552 84.703 84.585	201.8 202.7 202.0 202.2 202.2	0.58 0.47 0.50 0.61 0.54	9.6– 9.6	1 1 1 1 4	Muller, 1953:	-0?2, -0"04

MICROMETER MEASURES OF DOUBLE STARS (SERIES 40)

Table 1. (continued)

ADS	Disc. IDS	Mult.	Epoch 1900+	Р	ρ	Est. Mag.	n	4 magi 1	Notes
330 332 3	DZ 1		84.550	163.7	1.16	10.5-10.5	1	alei antis -	A PRA TIZ SE
	19029N3346		84,552 84,551	164.7 164.2	1.15		2	en enes	
12040	STF 2454	AB	83.706	284.0	1,21	8.5- 9.7	1		
	19023N3017		83.722	281.6	1.21		1		
			84.454	282.3	1.15		1		
			84.471	28 3.0	1.17		1		
			84,088	282.7	1.18		4	Baize, 1975:	+ 299, -0705
12201	STF 2484		84.550	239.3	2.17	7.9-9.4	1		
	19099N1854		84.675	236.5	2.01		1		
			84.703	236.4	2.12		1	1072.	104 0208
			84.643	237,4	2.10		3	Hopmann, 1973:	+ 194, -0.08
12447	STF 2525		83.744	294.3	1.94	8.1-, 8.4	1		
	19225N2707		83.783	293.7	1.77		1		
			84.471	295.4	1.83		1		
			84.484	294.8	1./9		1 1 0	Ich Tomhurini 106	+ 200 0''05
			84,120	294,5	1,83		4	Job Tamourini, 1967	+2:0, -0.03
12889	STF 2576	AB	83.722	35 8.1	2.13	8.3- 8.4	1		
	19418N3322		83.738	354.1	2.15		1		
			84.471	355.5	2.27		1		
			84.484 84.104	355.8	2.08		4	Rabe, 1943:	+2.99, +0.00
		1 Kalak							
12972	STT 387	AB	83.722	161.5	0.72	7.2-, 7.7	1		
	19430113304		81 171	161 2	0.63		1		
			83.977	161.7	0,65		3	Baize, 1960:	+0.7,+0.04
12640	DII 084		84 5 50	244.1	0.62	79 82	1		
13049	20134N2604		84553	244.1	0.55	1.9-10.2	1		
	20134142004		84.705	252.3	0.65		1		
			84,716	253.5	0.70		1 -		
			84,631	249,2	0.63		4	Changed 45° since 1	880.
13665	A 12.05		83.744	106.4	0.60	9.2-10.0	1		
	20141N2864		83.783	106.7	0.61		1		
			84.523	104.2	0.60		1		
			84.015	105.8	0.60		3	Heintz, 1978:	+ 5.6, -0.04
13723	STT 406		83.723	117.4	0.67	7.4-, 8.3	1		
	20166N4503		83.739	113.6	0.59		1		
			84.523	113.3	0.63		1		
			83,995	114,8	0.63		3	Heintz, 1975:	-0.9, + 0.05
14088	A 744		84.550	271.4	0.65	8.6- 8.6	1		
	20340N2932		84,553	271.1	0.63		1		
			84.705	271.3	0.61		1	(
			84.603	271.3	0.63		3	Unchanged	
14196	BU 152 20398N5702		84.553	84.2	1.02	7.2- 8.0	1	Changed 27 ^o since 1	1876.
142 38	RU 64	AR	83 744	162.4	0.56	87 00	1		
142 30	20403N1222	AU	83783	165.9	0.56	0.7- 9.0	1		
	20103111222		83,764	164,1	0.56		2	Baize, 1956:	$-1.2, \pm 0.01$
1400 0	DII 264		84 550	240.0	0.00	87 00	1		
14200	20427 N2502		84 7 05	240,9	1.05	0.1- 0.9	1		
	2072/11/2000		84 629	240.1	1.03		2	Changed 240 since	1876
			0 - N UE 0		1.01	•	6 .	Sumbou 24 suite	

D.J. ZULEVIĆ

Table 1, (continued)

ADS	Disc. IDS	Mult.	Epoch 1900+	P	ρ	Est. Mag.	n	Notes	
14296	STT 413	AB	83.706	13.6	0.90	4.8- 6.1	1	CARL (C.)S	
	20435 N3607		83.723 83.715	13.9 13.8	0.87	. 31	1 2	Rabe, 1946:	+ 0°.5, + 0.03
14360	STF 2729	AB	83,706	11.7	0.95	6.4-7.2	1		
	20461S0600		83.738	12.0	0.88		1		
			83,722	11,8	0,91		2	Vlaicu, 1955:	+ 0.2, + 0.00
14424	BU 367	AB	83.723	121.0	0.49	8.4-, 9.8	1		
	20508N2743		83.739	122.1	0.53		1		
			84.523	123.4	0.53		1	W 10/1	
			83,995	122,2	0.52		3	Heintz, 1961:	+ 0.4, + 0.01
14499	STF 2737		83.788	287.0	1.01	6.0- 6.3	1		
	20541N0355		84,524	288.9	0.97		1		
			84,156	287,9	0,99		2	Zeller, 1957:	+ 2.6, -0.04
14573	STF 2744	AB	83.788	125.8	1.21	6.7- 7.2	1		
	20580N0108		84.524	126.0	1.19		1	See S. S. Charles S. S.	
			84,156	125,9	1.20		2	Popović, 1962:	+ 2.9, -0.06
14778	STT 432		84.550	120.2	1.28	6.8-, 7.2	1		
	21105 N4044		84.553	118.7	1.25		1		
			84.796	119.2	1.34		1		
			84.867	115.5	1.24		1		
			84.869	117,5	1.25		1	a such a strate	
			84,727	118,2	1,27		5	Changed 12 ^o since 1847.	
14783	HI 48		83 788	260.0	0.59	70-72	1		
14/05	21117N6400		84.484	251.4	0.67	1.0 1.1.2	1.		
			84.136	255.7	0,63		2	Baize, 1949:	+ 3 5,/+ 0.04
14889	STT 437	AB	84.553	24.0	2.18	6.5 - 7.2	1		
	21166N3202		84,705	23.5	2.37		1		
			84.835	25.8	2.16		1		
			84.867	23.1	2.08		1		
			84.869	24.2	2.11		1		
			84.872	25.4	2.05		1		
			84.783	24,3	2.16		6	Changed 44 ^o since 1845.	
14931	HU 591		84 553	137.0	0,67	9.0-, 9.5	1	Changed 13° since 1902.	
	21194N5148								
15 407	STF 2843	AB	84.856	147.9	1.48	m=0.2	1		
10.1	21491N6517		84.859	147.4	1.46		1		
			84.864	148.6	1.46		1		
			84.860	147,9	1,47		3	Changed 14° since 1831.	
157(0	STE 2901		82 7 20	0.0.7	1.00				
15 / 69	SIF 2881		83.139	83.1	1.20	1.6-18.1	1		
	22100IN2905		83,143	81.9	1.31		1		
			84 824	80.2	1.35		1		
			84 869	817	1 23		1		
			84,195	82.0	1.31		5	Changed 29° since 1830.	
						-1.5 82.5 52.7			
15988	STF 2912		83.745	122,5	0.96	5.8- 7.1	1		
	22249N0355		83.783	118.1	0.83		1		
			84.524	120.5	0.83		1		
			84.017	120.4	0.87		3	Knipe, 1958:	+2.7, -0.12

MICROMETER MEASURES OF DOUBLE STARS (SERIES 40)

ADS	Disc. IDS	Mult.	Epoch 1900+	Р	ρ	Est. Mag.	n	Notes	
16185	STF 2934	-	83,704	73.9	0,93	8.8-, 9.5	1	within the line of	Liq o groco d
	22370N2054		83.723	68.5	0.96	Second Stream	1		
			84.525	72.3	0.97		1		
			83.984	71.6	0,95		3	Heintz, 1960:	+ 4.8 + 0.00
16317	STF 2950	AB	84.856	285.4	1.44	5.7-,7.0	1		
	22474N6109		84.864	286.0	1.40		1		
			84,860	285.7	1.42		2	Changed 33° since 1832.	
16326	A 632		83,704	168.8	0.82	8.6- 9.1	1		
	22480N5712		83.723	166.8	0.78		1		
			84.864	171.8	0.82		1		
			84.097	169.1	0,81		3	Heintz, 1961:	+ 3.7 /+ 0.05
16649	BU 79	AB	83.704	21.8	1.48	8.5-, 9.6	1		
	23125S0204		83.739	20.2	1.50		1		
			83,721	21,0	1.49		2	Heintz, 1959:	-1.9, -0.04
16951	A 1242		83.723	327.3	0.78	9.6- 9,6	1		
	23380N1117		83.739	325.7	0.78		1		
			83.731	326.5	0,78		2	Zulević, 1974:	-0.7, + 0.03
17149	STF 3050	AB	84 834	313.9	1.49	6.6- 6.6	1		
	23544N3310		84.864	313.1	1.54		1		
			84,869	315.6	1.50		1		
			84,856	314.2	1.51		3	Heintz, 1973:	-1.7 - 0.08

Table 1, (continued)

REFERENCES

Zulević, D.J., : 1984, Bull. Obs.Astron.Belgrade, 134. 69. Muller, P., Couteau, P.: 1979, Quatrieme catalogue d'ephemerides d'etoiles doubles, Publ.Obs.Paris, Cerga, Obs. de Nice. Aitken, R.: 1932, New General Catalogue of Double Stars. Vol. I, II, Washington.

Jeffers, H.M., Van den Bos, W.H., Greeby, F.M.: 1963, Index catalogue of visual double stars, 1961.0, Publ.of the Lick Obs. 21.

the interior as there if itered, it, the inferen-

PRELIMINARY RESULTS OF PLANET OBSERVATIONS WITH THE BELGRADE VERTICAL CIRCLE

V. Trajkovska

Astronomical Observatory Volgina 7, 11050 Belgrade, Yugoslavia

(Received October 30, 1985)

SUMMARY: Account is given of the method, organization and results of observations outer planets with the Belgrade Vertical Circle, carried out in the period April 1983 i November 1984. The O - C differences for all the observed planets, as well as the mea errors of observations are given.

1. INTRODUCTION

Table 1. Reference stars actually observed with the planets

Following the dermination of observations involved by the working out of the Bright Stars catalogue of declinations in the zone from $+65^{\circ}$ to $+90^{\circ}$, performed with the Belgrade Vertical Circle (ASK ANIA, 190/2578 mm) the instrument is currently employed on the project: "Determination of declinations of the solar system bodies". Two observers are taking part: Dj. Bozhichovich and the author. Preliminary (experimental) observations were made during 1982 by the first observer which demonstrated that the obtained planet and the Sun's declinations possessed a satisfactory accuracy.

In the present paper are exposed results of this author's own observations of the planets Mars, Jupiter, Saturn, Uranus and Neptune carried out in 1983 and 1984. These will, simultanously, be the very first results of observation with this instrument to have ever been published.

2. METHOD ORGANIZATION AND RESULTS OF OBSERVATION

Declinations are observed differentially, the reference stars being selected from the FK4. The list of the observed stars is displayed in Table 1, where n - the number of observations, m - apparent magnitude. It goes without saying that the stars have been selected in such a way as to be as near, in right ascension and declination, to the observed planet as possible and, moreover, as symetrically distributed as only feasible. One usually took 4 to 6 stars to be linked with the planet under observation, but this number was, for the sake of better dependability, now and then increased. Each observing tour included determination of the horizontal flexure component, which took about 25 minutes.

Mars, J upiter, and Saturn observations were executed by setting the micrometer threads on the north and south edges. When, on the E clamp, one started setting on the planet's north edge it was on the south edge that

No	N _{FK4}	m	
1	1335	4.9	
2	498	1.2	
3	1 3 4 8	5.6	
4	1 3 3 5	- 5.2	1
5	510	5.1	
6	1 3 6 5	6.4	
7	523	4.3	
8	1371	4.6	
9	1374	6.3	
10	1 38 1	6.2	
11	5 45	4.0	
12	548	2.9	
13	1 390	5.6	
14	556	3.4	
15	559	4.7	1
16	564	2.7	
17	1404	6.8	
18	1405	6.7	
19	1407	5.9	
20	577	4.0	
21	1413	5.0	2
22	1415	5.1	ī
23	594	2.5	1
24	1419	5.5	
25	597	2.9	1
26	607	3.1 var.	1
27	616	1.5 - 5.2 var.	
28	1430	5.8	
29	62.4	5.0	
30	1437	7.6	1
31	1447	6.2	10
32	1 4 4 9	6.1	
33	644	3.4	10
34	1457	4.3	1
35	1463	4.9	9
36	68 2	4.0	1
37	687	2.8	. 1
38	1485	5.8	
39	1493	6.2	1
40	706	2.1	1
41	710	3.6	1
42	1496	3.4	1
43	720	3.0	
44	722	5.0	1
45	736	4.7	1
46	1517	5.1	1
47	753	4.6	2
48	1529	6.0	1

settings started on the W clamp, and vice – versa. There were in all four settings at each tranit in NSSN or SNNS orders. The planets Uranus and Neptune were observed by bisection. The verical micrometer fixed threads on which the observations were performed were: 1, 1.5, 2 and 3.

Over the period concerned Mars has been observed 13 times, Jupiter 18, Saturn 11, Uranus 16 and Neptune 9 times.

At reduction, it was the mean latitude, resulting from the observations of all stars on a given night, that was used. The latitude has been computed according to the well known formula:

 $\varphi = z + \delta_{app}$

where z — the observed zenith distance and δ_{app} — the apparent star declination at the time of observation.

The zenith distance was determined from observation on two clamp positions: circle east (CE) and circle west (CW). The reduction was performed according to the formula:

$$z = \frac{1}{2} (C_W - C_E) + \frac{1}{2} (M_E - M_W) \mu + \frac{1}{4} (LU_E - LU_W) \lambda_U + \frac{1}{4} (LL_E - LL_W) \lambda_L + C_c + C_r + F + B + \rho$$

Table 2.

where:

C_E and C_W – circle readings on CE and CW positions; M_E and M_W – eye-piece micrometer readings on CE and CW positions; μ – mean eye-piece micrometer revolution μ = 19.99; LU_E, LU_W, LL_E, LL_W – upper and lower level readings on E and W clamps. λ_u and λ_L – mean division values of the upper and lower lavels, resp. computed by the expressions: λ_u = 1".0408-0.0063 (T-1970.0) + 0.0037 (t - 12.0) – 0.0004 (l-22.0), λ_L = 1".0615 – 0.0083 (T - 1970.0) + 0.0029 (t - 12.0) + 0.0007 (l-22.0) (M. Mijatov, V. Trajkovska, 1984); C_c – correction to the circle division; C_T – correction for the run; F – correction for the curvature of the parallel; B – flexure (B = b sin z, b – horizontal flexure component measured on the particular night); ρ – refracton, computed according to the Pulkovo Tables.

The planet declination is deduced from the mean latitude furnished by the observed stars and the measured zenith distance using the familiar relation. Using these values and those obtained from the ephemeris (computed at the Pukovo Observatory according to VSOP-82 theory developed at the Bureau des Longitudes at Paris) one formed the (O-C) differences, exhibited in Table 2.

Date	JED	Initial instr. position		δ		0-C	Edge	$\Delta \pi$	n	Note
				MARS	5					
	2445									
1984 5 18,91	839,41247	E	-17 ⁰	42	13.23	0.36	N/S	14.65	6	4)
1984 5 19,91	840.40872	E	17	39	4.44	0.43	N/S	14.64	5	4)
1984 7 10.76	892.25621	W	18	13	3.23	0.60	1/II	11.06	9	2)
1984 7 11.75	893.25418	E	18	18	26.12	0.61	II/I	11.00	11	
1984 7 12,75	894.25219	Е	18	23	57.57	-0.16	I/II	10.92	12	2)
1984 7 13.75	895,25022	E	18	29	34.76	0.78	H/I	10.85	10	
1984 7 14.75	896.24829	E	18	35	20.27	0.54	II/I	10.78	9	
1984 7 15.75	897.24638	E	18	41	12.30	0.60	1/11	10.71	6	2)
1984 7 19.74	901.23899	E	19	05	43.23	0.28	11/ I	10.44	10	
1984 7 20.74	902.23720	E	19	12	12.57	0.73	I/H	10.36	10	2)
1984 7 22.73	904.23372	E	19	25	3.08	0.72	II/ I	10.25	11	
1984 10 19.65	993.14609	W	25	02	40.81	0.85	II/ I	6.43	6	2)
1984 10 22.64	996,14445	W	24	49	43.48	-1.18	1/11	6.34	4	
				JUPIT	ER					
	2445					a tra ta		-11-0		A A
1983 7 9.81	525.31179	Е	-19 ⁰	43'	32,18	-0:36	S/N	1.73	4	4), 1)
1983 7 10.81	526.30889	W	19	3	4.33	-0.39	S/N	1.73	5	4)
1983 7 17.79	533.28886	E	19	40	46.84	0.31	I/II	1.69	3	
1983 7 18.79	534.28602	E	19	40	34.87	1.27	I/II	1.69	4	
1983 7 19.78	535.28321	E	19	40	26.05	1.30	N/S	1.68	4	4)
1983 7 20.78	536.28040	Ε	19	40	20.96	-0.21	I/H	1.68	0	1), 4)
1983 7 22.77	538.27480	W	19	40	13.58	0.64	I/II	1.67	3	2
1983 7 24.77	540,26924	E	19	40	15.73	0.83	I/II	1.66	2	2), 3)

V.TRAJKOVSKA

Table 2. (continued)

Date	JED	Initial instr. position	*****	δ		0-C	Edge	Δπ	n	Note
1983 7 27.76, 1984 7 10.91, 1984 7 11.91, 1984 7 12.90, 1984 7 12.90, 1984 7 12.90, 1984 7 19.88, 1984 7 20.88, 1984 7 20.88, 1984 7 21.88, 1984 7 22.87, 1984 10 19.65	543.26096 892.41102 893.40791 894.40482 896.39864 901.38327 902.38022 903.37716 904.37410 993.13609	W W E E W W W E E E	19 23 23 23 23 23 23 23 23 23 23 -23	40 14 14 15 16 18 18 19 19 24	37.43 14.74 44.50 14.61 11.84 26.36 50.48 15.11 38.87 48.74	$\begin{array}{r} -0.75 \\ 0.13 \\ 0.62 \\ 0.20 \\ 0.59 \\ -0.50 \\ 0.21 \\ -0.21 \\ -0.36 \\ 0.76 \end{array}$	I/ II I/ II II/I II/I II/I II/I II/I II	1,65 1,92 1,92 1,92 1,92 1,92 1,92 1,91 1,91	3 9 11 12 9 10 10 7 11 6	2)
	2445			SĂTU	IRN					
1983 4 8.99 1984 4 19.90 1984 5 19.90 1984 5 21.89 1984 5 26.87 1984 5 28.87 1984 6 2.85 1984 6 3.85 1984 6 23.79 1984 7 2.77	433.48604 839.39800 840.39508 842.38924 847.37466 849.36885 854.35437 855.35149 869.31138 875.29440 884.26922	E E W E E E E E W	- 90 12 12 12 12 12 12 12 12 12 12 12 12 12	37' 56 55 53 47 45 41 40 30 27 25	35"82 5642 45.61 28.43 57.56 55.38 6.13 11.81 17.21 39.04 43.34	0.19 0.43 0.66 -0 67 0.84 -1.13 -0.46 0.15 -0.71 0.06 0.65	S/N I/II II/I II/I S/N II/I I/I I/II I/I	0"81 0.84 0.83 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.81 0.80 0.79	2 6 5 7 7 6 5 4 5 6 5	4) 1) 2) 2)
				URAN	IUS					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2445\\ 526,32003\\ 535,29483\\ 538,28646\\ 540,28091\\ 543,27257\\ 847,46209\\ 884,35395\\ 892,33137\\ 893,32855\\ 894,32573\\ 895,32292\\ 896,32012\\ 897,31731\\ 901,30609\\ 903,30050\\ 904,29771\\ \end{array}$	E E W W W W W W W W W W E E W	-21° 21 21 21 21 21 21 21 21 21 21	08' 06 05 05 05 10 58 56 56 56 55 55 55 55 54 54 54	38 ¹ :67 28.68 55.16 35.32 7.85 15.86 37.94 34.46 20.35 5.31 51.08 38.88 25.17 36.51 12.98 2.65	0,22 1.84 0.54 -0.42 -0.51 1.22 1.03 -0.45 -0.71 -0.28 -0.77 -0.46 0.14 -0.50 0.37 -0.11	000000000000000000000000000000000000000	0.44 0.44 0.44 0.44 0.45 0.45 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44	5 4 3 2 3 6 7 9 11 12 10 9 6 10	4) 2).4) 3),4) 1)
				NEPTU	JNE					
1984 7 10.89 1984 7 12.88 1984 7 13.88 1984 7 14.88 1984 7 15.88 1984 7 19.86 1984 7 19.86 1984 7 19.86 1984 7 12.86 1984 7 21.86 1984 7 22.86	2445 892.38954 894.38393 895.38113 896.37833 897.37553 901.36432 901.36432 903.35872 904.35593	E E E W W W W	-220 22 22 22 22 22 22 22 22 22 -22	13' 13 13 13 13 13 13 13 14 14	47 ⁴ 92 50,22 50,99 51,53 53,75 59,27 59,27 2,17 3,30	0 ⁶ 99 0.82 1.17 1.79 0.76 0.18 0.18 -0.17 0.00	00000000	0 ¹ 28 0,28 0,28 0,28 0,28 0,28 0,28 0,28 0,	9 12 10 9 6 10 10 7 11	3) 3), 4) 3), 4) 3), 4) 3), 4)

The same Table gives also:

- Date according to universal time up to 0d01;
- -Julian ephemeris date up to 1.10-5;
- Initial instrument position (E or W);
- $-\delta$ Observed apparent geocentric declination, of the disc's centre
- Order of the observed edges (N, S, Center obtained from I – NSSN or II – SNNS orders of measurings); - $\Delta \pi$ – correction for the parallax, computed by the formula:

 $\Delta \pi = 0.997 \pi o \sin (44048'13 - \delta);$

- n the number of the reference stars for the given planet observation;
- -Note on the circumstances of observation (1 through the cluds, 2 image unsteady, 3 image indinstinct, 4 settings dubious).

The differences of the observed apparent semidiameter R_o and the ephemeris apparent semi-diameter R_e are listed in Table 3,

The mean square errors σ of the (O-C) values for each planet separately, as well as m.s. errors ϵ of the differences (R_o-R_e) are shown in Table 4. The $\overline{O-C}$ and $\overline{R_o-R_e}$ values, along with number of observation n are also given.

A comparison of the (O-C) values and their mean errors, resulting from the Belgrade Vertical Circle observations with those associated with the Wanschaff Verti cal Circle at the K iew Observatory (Harin et al., 1980) disclosed the former to be somewhat smaller. This might in part be attirbuted to the Belgrade instrument being geographically more favourably located (lower latitude). The problem of the site selection for the instruments involved in the solar system bodies observation (refraction getting larger with the higher latitudes) was pointed at by these same authors.

These observations of ours are continually going on. Complete analysis will ensue after the observing programme will have been finished.

I take the opportunity to thank Dr. G. Teleki for his useful advice and instructions at preparing this paper, as well as Dr. M. Tchubey from the Pulkovo Observatory for his supplying the ephemeris positions of planets on our programme and Mrs. V. Sekulović for being helpful at computer. Table 3. Differences of the observed and ephemeris semidiameters of the planets

	MARS		
Ro-Re		Date	Ro-Re
1.96	Read I	14. 7.1984	0.75
2.65		15.7.1984	1.70
		19. 7.1984	0.71
1.11		20. 7.1984	0.83
0.92		22. 7.1984	1.09
1.26		19,10,1984	1.56
1.18		22,10,1984	1.29
	$ \frac{R_0 - R_e}{1.96} 1.96 2.65 1.11 0.92 1.26 1.18 $	MARS R ₀ -R _e 1 ⁶ .96 2.65 1.11 0.92 1.26 1.18	$\begin{array}{c c} \mbox{MARS} \\ \hline R_0-R_e & \mbox{Date} \\ \hline 1^{6}.96 & 14.7.1984 \\ 2.65 & 15.7.1984 \\ 1.9.7.1984 \\ 1.9.7.1984 \\ 0.92 & 22.7.1984 \\ 1.26 & 19.10.1984 \\ 1.18 & 22.10.1984 \\ \hline \end{array}$

JUPITER

Date	R _o -R _e	Date	R _o -R _e
10.7.1983	-0".58	10, 7,1984	3.07
17.7.1983	2,28	11. 7.1984	3,48
18.7.1983	1.06	12. 7.1984	3.42
19.7.1983	1.08	14. 7.1984	3,93
20.7.1983	1.60	19. 7.1984	2.39
22.7.1983	1.94	20. 7.1984	2.32
24.7.1983	0.78	21. 7.1984	2.60
27.7.1983	1.95	22. 7.1984	2.66
		19.10.1984	0.53
		SATURN	
Date	R _o -R _e	Date	$R_0 - R_e$
		28.5.1984	2,00
8.4.1983	1.83	2. 6.1984	1.18
18.5.1984	1.00	3. 6.1984	2.12
19.5.1,984	2.01	17. 6,1984	1.82
21.5.1984	1.52	23. 6.1984	1.54
26.5.1984	1.94	2, 7, 1984	1.22

Planet	0-C	σ	R _o -R _e	e	n
Mars	0,"40	±0''54	1.31	±0".55	13
Jupiter	0.23	±0.61	2.19	±1.00	18
Saturn	0.00	±0.65	1.75	±0.49	11
Utanus	0.20	±0.73	23 <u>-</u> 24		16
Neptune	0.75	±0.65	10-10-10	- <u>-</u> 40 - 01	9

REFERENCES

Harin, A.S., Nenahova, E. M., Lazarenko, P.F.: 1980, Ed. Nauk. dumka, Kiev, 96.

Mijatov, M., Trajkovska, V.: 1984, Bull. Obs. Astron. Belgrade, 134, 9.

UDC 523.44

FUNDAMENTAL ASTEROID POSITIONS OBTAINED WITH THE BELGRADE ZEISS ASTROGRAPH

D.Olević

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

S.Šegan and R.Pavlović

Department of Astronomy, Faculty of Sciences, Studentski trg 16, 11000 Belgrade, Yugoslavia

(Received May 5, 1985)

SUMMARY: Presented are 147 geocentric positions of the "fundamental" asteroids observed in the period 1967 to 1983. The reduction was implemented by the method of dependences using 4 to 11 reference stars whose positions are taken from AGK3 and SAO catalogues.

1. INTRODUCTION

The present paper comprises 147 positions of the ,,fundamental 'asteroids from the Leningrad programme (Orel'skaja, 1974) obtained with the short-focus Zeiss 16/80 astrograph of the Belgrade Observatory (1 mm = 257"83) in the period 1966–1983.

The plate measuring has been carried out with the Zeiss two-coordinate Pulfrich-type measuring engine (with a 0.001 mm graduation).

The whole of the computations have been performed on the ,,digital PDP 11/70' computer.

2. RESULTS

The positions of the reference stars have been taken from the ACK 3 and SAO catalogues, depending on declinations. The plates have been reduced according to Schlesinger method (method of dependences) using 4 to 11 reference stars. The same method provides also possibility for ulterior correcting the results. Moreover, the method proved in a paper of ours (Olević et al., 1986) more accurate than the Terner's one involving 6 coefficients, applied to observations with our instrument.

In Table 1 are given: The listing number of observation (common to both Table 1 and Table 2), object designation, plate designation, date, geocentric

positions for 1950.0 and the corresponding residuals with respect to the ITA ephemeris.

No ephemeris were available for the period 1966-1976 (residuals from this interval are marked by asterisks).

Table 2 gives the listing number (common to both Tables), star designation, whereby: for AGK 3 stars by zone and ordering number and by ordering number for the SAO stars, 1 denoting the AGK 3 and 0 the SAO catalogue, final figures in α and δ and the corresponding dependences.

ACKNOWLEDGEMENT

We feel obliged to thank V.I. Orel'skaya for her regular long-standing supplying the high-accuracy Ephemeris for checking the observations as well as for her advice accorded in personal contact with on of us (D. Olević). We thank also B.K. Izvekov who took on sending the Ephemeris.

REFERENCES:

- Olević, D., S. Šegan, S. and Pavlović, R.: 1986, Bull. Obs. astron. Beograd, 136 (this Bulletin).
- Orel'skaya, V.I. (1974), in Asteroids, Comets, Meteoric Matter, eds. C. Cristescu, W.J. Kleopzynski and B.Milet (Acad.Rep. Soc, Romania), 39.
Table 1.

				2 az dz 38 0			= == == =	= #= == == == == =	= E				- 53 as as as 27
N	OBJECT	PLATE	DATE			ALF	PHA	1950	DELI	A 1	.950	0-C	0-C
						н	M	S	0	,	•	S	H
1.	1 CERES	24/68	1968	MAR	24.033609	14	26	44.279	- 0	6	43.79	* • * * *	*.**
2.		25/68	1968	MAR	24.043671	14	26	43.771	- 0	6	47.73	* • ***	* • **
3.		34/68	1968	MAR	27.014179	14	25	8,884	+ 0	4	17.91	*.***	* * * *
4.		50/68	1968	APR	1.0044/0	14	22	2+/99	+ 0	22	50.52	* ***	*•**
6.		56/68	1968	APR	18,961411	14	22	34.300	т V + 1	18	41.96	* * * * *	* * * *
7.		57/68	1968	APR	18,973930	14	7	33,833	+ 1	18	43.58	* ***	*.**
8.		62/68	1968	APR	23.931219	14	3	8.132	+ 1	28	21.48	* * * * *	*.**
9.		63/68	1968	APR	23,939541	14	3	7.639	+ 1	28	21.35	* • * * *	*.**
10.	2 PALLAS	10/68	1968	FEB	20.000347	11	47	56.558	- 6	6	31.50	* * * * *	* • **
11.		10/68	1968	FEB	20.010347	11	47	56.542	- 6	6	28.35	* ***	* **
12.		20/49	1040	MAD	20.013319	11	37	10 204	- 0	0 5	21,48	*****	* * *
14.		21/68	1968	MAR	23.946819	11	27	9,878	+ 7	5	43.01	* * * * *	* ***
15.		30/68	1968	MAR	26.934660	11	25	21,486	+ 8	13	52.22	* • ***	*.**
16.		31/68	1968	MAR	26.945601	11	25	21.161	+ 8	14	2.53	*.***	*.**
17.		53/68	1968	APR	18.889910	11	17	29.459	+15	2	26.51	* • * * *	* • **
18.		8/78	1978	JUL	24,884392	16	40	55,145	+21	42	46.59	0.058	1.58
19.		8/78	1978	JUL	24.893750	16	40	54.965	+21	42	39.79	-0.017	0.47
20.		9//9	1979	JUL	19.019097	21	28	25+928	+14	41	44.03	0+045	0.71
21.		9/79	1070	JUL	19.036111	21	20	25.294	414	41	40.50	0.031	0.24
23.		9/82	1982	MAR	25.002470	13	20	39.846	+12	1	32.56	-0.002	-0.84
24.		9/82	1982	MAR	25.016296	13	20	39.314	+12	1	49.10	0.014	-1,96
25.		9/82	1982	MAR	25.034340	13	20	38.531	+12	2	12,78	-0.053	-1.31
26.		10/82	1982	MAR	27,000185	13	19	18,974	+12	43	41.86	-0.092	-1.27
27.	7	10/82	1982	MAR	27.010000	13	19	18.635	+12	43	54.79	-0.027	-0.65
28.	3 JUNU	26/68	1968	MAR	24.063480	14	50	33+21/	- 4	21	48.84	* ***	* * * *
30.		36/68	1968	MAR	27.055670	14	49	15.340	4	1	26.47	* * * * *	* * **
31.		37/68	1968	MAR	27.077890	14	49	14.764	- 4	1	18.37	*.***	*.**
32.		45/68	1968	MAR	30.037090	14	47	47.422	- 3	40	46.89	* • ***	* • **
33.		52/68	1968	APR	1.036111	14	46	43.069	- 3	26	39.53	* • * * *	* • * *
34.		58/68	1968	APR	18,996849	14	34	29.598	- 1	20	22.10	* * * * *	* * * *
35.		57/68	1968	APR	19+016291	14	34	28+681	- 1	20	13.03	* * * * *	* * * *
30.		77/68	1968	MAY	3.907292	14	22	37.912	+ 0	10	13.43	* * ***	* * **
38.		78/68	1968	MAY	3.922610	14	22	37.134	+ 0	10	16,13	*.***	*.**
39.		9/78	1978	JUL	24.925347	19	59	37.630	- 4	57	17.26	-0.021	-0.14
40.		9/78	1978	JUL	24.935764	19	59	37.064	- 4	57	19.51	-0.037	0.81
41.		9/78	1978	JUL	24.946180	19	59	36.530	- 4	57	23.74	-0.021	-0.22
42.		1/80	1980	FEB FFF	20.891840	/	1	28.720	+ 8	2	40.70	0.045	1 21
43.		1/80	1000	FEB	20+901736	7	1	20.010	T 0	2	55.00	0.086	-1.09
44+		14/82	1982	MAY	19.020498	18	32	51.148	- 5	50	55.82	0.068	1.86
46.		14/82	1982	MAY	19.029433	18	32	50.824	- 5	50	54.55	-0.036	1.22
47.		14/82	1982	MAY	19.038461	18	32	50.674	- 5	50	54.57	0.035	-0.72
48.	4 VESTA	124/68	1968	DEC	7.773180	1	26	21.918	- 0	30	33.76	* • * * *	*.**
49.		125/68	1968	DEC	7.796580	1	26	21.805	- 0	30	29.60	* • * * *	* • **
50.		126/68	1968	DEC	10.775750	1	26	16.663	- 0	17	14.17	* * * * *	****
52.		31/79	1979	OCT	12.003760	1	-0	7,071	+ 6	23	9.44	-0.039	-1.63
53.		31/79	1979	OCT	12,110070	3	4	3.261	+ 6	22	48.09	-0.161	-0.08
54.		18/82	1982	JUL	17,986516	21	46	6.628	-19	22	40.84	-0.048	-0.30
55.		18/82	1982	JUL	17,995856	21	46	6.305	-19	22	46.08	-0.061	-1.14
56.		18/82	1982	JUL	18.007153	21	46	5.962	-19	22	52.11	-0.030	-1.84
57.	6 HEBE	89/68	1968	JUN	9.016670	18	48	41.225	- 5	22	55.29	* ***	* ***
38+ 50		70/08	1040	NUC	7+1000007	10	-40	9.705		16	47.89	ጥ • ጥጥጥ ቋ. ቋቋቋ	****
J7+		7//00	1700	JUN	20+/33047	10	00	· · · / · / · ·	0	10		ጥ 🕈 ጥጥ ጥ	ጥቀጥባ

	********	******		====		====	===	======		===			
N	OBJECT	PLATE	DATE			AL	PHA	1950	DEL	TA	1950	0-C	0-C
60.		3/78	1978	MAR	29,905586	10	22	37.283	+19	46	15.96	0.018	-1.54
61.		3/78	1978	MAR	29.919950	10	22	36.889	+19	46	19.56	0.053	-1.64
62.		3/78	1978	MAR	29.933333	10	22	36.434	+19	46	24.75	-0.003	0.11
63.		3/79	1979	NUL	6.909028	16	0	25.392	+ 2	2	56.81	-0.012	-0.35
64.		3/79	1979	JUN	6.919473	16	0	24.861	+ 2	2	56.52	0.026	-0.11
65.		3/79	1979	JUN	6.909028	16	0	25,475	+ 2	2	56,94	0.071	-0.21
66.		3/79	1979	JUN	6.919473	16	0	24,756	+ 2	2	56.81	-0.079	0.17
6/+		24/83	1983	MAY	16.011603	18	5	51.031	- 3	56	59.15	-0.033	-0.38
00× 20		24/83	1007	MAT	16+023120	18	5	50.700	- 3	56	54.96	-0.067	1.62
70.		24/83	1993	MAY	16:03214/	18	0	50.422	- 3	56	54+2/	-0.009	-0.38
71.	7 IRIS	58/69	1969	SEP	8,997920	10	56	11.359	+17	7	35.42	*.***	*.**
72.		59/69	1969	SEP	9.025000	ŏ	56	10.763	+17	7	37.50	-0.052	1.82
73.		68/69	1969	SEP	30.877840	ō	43	34.421	+16	21	15.88	-0.071	0.07
74.		4/78	1978	MAR	30,844128	9	24	7.303	+ 7	0	25.98	0.081	-1.33
75.	11 PARTHENC	DPE100/67	1967	NOV	28.126089	8	33	53.384	+16	51	46.93	* . ***	* . **
76.		101/67	1967	NOV	28.154560	8	33	53.616	+16	51	45.47	* • * * *	*.**
77.		102/67	1967	NOV	28,199700	8	33	58,645	+17	1	24.79	* • * * *	* • **
78.		107/67	1967	DEC	0.117420	8	33	30.623	+16	51	43.50	*.***	* . **
/9.		108/6/	1967	DEC	0.135420	8	33	30,571	+16	51	44.78	* • ***	* • **
80.		3/68	1968	FEB	5.902790	7	46	52,912	+20	49	35.09	* • ***	* • **
82.		4/68	1968	rttB	5.91//09		46	51+980	+20	49	42.31	* * * * *	* ***
87.		4/60	1040	CCD	10 050774	7	740	55 017	101	77	5/+11		**** * **
84.		7/68	1949	FFR	19,977791	7	30	55.947	101	30	0.57	* ****	* **
85.		22/69	1969	APR	26.015093	15	3	11.006	- 9	14	33.21	*.***	*.**
86.		35/69	1969	MAY	23.906389	14	38	2.414	- 7	35	41.69	*.***	*.**
87.		23/78	1978	OCT	9.088542	4	41	12,833	+15	54	8.59	-0.033	0.07
88.		23/78	1978	OCT	9.097407	4	41	12.878	+15	54	7.98	-0.001	0.35
89,		24/78	1978	OCT	9.117025	4	41	12.932	+15	54	7.46	0.025	1.78
90.		24/78	1978	OCT	9.129525	4	41	12.797	+15	54	5.43	-0.127	1.01
91.		29/78	1978	UCT	11.101389	4	41	12.039	+15	50	41.26	0.045	-1.03
92.		29/78	1978	OCT	11,116667	4	41	11,976	+15	50	37.25	0.018	-3.43
7.3 ÷ 9.4		27//8	1000		11+131377	4	41	12.005	+15	50	3/ . 99	0+082	-1,12
Q = ;		3/80	1000	CCD	21,007072	11		50 417	т 0 1 0	15	20+70	0.075	-0.34
96.		43/82	1982	NUN	21.991134	5	44	32.424	τ ο +17	58	25.95	0.094	0.37
97.		43/82	1982	NOV	21.999815	5	46	31.948	+17	58	26.15	0.029	0.69
98.		43/82	1982	NOV	22.008495	5	46	31.484	+17	58	26.03	-0.025	0.68
99.		43/82	1982	NOV	22.017176	5	46	31.226	+17	58	26.00	0.127	0.77
100.		1/83	1983	JAN	13.849306	4	57	57,066	+18	33	32,22	0.013	-0.89
101.		1/83	1983	JAN	13.856944	4	57	56.681	+18	33	32.14	-0.130	-1.76
102.		1/83	1983	JAN	13.864236	4	57	56.565	+18	33	34.78	-0.015	0.13
103.		1/83	1983	JAN	13.8/1528	4	57	56+367	+18	33	36+22	0.019	0.81
104.		1/83	1983	DOCT	13+8/9514	4	37	55.454	+18	33	5.71	-0.030	-0.62
106.	TO HELFORE	30/79	1979	OCT	11.158408	0 4	70	17.775	110	10	4.10	-0.045	1.75
107.		4/80	1980	MAR	19.010764	13	57	35.483	- 0	13	29.26	0.043	-1.24
108.	•	4/80	1980	MAR	19.020660	13	57	35.029	- 0	13	22.47	-0.068	0.79
109.		4/80	1980	MAR	19.030729	13	57	34.819	- 0	13	17.51	0.071	0.92
110.		15/81	1981	JUL.	3.019954	22	14	20.239	- 4	45	55.30	-0.026	0.09
111.		15/81	1981	JUL	3.028113	22	14	20.470	- 4	45	56,22	-0.012	-0.40
112.		15/81	1981	JUL	3.037141	22	14	20.739	- 4	45	55.71	0.015	0.57
113.		15/81	1981	JUL	3.047361	22	14	20.894	- 4	45	57.36	-0.102	-0.55
114.		9/83	1983	MAR	13.928171	10	41	52.761	+12	6	1.25	0.090	1.01
112+		7/83	1003	MAD	13 0/0210	10	41	52+085	+12	6 4	0+00	-0.007	-0.71
117.	39 LAFTITI	4 16/78	1978	SEP	26,987500	10	7	53.399	+ 0	53	10.09	-0.059	0,43
118.	wrr mwrthw Ide Ide F	16/78	1978	SEP	26.999453	2	7	53.044	+ 0	53	3.71	-0.058	0,33
119.		16/78	1978	SEP	27.010775	2	7	52.926	+ 0	52	56.13	0.108	-1.51
120.		20/78	1978	OCT	8,958333	2	ò	58.116	- 0	51	4.15	0.037	-1.26

Nº	OF	JECT	PLATE	DATE			ALI	PHA	1950	DEL	TA	1950	0-C	0-C
121.			20/78	1978	OCT	8.968750	2	0	57.541	- 0	51	8.97	-0.113	-0.70
122.			20/78	1978	OCT	8,980556	2	0	57.331	- 0	51	15.19	0.159	-0.84
123.			26/78	1978	OCT	10.982292	1	59	33.798	- 1	8	20+14	-0.038	0.24
124.			27/78	1978	OCT	11,006250	1	59	32,909	- 1	8	32.88	0.088	-0.31
125.			27/78	1978	OCT	11.020139	1	59	32,230	- 1	8	39.47	-0.002	0.16
126.			15/82	1982	JUL	17.005405	20	34	48.553	- 8	57	47.53	0.022	-0.50
127.			15/82	1982	JUL	17.013912	20	34	48,289	- 8	57	49,96	0.131	-0.33
128.			15/82	1982	JUL	17.021550	20	34	47.734	- 8	57	52.05	-0.090	-0.10
129.	40	HARMONIA	77/67	1967	NOV	16.084730	7	45	46.644	+21	0	28,66	* * * * *	* * * *
130.			78/67	1967	NON	16.102091	7	45	47.241	+21	0	27,99	* • * * *	* • **
131.			98/67	1967	NON	28.087549	7	47	2.038	+21	19	55.87	* • * * *	* • **
132.			99/67	1967	NON	28.105610	7	47	1.920	+21	19	58.17	* • * * *	* • **
133.			105/67	1967	DEC	0.075390	7	46	19.754	+21	30	0.55	* • * * *	* * * *
134.			106/67	1967	DEC	0.115320	7	46	19.652	+21	30	5.83	* * * * *	* * * *
135.			1/68	1968	FEB	5.859280	6	48	18.015	+25	28	46.37	* * * * *	* • **
136.			2/68	1968	FEB	5.877070	6	48	17.374	+25	28	48,72	* * * * *	* * * *
137.			13/77	1977	NON	12.019184	5	2	30.337	+19	11	9.59	* * * * *	****
138.			13/77	1977	NON	12.036719	5	2	30.907	+19	11	5.25	* * * * *	* * * *
139.			11/80	1980	SEP	18.004478	0	30	15.505	- 5	18	1.01	* * * * *	* • **
140.			11/80	1980	SEP	18.013508	0	30	14.939	- 5	18	4.57	* * * * *	* * * *
141.			11/80	1980	SEP	18.021494	0	30	14.679	- 5	18	6,98	* * * * *	* * * *
142.	148	GALLIA	2/83	1983	JAN	13.897338	7	25	31.731	- 0	47	23.82	0.010	-0.19
143.			2/83	1983	JAN	13.904861	7	25	31.193	- 0	47	18,29	-0.113	0.24
144.			2/83	1983	JAN	13.913183	7	25	30.704	- 0	47	11.38	-0.141	1.50
145.	532	HERCULINA	3/69	1969	MAY	17.000404	17	35	16.948	- 8	7	20,75	* • * * *	* • **
146.			4/69	1969	MAY	17.055099	17	35	14.752	- 8	7	26.87	* • * * *	* * * *
147.	704	INTERAMNIA	8/79	1979	JUL	18,977980	20	55	19.447	- 4	22	25.66	0.051	0.04

Table 2.

OBSERVATIONS	CATALOGUE	POSITIONS USED DEPENDANCES
the and the rade and and and and bee have the task and and beet the		S N
1	1 -0 1914	28.970 -0.638 0.1199990
	0 1748	59.681 32.853 0.0975477
	0 1751	12.687 58.222 0.0976432
	-0 1916	32.094 -1.312 0.1123574
	-0 1918	23.253 -47.412 0.1036359
	-0 1921	2.674 -6.504 0.1026656
	-1 1844	21.013 -28.841 0.1207894
	1 1654	30,463 37,198 0,0628210
	-0 1922	37.726 -58.863 0.0947771
	0 1759	50,459 -0,030 0,0877636
2	1 -0 1914	28.970 -0.638 0.1206919
	0 1748	59.681 32.853 0.0979222
	0 1751	12,687 58,222 0,0978468
	-0 1916	32.094 -1.312 0.1126877
	-0 1918	23.253 -47.412 0.1037555
	-0 1921	2.674 -6.504 0.1025322
	-1 1844	21.013 -28.841 0.1208078
	1 1654	30.463 37.198 0.0622234
	-0 1922	37.726 -58.863 0.0944751
	0 1759	50.459 -0.030 0.0870574
3	1 -0 1914	28,970 -0.638 0.1126226
	0 1745	35.765 29.599 0.1805885
	0 1748	59.681 32.853 0.1032147
	1 1644	28,224 2,440 0,0348127
	0 1751	12,687 58,222 0,1015327
	-0 1916	32.094 -1.312 0.1512833
	-0 1918	23.253 -47.413 0.1200683

OBSERVATIONS	CATALOGUE	POSITIONS USED DEPENDANCES
	1 1651	24.469 43.448 0.0181493
	-0 1921	2.674 - 6.504 0.1140561 30.463 37.199-0.0226031
	-0 1922	37.726 -58.863 0.0862747
4	1 0 1736	55,532 39,978 0,1983383
	-0 1908	12.412 -35.950 0.1632854
	1 1631	41.982 20.727 0.1630105 22.958 4.182 0.1243012
	-0 1914	28.970 -0.638 0.1168873
	-0 1916	32.094 -1.313 0.0882079
	-0 1918	23.253 - 47.413 0.0771739
5	1 0 1736	55,532 39,978 0,1986203
	-0 1908	12.412 -35.950 0.1517418
	1 1631	41.982 20.727 0.1794239
	1 1541	22+958 4+182 0+1373090
	-0 1916	32.094 -1.313 0.0774955
	-0 1918	23.253 -47.413 0.0708421
.2.	1 1653	17.399 3.074 0.0796451
0	1 2 1/28	20+825 27+198 0+1421194 5-095 A9-666 0-1096807
	0 1713	7.238 41.378 0.1611003
	-0 1898	42.097 -48.110 0.0941699
	2 1731	39.886 50.425 0.1523153
	0 1725	4.086 15.081 0.1301882 17.504 40.267 0.0977819
	1 1619	43.019 3.221 0.1126443
7	1 2 1728	20.825 27.198 0.1427391
	1 1606	6.095 49.666 0.1099746
	-0 1898	/.238 41.378 0.1616/98 42.097 -48.110 0.0940606
	2 1731	39.886 50.425 0.1523507
	1 1616	4.086 15.081 0.1298421
	0 1725	17.504 40.267 0.0972367
8	1 1 1597	51.980 37.341 0.0864551
	1 1600	12,534 55,948 0,0809196
	0 1702	18.855 48.477 0.0963039
	0 1/10	17.552 57.684 0.1094425
	2 1727	11.114 44.324 0.1156918
	1 1606	20.825 27.197 0.1286695
	1 1607	18.218 26.705 0.1305979
9	1 1 1597	14.870 5.819 0.1600137
	1 1600	12.534 55.948 0.0999159
	0 1702	18,855 48,477 0,0830597
	0 1710	17.552 57.684 0.1062126
	1 1606	47,281 48,039 0,1388709 20,825 27,197 0,1433239
	1 1607	18.218 26.705 0.1600004
10 11	1 1613	14.670 5.819 0.1823562
10 11	0 138408	59,976 -25,872 0,1130530 0,1129856
	138422	33.203 -20.013 0.0676091 0.0679017
	138425	42.002 -1.980 0.1760034 0.1757008
	138443	22,575 -26,786 0,0740580 0,0743988
	138451	16.768 - 1.074 0.1012225 0.1013583
	138459	25.077 -33.825 0.1616141 0.1615126
12	0 138406	59.976 -25.872 0.1131261
	138412	19.880 -0.807 0.0963422
	138422	55+205 -20+013 0+0686346 42+002 -1.980 0+1750933
	138443	22.575 -26.786 0.0749897
	138451	16.768 -1.074 0.1016758
	138453	30.300 -42.653 0.2090683
13	1 7 1537	36.024 44.706 0.0952477
	7 1538	38.151 34.196 0.1397766
	8 1489	12.311 23.562 0.0480440

FUNDAMENTAL ASTEROID POSITIONS OBTAINED WITH THE BELGRADE ZEISS ASTROGRAPH

Table 2. (continued)

OBSERVA	NOITE	5	CATALOGU	IE PO	SITIO	NS USED	DEPENDANC	ES	
			6 14	138 38	8.841	26.265	0,1656259		and a second
			7 15	545 10	.314	53.736	0.0814734		
			8 14	191 5	5.066	22,300	0.0188317		
			7 15	551 32	2.670	14.200	0.0399843		
			6 14	145 22		22.768	0.1070575		
14			1 7 1	46 57	+299	54.871	0.0847765		
			7 1	578 70	1.151	44+/00	0.0958318		
			8 14	189 12	.311	27.542	0.0497417		
			7 15	540 46	.326	59.672	0.1044171		
			7 15	542 38	.258	43.951	0.1145858		
			6 14	38 38	8.841	26.265	0.1649278		
			7 15	545 10	.314	53.736	0.0815756		
			8 14	191 5	.066	22,300	0.0194090		
			7 15	51 32	.670	14.200	0.0401955		
			0 14	40 22	+/29	22.768	0.1063969		
15			1 9 1/	100 10	• 277	34.8/1	0.0842661		
			7 15	37 27	.201	3.273	0.1412510		
			8 14	85 36	.024	44.706	0.1449090		
			7 15	40 46	.326	59.672	0.1151889		
			8 14	90 51	.542	22.796	0.1320483		
			7 15	45 10	.314	53.736	0.1007263		
			9 14	13 52	.535	33.670	0.0992416		
			8 14	91 5	+066	22.300	0.0861955	1.53	
10			1 8 14	82 49	.708	42.654	0.1609115		
			/ 12	95 74	.201	3.2/3	0.1623177		
			7 15	40 44	. 324	59.470	0.1144/884		
			8 14	90 51	.542	22.794	0.1326261		
			7 15	45 10	.314	53.736	0.0998255		
			9 14	13 52	.535	33.670	0.0995538		
			8 14	91 5	.066	22.300	0.0856103		
17			1 15 12	21 48	.196	9,980	0.0433010		
			15 12	24 5	•928	14.022	0.0827868		
			14 11	91 6	.904	45.322	0.1083311		
			16 11	85 36 05 AE	+866	38.406	0,0695259		
			14 11	90 40 99 A	+182	17 207	0.1/59182		
			15 12	33 16	.828	26.985	0.1827514		
			14 11	98 18	.137	51,258	0.2292127		
18	19		1 21 16	20 42	.840	4.348	0.1270304	0.1271885	
1			21 16	23 35	.217	56.650-	0.0957078-	-0.0926260	
			21 16	26 17	.287	11.800	0.2383210	0.2371304	
			21 16	27 37	.191	58,190	0.2638325	0.2622513	
			21 16	28 27	+363	0.871	0.1748501	0.1745228	
			21 16	29 31	+ 695	57.811	0.1817666	0.1813757	
20	21	22	21 10	31 40 94 14	. / 38	33.641	0.1099072	0.1101572	0 174/510
		A. A.	15 24	03 48	.964	21 504	0.1337731	0+1340/87	0,1346512
			14 24	05 45	.127	36.576	0.1351222	0.1351794	0.1352409
			14 24	07 52	.814	19.436	0.0259946	0.0259149	0.0260855
			14 24	06 58	.265	51.332	0.1624354	0.1625132	0.1625038
			14 24	14 38	.012	41.236	0.2608980	0.2610537	0.2609488
			15 24	12 2	.490	18.900	0.0477225	0.0476271	0.0475395
			15 24	18 27	.684	51.374	0.0842593	0.0840686	0.0836922
27	24	35	15 24	24 46	.334	51.161	0.1460071	0,1458077	0.1453595
23	24	20	1 12 14	75 29	• 798	27.576	0.0837862	0.0845496	0.0856440
			11 14	90 10	080	37.591	0.0609024	0.0604826	0.0598911
			12 14	79 10	.258	1.322	0.0989307	0.0997495	0.1009197
			10 16	20 44	.847	0.763	0.0665400	0.0658000	0.0647000
			12 14	80 3	.817	49.067	0.0898148	0.0900153	0.0903058
			13 13	17 14	.223	28.724	0.1175898	0.1185403	0.1198853
			11 14	96 11	.777	25.108	0.0937861	0.0934334	0.0929572
			11 14	98 54	.239	56.358	0.0851302	0.0842317	0.0829551
			12 14	86 53	.590	57.604	0.1155741	0.1155831	0+1155906
	07		11 15	03 37	.673	43.172	0.1117672	0.1112090	0.1103813
26	21		1 12 14	/5 29	.798	27.576	0.0560878	0.0562566	
			13 13	10 33	+83/	4/+225	0.0565503	0.0573055	
			12 14	79 10	250	1 722	0.0074447	0.06/1257	
			12 14	10	200	1.022	V+V7.14A44	0+0230008	

DESERVATIONS	CATALOGUE	FOSITIONS USED DEPENDANCES
	13 1313	24,931 6,965 0,0962650 0,0970278
	12 1480	3.817 49.067 0.1066005 0.1060400
	1.2 1481	25.736 13.408 0.1112498 0.1111145
	13 1315	26.803 47.920 0.1247872 0.1252953
	13 1317	14.223 28.724 0.1362305 0.1363073
21	0 140154	41+777 20+108 0+1012041 0+1499710 30-14641.744 0-0830000
	140157	40.345 -42.934 0.1310545
	140168	40.235 -3.216 0.0389685
	140189	27.756 -45.296 0.1423605
	140192	41.039 - 50.444 0.0310590
	140213	46.297 -49.349 0.1185626
	140219	20.733 -41.968 0.0746146
	140232	44.543 -8.665 0.1789074
5. S ¹	0 140154	32.140 -41.744 0.0835309
	140157	40.345 -42.934 0.1312211
	140168	40.235 -3.216 0.0397745
	140189	27.736 -45.275 0.1421404
	140213	41.037
	140217	59.150 -52.979 0.2005496
	140219	20.733 -41.968 0.0746543
7.5	140232	44.543 -8.665 0.1780139
2 W	0 140154 140157	32+140 -41+744 0+1526423
	140168	40.235 -3.217 0.1679768
	140189	27.756 -45.296 0.0980341
	140192	41.039 -50.444 0.1570569
	140213	46.297 -49.349 0.0934921
	140217	57+150 -52+979 0+0466864 20 777 -41 949 0 1171204
	140232	44.543
- N - 1	0 140154	32.140 -41.744 0.1531629
	140157	40.345 -42.933 0.1253918
	140168	40.235 -3.217 0.1689364
	140107	2/+/30 T43+276 V+V7/233 41.039 -50.444 0 1570347
	140213	45.297 -49.349 0.0932869
	140217	59,150 -52,979 0,0456017
	140219	20.733 - 41.968 0.1133207
×12 × 19	140232	44.543 -8.665 0.0446796
a sub-	140143	1.695 - 56.190 - 0.1927375
	140154	32.140 -41.744 0.1721217
	140189	41.039 -50.444 0.1313381
	140192	46.297 -49.349 0.1027842
	140213	57+150 -52+979 0+0990040 20.773 -41 040 0 0057759
33	0 140111	15.597 -4.461 0.1181164
	140132	6.296 -36.209 0.1854629
	140141	35.963 -32.505 0.0333128
	140143	1.695 -56.190 0.0784046
	140154	32+140 -41+744 0+0528057 40-2353-218 0-1645404
	140189	27,756 -45,297 0,1018871
	140192	41.039 -50.444 0.2656702
34	1 -1 1845	28.206 -7.555 0.1392682
	-2 8/60	5.999 -47.552 0.1008946
	-0 1931	51.979 -6.045 0.1603581
	-2 8790	12.691 -17.832 0.0945420
	-0 1935	38.277 -3.960 0.1562440
	-2 8820	26.915 -31.842 0.0809216
35	-1 1851	1,152 -30,806 0,1223481
5. 7 S. 2	-2 8760	5,999 -47,552 0,1007968
	-1 1848	13.413 -38.614 0.1461454
	-0 1931	51.979 -6.045 0.1611443
	-2 8/90	12+671 -1/+832 0+073//38
	-2 8820	26.915 -31.842 0.0795627

FUNDAMENTAL ASTEROID POSITIONS OBTAINED WITH THE BELGRADE ZEISS ASTROGRAPH

Table 2. (continued)

DBSERVA	TIONS	a here ord	CATALOGUE	POSITIONS USED DEPENDANCES
			-1 1851	1,152 -30,806 0,1217155
36			1 -0 1920	51.944 -26.706 0.0804020
			-0 1921	2.673 -6.500 0.0855044
			-1 1844	21.013 -28.843 0.11/39/5
			0 1759	50.459 -0.030 0.1108917
			-0 1927	12.050 -20.992 0.1255904
			-1 1848	13.413 -38.614 0.1659433
			0 1931	51.979 -6.046 0.1709120
37			1 0 1736	55,532 39,973 0,0951825
			-0 1908	12.412
			0 1741	0.200 25.047 0.0983812
			0 1745	35.765 29.592 0.0999438
			-0 1914	28.969 -0.639 0.1011019
			0 1748	59.681 32.851 0.1014064
			0 1751	12.687 58.222 0.1026969
			-0 1916	32.094 - 1.318 0.1031985
70			1 0 1776	55 570 70 077 0 0040000
30			1 1628	12.159 39.515 0.0968867
			-0 1908	12.412 -35.950 0.0982298
			0 1741	0.200 25.047 0.0986601
			0 1745	35.765 29.592 0.0998845
			-0 1914	28.969 -0.639 0.1010068
			0 1748	59.681 32.851 0.1010946
			-0 1914	72.094 -1.318 0.1027095
			-0 1918	23.252 -47.416 0.1033271
39	40	41	0 143985	10.378 -59.931 0.0940768 0.0954812 0.0966116
			143987	16.518 -54.197 0.0956500 0.0970168 0.0981933
			143990	29.221 -20.594 0.0965520 0.0980646 0.0997591
			144009	31.646 -47.856 0.1266861 0.1266293 0.1266216
			144010	31./06 -45.649 0.12/630/ 0.12/54/0 0.12/4202
			144018	5,317 -0,774 0,1388222 0,1383030 0,1301032 75,144 -19,593 0,1570491 0,1554507 0,1538435
			144021	46.245 -32.506 0.1635131 0.1615068 0.1594476
42	43	44	1 8 889	11.585 5.108 0.1019629 0.1019347 0.1022640
			8 893	41.919 13.729 0.1105296 0.1106377 0.1109655
			7 914	0.067 35.830 0.0898275 0.0888989 0.0878944
			7 915	4.889 13.405 0.1084820 0.1080319 0.1076169
			8 702	47.444 24.792 0.1449541 0.1453848 0.1457812
			7 924	2.104 15.112 0.1466770 0.1467335 0.1466079
			8 906	7.814 36.451 0.1594179 0.1598516 0.1599791
45	46	47	0 142359	14.381 -58.411 0.0519179 0.0522299 0.0523466
			142415	28.142 -32.324 0.0542134 0.0544502 0.0545628
			142367	7.673 -6.234 0.0623766 0.0625231 0.0626262
			142370	1/.268 = 0.810 0.0001/21 0.000001/ 0.000001/ 0.0000001
			142380	27.323 -4.071 0.0023470 0.0023011 0.0023424
			142420	1.400 -53.537 0.1301082 0.1299250 0.1298382
			142457	11.964 -54.122 0.1340528 0.1339108 0.1338313
			142446	6.038 -3.958 0.1469929 0.1468283 0.1467028
			142457	31.941 -40.682 0.1511837 0.1508799 0.1507665
48			1 -1 126	49.648 -42.331 0.1034422
			-0 140	50,052 -4,475 0,0843428
			-0 149	2,667 -18,988 0,0982261
			0 129	12.036 12.320 0.0803328
			-0 150	14.991 -54.031 0.1369444
			0 130	19,082 59,660 0,1084653
			-0 151	35.089 -46.191 0.1374859
			-1 133	0.505 -44.002 0.1622037
49			1 -1 126	47,040 -42,031 0,040012 51,592 -13,357 0,0487740
			-0 140	25.164 -47.455 0.0693821
			-0 146	50,052 -4,475 0,0687378
			-0 149	2.667 -18.988 0.0892790
			0 129	12.036 12.320 0.0706335
			-0 150	14.991 -54.031 0.1365164
			0 130	12+085 22+990 0+1091922

OBSERVATIONS	CATALOGUE	POSITIONS USED DEPENDANCES
	-0 151	35.089 -46.191 0.1386138
	-1 133	0.505 -44.002 0.1672127
50	1 -1 126	49.648 -42.631 0.0323668
	-0 144	25.164 -47.455 0.0821210
	-0 146	50.052 -4.475 0.0993182
	-0 149	2.667 -18.988 0.1205224
	0 129	12.036 12.320 0.1549374
	-0 150	14.991 -54.031 0.1016800
	0 130	17+082 - 37+660 - 0+1478471 75 - 680 - 44, 191 - 0, 1128917
	-1 133	0.505 -44.002 0.0884569
51	1 -1 126	49.648 -42.331 0.0327093
	-0 140	51.592 -13.357 0.0577659
	-0 144	25.164 -47.455 0.0821791
	-0 146	50.052 - 4.475 0.0994065
	-0 149	12.034 12.320 0.1548787
	-0 150	14.991 -54.031 0.1016218
	0 130	19.082 59.660 0.1497502
	-0 151	35.089 -46.191 0.1128073
	-1 133	0.505 -44.002 0.0883689
52 53	1 6 315	49.306 55.172 0.1236042 0.1281602
	D 32/ 7 337	17.843 13.690 0.0174768 0.0210555
	5 329	59.601 27.970 0.1763378 0.1776656
	7 342	0.594 16.850 0.0914016 0.0891505
	7 343	16,414 53,871 0,0951269 0,0925968
	6 326	45.428 57.699 0.1623332 0.1591525
ter V bester ber 5	6 329	16.816 56.882 0.1929642 0.1873898
54 55 56	0 164593	52,143 -42,770 0,1867377 0,1874474 0,1882477
	164657	58.777 -43.645 0.1070214 0.1065774 0.1060147
	164674	33.785 -11.144 0.1153157 0.1147754 0.1141798
	164697	55.335 -27.606 0.1258213 0.1251745 0.1244921
	190716	59.605 -40.306 0.2384583 0.2386916 0.2389717
57	0 142631	36.336 -20.702 0.0519420
	142032	42+377
	142670	23.343 -42.342 0.1228625
	142738	54.507 -12.315 0.1284139
	142754	5.062 -38.973 0.2142580
	142798	41.981 -20.216 0.1876677
58	0 142631	36,336 -20,702 0,0523341
	142032	0.358 -15.491 0.1892458
	142670	23.343 -42.342 0.1229834
	142738	54.507 -12.315 0.1285265
	142754	5.062 -38.973 0.2139126
50	142798	41.981 -20.216 0.18/36/2
37	1423/0	27.324 -3.834 0.0122289
	142386	42.177 -0.253 0.1225324
	142415	26.213 -1.836 0.2447481
	142260	1.398 -53.148 0.1975595
	142430	11.966 -53.761 0.0184132
	142436	42.721 -28.510 0.1497793
60 61 62	1 20 1173	9.942 45.118 0.1274093 0.1281957 0.1291529
00 01 02	19 1053	15.792 2.035 0.1072696 0.1075755 0.1078353
	19 1054	11.077 18.534 0.1175246 0.1178712 0.1182767
	19 1055	48.592 23.998 0.0917539 0.0914052 0.0909126
*	19 1056	20.783 21.866 0.1080929 0.1079483 0.1077679
	20 1181	28+077 32+087 0+1314088 0+1316323 0+1320233
	11028	27.546 10.269 0.1169161 0.1167553 0.1166400
	19 1062	35.376 5.982 0.0902695 0.0894994 0.0885419
63 64	1 2 1881	13.899 3.700 0.1184427 0.1191051
	2 1881	57.032 11.783 0.2399259 0.2408168
	2 1882	58,853 54,576 0,1247446 0,1251881
	3 1885	4,702 47,864-0,0632087-0,036461 25.137 9.007 0.3385443 0.3390894

SERVA	TIONS	CATALOGUE	POSITIC	INS USED	DEPENDANCE	ES .		
	And the rest and the rest of the rest	2 1890	50.354	7,168	0.0180796	0.0174373		and here east ofte case pass o
		2 1779	42.628	41.903	0.1967553	0.1962092		
		2 1891	52.160	56.700	0.0287162	0.0278002		
65	66	1 2 1881	57.032	11.783	0.3880447	0.3900743		
		1 1777	25.137	9.007	0.3721481	0.3736551		
		2 1890	50.354	7.168	0.1144379	0.1131666		
		1 1779	42,628	41,903	0.1253694	0.1231040		
67	68 69 70	0 142059	14.650	-55.964	0.0691643	0.0694776	0.0696895 0.0696885	
		142067	0.874	-13.957	0.0954210	0.0955347	0.0956520 0.0956841	
		142072	28,402	-3,744	0.0441434	0,0445880	0.0447169 0.0447513	
		142079	3.594	-0.507	0.1236427	0.1234831	0.1235281 0.1236192	
		142092	18.086	-25.783	0.0593816	0.0596655	0.0597362 0.0597013	
		142108	40.606	-9.457	0.1313046	0.1309953	0.1309419 0.1309845	
		142117	7.579	-0,834	0.1031259	0.1030297	0.1030041 0.1029881	
		142137	56.659	-37.591	0.1151797	0.1149404	0,1148283 0,1148145	
		142100	4./30	-02./13	0.0006829	0.0008360	0.0558066 0.0557431	
		142100	21 420	-37,507	0.08/1912	0.08/0512	0+0869154 0+0868627	
71		1 14 21 37	01+400	22,002	0.0040050	0+1103481	0.1121811 0.1121959	
/		17 75	1.117	27.540	0.1170125			
		17 79	32.132	2.710	0.1104917			
		17 80	17.736	26.594	0.1325759			
		16 88	22.320	15.783	0.1218724			
		16 89	42.137	26.709	0.1403133			
		16 91	13.824	31.070	0,1358510			
		17 83	25.806	10.017	0.1577975			
72		1 16 83	29.613	22,309	0.0861038			
		17 75	1.117	23.548	0.1181518			
		17 79	32.132	2.712	0.1112879			
		17 80	17,736	26.596	0.1329527			
		16 88	22+320	15.783	0.1215739			
		16 89	42.137	26.709	0,1392138			
		16 91	17,824	31.070	0.1344248			
		17 83	25,806	10.017	0.1562911			
73		1 16 69	15.513	21.814	0.1546451			
		17 61	55,669	56,928	0.1657797			
		15 64	11.620	24.283	0.1385367			
		14 64	41.050	33.674	0.1205892			
		1/ 64	26+388	9.360	0.1661694			
		1.7 1.	47+823	44+/18	0+110000/			
74		10 //	07,810	2.63.6	0+1409761			
14		1 / 102/	47 + 700	43+310	0+0840609			
		- O IZIO 2 1017	00+173	30+343	V+11/1//7			
		6 1217	44+200	20:000	0+1333873			
		0 1220 A 100A	20 5760	51,484	0.1454057			
		7 1373	A. 120	0.0%0	A. 1500223			
		7 1339	50.491	39.450	0.1903414			
75		1 17 909	10.849	51,681	0.1418671			
		17 914	32,257	11,284	0.1615343			
		17 917	19.441	10,242	0.0965460			
		16 914	35.056	56.850	0.1472711			
		16 918	21.760	52.864	0.1701884			
		17 930	39.217	10.145	0.0595439			
		16 920	50.940	8.387	0.1564517			
		16 921	5.593	41.197	0.0856247			
		17 934	9.653	17,658	-0.0190273			
76		1 17 909	10.849	51.681	0.1416697			
		17 914	32,257	11.284	0.1614089			
		17 917	19.441	10.242	0.0962989			
		16 914	35.056	56.850	0.1473062			
		16 918	21.760	52.864	0.1702748			
		17 930	39.217	10.145	0.0595686			
		16 920	50.940	8.387	0.1565644			
		16 921	5.593	41.197	0.0859261			
		17 934	9.653	17.658	-0.0190177			
11		1 17 909	10.849	51.681	0.1607314			
		17 914	32.257	11.284	0.1394752			
		17 917	19.441	10.076	0.1299310			
		16 714	30,006	06+850	0.120/694			
		16 918	21.760	52.864	0.1058788			
		1/ 7.30	37 + 21/	10+140	0.0770178			

BSERVATIONS	CATALOGUE	POSITIONS USED DEPENDANCES
te ant an	16 920	50,940 8,387 0,0920830
	16 921	5.593 41.197 0.0783187
70	17 934	9.653 17.658 0.0737928
/0	17 914	32.257 11.284 0.1845881
	17 917	19.441 10.242 0.1059616
	16 914	35.056 56.850 0.1410482
	16 918	21.760 52.863 0.1783971
	16 920	50.940 8.387 0.1562483
	16 921	5.593 41.197 0.0691942
	17 934	9.653 17.658-0.0521918
19	1 17 909	10,849 51,681 0,1676626
	17 917	19.441 10.242 0.1061229
	16 914	35.056 56.850 0.1409615
	16 918	21.760 52.863 0.1783058
	17 930	39.217 10.145 0.0491746
	16 720	5.593 41.197 0.0691100
	17 934	9.653 17.658-0.0520827
80	1 20 888	20.196 35.119 0.1184156
	20 889	20,388 16,853 0,1026/93
	22 925	40.694 0.377 0.0847398
	19 761	18.276 44.488 0.1584423
	21 874	28.773 56.153 0.1243313
	20 903	9.139 32.389 0.163/383
81 82	1 20 888	20.196 35.119 0.1190490 0.1190766
	20 889	20.388 16.853 0.1036006 0.1034200
	21 868	13.555 26.411 0.1047887 0.1045520
	22 925	40.694 0.377 0.0855218 0.0850324
	21 874	28.773 56.153 0.1239722 0.1238737
	20 903	9.159 32.589 0.1626331 0.1630316
	20 904	26.917 4.034 0.1425817 0.1426862
83	1 22 905	11.818 33.848 0.1141445
	22 909	33.870 21.256 0.1278572
	20 877	30,591 21.759 0.1482927
	21 852	15.060 52.446 0.1547230
	21 854	18.515 42.334 0.1666102
84	1 22 905	11.818 33.848 0.1151811
270 B	21 840	5.286 35.131 0.1290455
	22 909	33.870 21.256 0.1282184
	20 877	30,591 21,759 0,1483064 15,040 52,444 0,1542308
	21 854	18.515 42.334 0.1657907
	21 855	35.787 4.857 0.1592270
85	0 140266	41.917 -16.876 0.1118248
	140277	57.832 -56.912 0.1078279
	120700	29,790 -4.265 0.1178846
	140323	54.708 -33.855 0.1048195
	140331	28.476 -12.479 0.1081334
	140341	36:949 -57:637 0:1123638
	140362	39.422 -49.533 0.1119151
86	0 140017	45.799 -27.799 0.0967489
	140029	51.820 -28.015 0.1105950
	140043	26,422 - 34.010 0.1070245 25.499 - 34.022 0.1322492
	140027	2.873 -10.983 0.1200611
	140080	18.269 -16.802 0.1426974
	140089	21.799 -42.906 0.1339823
07 00	140117	38,125 -49,972 0,1561226
0/ 00	1 16 404 15 399	18.097 32.495 0.1555268 0.1555207
	15 400	9.148 49.034 0.1726513 0.1727232
	16 408	11,790 13,916 0,1265057 0,1264350

FUNDAMENTAL ASTEROID POSITIONS OBTAINED WITH THE BELGRADE ZEISS ASTROGRAPH

Table 2. (continued)

OBSERVA	TIONS	1012 0.0			CAT	ALO	IGUE	POSITION	S USED	DEPENDANCE	ES	AC	2000 C	144 4 3 3 4 1
			1.			15	402	34.023	0.399	0.1238683	0,1238687	and the but the man the same that the same		
						15	404	39.062	58.085	0.1323693	0.1324493			
-						16	410	57.161	45.189	0.0819728	0.0819460			
					6.1	15	406	3.455	0.726	0.0856059	0.0856459			
89	90				1	16	404	38.659	40.682	0.1213049	0.1211668			
						15	400	9.148	49.034	0.1727973	0.1732928			
						16	408	11,790	13.916	0.1264338	0.1264063			
						15	402	34.023	0.399	0.1238242	0.1238425			
						15	404	39.062	58.085	0.1325224	0.1326510			
						16	410	57.161	45,189	0.0819614	0.0815302			
						15	406	3.455	0.726	0.0856418	0.0853566	and a statement of a		
91	92	93			1	15	399	18.097	32,494	0.2126531	0.21266/2	0.212/121		
		-				15	400	9.150	49.034	0.1916092	0+19242/0	0+1922000		
						10	408	11.770	13,410	0.1534520	0.1532706	0.1532977		
						15	402	39.042	58.085	0.1002247	0.1008897	0.1007973		
						16	410	57.161	45.189	0.0908982	0.0902311	0,0903574		
						15	406	3.455	0.726	0.0625938	0.0623980	0.0623868		
94	95				1	8	1488	43.619	30.777	0.1275580	0.1285433			
						8	1489	12.292	23.491	0.1212147	0,1218132			
						8	1490	51,522	22,433	0.1358882	0+1368852			
						7	1545	10+343	53.879	0.1086492	0,1082012			
						8	1491	5,010	22.121	0.1242688	0,1238905			
						8	1472	1/+87/	14 001	0 1150000	0.1149774			
						0	1404	57.249	18.482	0.1283760	0.1276321			
94	97	98	99		1	17	524	44.575	57.276	0.1749622	0.1762249	0.1774732	0.1781962	
10		, 0			-	17	527	34.153	3.799	0.2039392	0.2039757	0.2040412	0.2040657	
						18	499	49.001	40.270	0.1476383	0.1484918	0.1493016	0.1497598	
						18	500	28,996	13.295	0.1256569	0.1264125	0,1270852	0.1274742	
						17	532	12,238	24.066	0.1945966	0.1928795	0.1912718	0.1903482	
						18	509	31.831	55.750	0.1532068	0.1520156	0.15082/1	0,1501559	A 1000500
100	101	102	103	104	1	18	403	8,994	57.421	0.1258/85	0.1263110	0+1204/04	0+120/107	0+12/0020
						1/	43/	10 574	43+783	0+111713/	0+1120770	0.1305974	0.1307391	0.1308354
						18	41.5	46.165	12.775	0.1181478	0.1183717	0.1184422	0.1185484	0.1187081
						17	440	5.140	52.411	0.0998049	0.0999522	0.0998634	0,0998696	0.1000205
						1.8	409	50,545	20.972	0.1114499	0.1112997	0.1112877	0.1112450	0.1111050
						19	417	2.574	50.547	0.1160312	2 0.1155681	0.1155946	0.1154423	0.1150468
						17	441	19,723	13.080	0.0903149	0.0901200	0.0899172	0.0897275	0.0896059
					-	1.8	411	54,988	9,186	0,0961982	2 0,0956024	0.0954202	0.0821128	0:0746.37
105					1	10	754	23,926	22.124	0.08/4099				
						1.0	755	31 + / 32	48,917	0,10133/6	2			
						10	761	20,038	- 08+377	0.1300720	1.1.2.4.5.1			
						10	762	36.650	52,310	0.1147184	TYERS E.			
						10	765	26.868	15,203	0.1243445	Sectored 1			
						1.0	770	53.324	40.400	0.1588088	3 6 15 6 6 2			
						1. C	772	2.931	14.387	0.1465838	3 288 88 5			
106					1	1 C	754	23.926	22.124	0.0278125	5			
						10	755	55.538	58.377	7 0.1312003	5			
						10	761	32.535	21.24	0.11/1/82				
						10) 762	36.650	52.310	0.0801818	3			
						10	1 700	20.000	17 14		2) 2)			
						1/	770	51.134	45.110	0.0527321	1 100 01			
						10	> 772	33.038	24.053	3 0.041666	2			
						5	730	39.776	31.81	7 0.0444978	В			
						10) 781	32,217	45.510	0.177944:	2			
						10) 784	23.946	36.61	7 0.235314	4			
107	108	109			1	8	3 1882	9.719	-30.963	3 0.219667.	2 0.2202942	2 0.2207054		
						8	3 1695	43.216	1.149	9 0.338954	1 0.3399765	0.3405179		
						-1	1800	50.189	-4.74	2 0.0683950	6 0.0683486	0.0883302		
				-]	1803	5.697	-28.849	-0.036354	-0.0368888	0.03/2904		
							1804	12.636	-17 44	1 0 150704	9 0.1500101	7 0.1501710		
						(1000	29 740	-23.00	9 0.182248	3 0,182144	5 0,1822447	,	
							3 1990	20.885	-52.84	5 0.068193	8 0.067632	2 0.0673699	>	
110	111	112	113				145955	17.907	-33.41	5 0.121476	8 0.1211848	3 0.1208351	0.120654	1
		a a á					145969	18.453	-49.36	6 0.079046	6 0.078747	4 0.0784728	3 0.078209	1
							145973	35.538	-1.27	7 0,188295	8 0.188339	6 0.1881893	3 0.188338	В

OBSERVAT	IONS		CATALOGUE	POSITION	NS USED	DEPENDANCE	======== S		
		· · · · · · · · · · · · · · · · · · ·	145986	41.630	-22,358	0.0834354	0.0833024	0.0831728	0.0830824
			145995	39.735	-22.298	0.1233134	0.1232890	0,1233696	0.1234114
			145998	8.336	-36,879	0.0491433	0.0490389	0.0490685	0.0489183
			146000	13.713	-3,856	0.1094794	0.1095984	0.109/00/	0.1097104
			146022	13.323	-3.992	0.1044518	0.104/402	0.10304//	0.1424507
			146021	24.913	-54.41/	0+1413373	0.2001085	0.2013672	011424007
114	115	116	1 12 1251	38.387	24+432	0.1431648	0.1632003	0.1632751	
			11 1240	40.717	41.579	0.3496907	0.3495710	0.3494300	
			11 1252	58.663	54.919	0.2889353	0.2871202	0.2859277	
117	118	119	1 0 188	7.531	34.146	0.1729585	0.1738941	0.1742729	
			1 228	6.725	12,863	0.1782032	0.1780196	0.1775880	
			0 189	9.766	40+149	0.1424507	0+1430/30	0 1204271	
			0 190	38.649	51+200	0.1357767	0.1351145	0.1343628	
			1 232	10.248	-39,115	0.0713672	0.0716719	0.0723966	
			-0 229	26.000	0.289	0.1114371	0.1106760	0.1101727	
			0 195	39.983	20.714	0.0686278	0.0677666	0.0672920	
120	121	122	1 -0 207	54.267	-40.765	0.1028312	0.1032596	0.1031054	
			-1 186	48.160	-34.071	0.1919883	0.1928016	0.1936713	
			-0 212	1.259	-56,600	0.1379146	0.1381634	0+1382693	
			-1 192	47.691	-30.092	0+2182397	0+21904444	0.0421256	
			-0 216	3.701	-48+993	0.0576426	0.0570039	0.0563239	
			-0 217	41.313	-33,949	0.0844481	0.0836789	0.0831704	
			-0 223	1.326	-9.548	0.1437284	0.1432262	0.1434222	
123			1 -0 210	16.626	-52.108	0.1676653			
10 Mar 10			-1 177	38.644	-59,668	0.1480514			
			-1 186	48.160	-34.071	0.1489637			
			-1 188	7.632	-52.045	0+12316/5			
			-0 213	34,916	-17+800	0 1770170			
			-1 192	47+871	-27.115	0.1256346			
104	1.25		1 -0 210	16.626	-52,108	0.1046673	0.1052047		
J. A. "Y	.h. 41. 1.J		-1 177	38.644	-59.668	0.2373630	0,2396619		
			-1 186	48.160	-34.071	0.1715794	0.1723897		
			-0 212	1.259	-56,600	0.0917597	0.0907572		
			-0 213	34.916	-17.800	0.0462249	0.0443836		
			-1 192	47.691	-30.093	0.1550018	0,1538723		
1.9.2	107	100	0 144535	23.459	-30.850	0.1077437	0.1079042	0.1083355	5
12.0	1	.k. z Co	144554	18.153	-10.725	0.1334516	0.1337129	0.1341267	7
			144581	0.774	-35.714	0.0814381	0.0814062	0.0814705	Ĵ.
			144595	20.881	-12.093	0.1608230	0.1610763	0+1614160)
			144671	46.223	-35.624	0.0924/94	0.1081097	0.1077351	2
			144691	2/ 5/13		0.1751935	0.1752012	0.1750080)
			144070	13.070	-7.428	3 0.1405239	0.1403514	0.1399820	5
129			1 20 889	20,388	16.856	6 0.1107846	5		
			21 865	50.046	37.730	0.0967705	>		
			21 866	52,675	56.481	0.0924718	3		
			21 867	59.135	35,202	2 0.0952468	5		
			21 868	13.555	26.420	0.0923/04	+		
			22 925	40+695	0.3/8	5 0.0925059	2		
			10 741	18.276	44.49	4 0.097338	7		
			19 764	43.104	43.48	0.0898595	5		
			20 900	22.537	55.10	9 0.0783190	D		
			21 874	28.774	56.15	4 0.0692275	5		
130			1 20 889	20.388	16.85	6 0,109851	1		
			21 865	50+046	5/ 13	0 0.0764/19	7		
			21 866	50 175	30+48	2 0.094988	, 5		
			21 867	13,555	26.42	0 0.092200:	1		
			22 925	40.69	0.33	8 0.085127	5		
			20 894	49.036	5.46	5 0.092611	4		
			19 761	18.276	44.49	4 0.097285	4		
			19 764	43.104	43.48	0 0.090172	8		
			20 900	22,537	7 55.10	9 0.078904	7		
			21 874	20+//4	1 30.13	0.098370	2		
131			1 21 860 01 944	52.475	5 56.48	1 0.046742	3		
			21 000				0.24		

116

.

OBSERVATI	IONS	CATAL	OGUE	POSITIO	NS USED	DEPENDANCE	S		
		21	867	59.135	35.202	0.0929508	24.01		
		21	868	13.555	26.418	0.0790530			
		22	925	40.695	0.378	0.0282604			
		20	894	49.036	5.464	0.1381665			
		22	931	58.507	2.947	0.0665874			
		22	932	4.414	34.92/	0.058/436			
		20	900	22.03/	52 154	0+2010280			
132		1 21	865	50.046	37.730	0.0985357			
101	· · · · ·	21	866	52.675	56.481	0.0470494	1. 1. 1. 1.		
		21	867	59.135	35,202	0.0930024			
		21	868	13.555	26.418	0.0790508			
		22	925	40.695	0.378	0.0285096			
		20	894	49.036	5.464	0.1379318			
		22	931	58.507	2.947	0,0666710			
		22	932	4+414 00 577	55 100	0.0089087			
		20	974	22.33/	54.154	0.1891152			
133		1 20	889	20.388	16.855	0.1151404			
		22	922	9.509	47.406	0.0969382			
		21	866	52.675	56,481	0.1160150			
		22	925	40.695	0.378	0.1110052			
		20	894	49.036	5.463	0.1384718			
		22	2 931	58,507	2,946	0.1195606			
		20	900	22.537	55.109	0.1532241			
174		21	. 8/4	28.774	56+154	0.1496448			
134		1 20	0 000	Q,500	47.404	0.0974095			
		21	866	52.675	56.481	0.1162556			
		22	925	40.695	0.378	0.1113247			
		20	894	49.036	5.463	0.1381838			
		22	2 931	58,507	2.946	0.1196123			
		20	900	22.537	55,109	0.1525283			
		21	. 874	28.774	56.154	0.1490047			
135		1 25	758	25,775	46+366	0.0911982			
		20	728	20.142	48.558	0.0893189			
		25	762	41.241	31.375	0.1147008	6		
		25	5 763	54.803	17.881	0.1626732			
		25	5 773	40.975	50.550	0.1111453			
		25	5 774	49.132	34.736	0.1704759			
		25	5 775	1.575	25.908	0.1392722			
136		1 25	5 758	25.775	46.366	0.0927150			
		25	5 760	38,296	33,531	0,12226/1			
		24	1 /28	40.142	48,558	0.0891090			
		25	5 762	54.903	17,991	0.1477507			
		20	5 773	40.975	50.550	0.1098177			
		25	5 774	49.132	34.736	0.1697776			
		25	5 775	1.575	25,908	0.1380810			
137 1	38	1 18	3 409	50.540	20,899	0.1148572	0.1140912		
		19	9 417	2.579	50,604	0.2075859	0.2067178		
		18	3 411	54,989	9.279	0.0382270	0.0384308		
		19	7 419	35.062	22.324	0.2380824	0.2378166		and the second
		1.	412	6.983	3,301	0+026061/	0.0253939		
		 19	421 2 A17	30 540	11.028	0.0910705	0.0807404/3		
		10	3 415	15,691	44.529	0,1185274	0.1191519		
139 1	40 141	0	128766	32.310	-48.724	0.0379145	0.0384710	0.0387976	
		6 M 18 1	128770	53.076	-6.321	0.1147097	0.1149481	0.1150505	
		0.1 100	128781	43.610	-8,247	0.0218496	0.0225047	0.0227628	
			128805	58.762	-26.655	0.2044294	0.2040817	0.2038224	
			128810	24,295	-33.476	0.0567445	0.0570606	0.0572508	
		1.1.1.4	128830	54.691	-44.977	0.1041778	0.1041291	0.1041983	
		in the second	128850	56.544	-19.546	0.2576346	0.2568121	0.2564180	
142 1	47 144	1	1 1014	17 050	-27+977	0.2025399	0.1057717	0.1054401	
142 1	40 144	1 -	1 1014	14 427	-70 441	0.1145410	0.1151444	0.1154074	
			0 1027	31.179	-40.257	0.1208523	0,1215664	0.1223474	
		-	0 1034	43.437	-29.551	0.1246819	0.1252703	0.1260008	
			1 1031	34.590	-24.984	0.0983792	0.0979807	0.0974226	
		(0 1042	12.990	-27.032	0.1102489	0.1098838	0.1095640	

OBSERVATIONS	CATALOGUE	POSITIONS USED DEPENDANCES
	-1 10	41 21.567 -35.088 0.1013072 0.1006387 0.0999041
	-0 10	45 57.613 -28.529 0.1169247 0.1166105 0.1164411
	-1 10	43 13.233 -54.069 0.1082022 0.1075736 0.1069307
145	0 1417	25 20,120 -34,898 0,1358486
	1417	32 3.837 -1.848 0.1213235
	1417	37 37.283 -38.540 0.1060017
	1417	/56 56.379 -55.313 0.1264414
	1417	87 35.754 -11.017 0.1165040
	1417	/92 6.882 -7.524 0.0746392
	1418	307 27.152 -50.311 0.0683400
	1418	317 31.153 -54.119 0.0858032
	1418	18 40,728 -9,578 0,0989022
	1418	345 52.487 -15.119 0.0661962
146	0 1417	25 20.120 -34.898 0.13/3253
	1417	232 3.797 -1.848 0.1220852
	141/	(3/ 3/+283 ~38+340 0+10/1030
	1417	(36 36+377 T33+313 V+127VV43 203 7F 7FA 11 017 0 1127045
	1417	(8/ 50+/04 TI+01/ 0+1105045
	1417	72 0.002 -7.024 0.070200
	1410	017 71 157 -54 119 0.0849096
	1410	219 20.728 -9.578 0.0979965
	1410	345 52.487 -15.119 0.0646790
147	0 1449	248 52.992 ~14.501 0.0577505
147	1449	250 5.347 -28.767 0.0936895
	1449	258 42.380 -16.173 0.1535685
÷	1449	7.657 -1.343 0.0794831
	1449	283 12,384 -27,710 0.0955212
	1449	994 8.745 -33.384 0.1544249
	1450	003 32.464 -50.184 0.1748114
	1450	012 2.098 -42.989 0.2007509

INSTRUMENTAL SYSTEMS OF THE BELGRADE LARGE MERIDIAN CIRCLE IN THE PERIOD 1981–84

Z. Stančić

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

(Received October 15, 1985)

SUMMARY Results are exposed of determination of the Belgrade Large Meridian Circle's instrumental systems in right ascension and declination from the Küstner series observations performed in the period 1981–1984.

Comparison is also made of the collimation error and of the flexure values as furnished by the Küstner series observations during 1984 to those rezulting from the laboratory measurements.

INTRODUCTION

The instrumental system in either right ascension or declination is embodied by the systematic differences between the star positions in a fundamental catalogue and those supplied by the observations with a particular instrument. That instrumental system is commonly brought out by observing transits of stars taken from some fundamental catalogue (presently from the FK4), i.e. by observing the so called Küstner series (Podobed, 1968). One is thus enabled to deduce the systematic differences $\Delta \alpha \cos \delta$ and $\Delta \delta$ for each star. These differences - persuant to a generally adopted procedure - are meaned by declination zones and smoothed in such a way as to weaken the effect of the observational random errors. The meaned systematic differences $\Delta \alpha_{\delta} \cos \delta$ and $\Delta \delta_{\delta}$ constitute then what is called instrumental system in α or δ .

The systematic differences $\Delta \alpha \cos \delta$ and $\Delta \delta$ are known to evolve from the defects in the instrument's construction and its defective setting: improper horizontal axis position, non-perpendicularity of the line-ofsight and the horizontal axis, flexure etc., to which are added the deficiencies of the registering equipment, local circumstances, errors in the fundamental catalogue and the like. The parameters reflecting the improper horizontal axis position (m, n), the line-of-sight non-perpendicularity with the horizontal axis - the collimation error(c), tube flexure (a, b) and the inaccurate observed time clock correction (u) are deduced from the Küstner series - passing the remark, however, that the quantities m and u cannot separately be determined but solely as the sum (u + m). Apart from these parameters one has to determine also the variation in time of (u + m), and of the equator point Mo, in the course of the observing tour due to the changes in the instrument itself, in the equipment and the environment.

The collimation error and the flexure parameters, as furnished by the astronomical observations, may be compared with those resulting from the laboratory measurements carried out interstitially.

Previously, the LMC instrumental system has been determined, both in α and δ , in the periods 1973–1975 and 1977 -- 1978 when observations were made for the North Photographic Zenith Tubes (NPZT) catalogue (Dačić, 1984).

OBSERVATIONS

In the period 1981-1984 the observation was carried out with the LMC of 25 K üstner series. On the average, the series embraced 27 fundamental stars from the FK4. One abided by the rule of as even a distribution as possible of stars all along the meridian from $-30^{\circ} < \delta < 80^{\circ}$ and of each series comprising a few stars at the lower transit.

The rationale behind oru LMC instrumental system determination is its being associated with the regular programmewise observations of double stars (DS) and of stars near radio sources (RS), interspersed with daily observations of the Sun and the planets, all carried out in the period 1981–1984.

The number of the K üstner series observed according to years in uneven: while their total in the years 1981-83 is but 13, there are as many as 12 in 1984 alone. This is due to the circumstance that this author was charged, in 1984, with the specific task of studying the LMC instrumental system with a view of harnessing it in the forthcoming data handling, once the current observing programme is completed.

Of the total number of the Küstner series observations, 5 have been made in teh spring, 12 in summer, 7 in autumn and 1 in winter. The temperatures at which the observations were made ran from -2.6 C to +25.6 C. There were in all 14 observations on clamp E 11 on clamp W.

Since May 1984 systematic laboratory measurements are carried out of the collimation error and the flexure using horizontally mounted collimators in the LMC pavilion. One performed, until November 1984, 45 collimation error and 44 flexure measurements. In that same period one carried out 11 Küstner series observations. The laboratory measurements were performed at temperatures ranging from +5.0 C to +28.6 C, mostly between 10^h a.m. and 2^h p.m., largely with the open pavilion. Some of the measurements have been executed in the early morning or late evening hours or at the closed pavilion.

DATA PROCESSING AND DISCUSSION

The processing of the Küstner series observations implied the derivation of the parameters (u + m), n, Δc and τ for the right ascension and M_0 , a, b and τ ' for the declination by the formulae

$$-\Delta\alpha\cos\delta = -(\alpha - T)\cos\delta + \Delta c + (u + m)\cos\delta +$$

+
$$n \sin \delta + \tau (\alpha - \alpha_0) \cos \delta$$
 (1)

$$-\Delta\delta = -(M + \delta) + M_0 + a \cos z + b \sin z + \tau'(\alpha - \alpha_0)$$

$$\Delta \delta = -(M - \delta) + M_0 + a \cos z + b \sin z + \tau'(\alpha - \alpha_0)$$
(2)

where $\Delta \alpha = \alpha - \alpha'$ and $\Delta \delta = \delta - \delta'$, i.e. the differences of the right ascension and declination (α, δ) found in FK 4 and their observed values (α', δ') , T – the observed time of star transit; (u + m) and **n** Bessel formula's parameters; $\Delta c = c - c_0$ correction to the collimation error measured with the collimatory; **M** – circle reading; M_0 – equator point; **a** and **b**, vertical and horizontal flexure components, respectively, τ and τ' – coefficients of the linear variation in time, respectively; α_0 – initial time of the Küstner series observation.

The mean unit wight error, in right ascension was $\sigma_0 = 0.80296$ and that in declination was $\sigma'_0 = 0.503$

The instrument's parameters (u + m) and M_o assume different values from one series to another. The variation in time of (u + m) in the course of a series' observation turned non- conspicuous in only 5 series, while being sometimes, in the rest of them, very significant. The coefficient of the linear variation in the τ varied within the 0.5015 and 0.5090 bounds. The variation of M_o in the course of a Küstner series' observation is not as pronounced as the one of (u + m); none at all is found in 12 series. The coefficient τ ' of the linear variation in time varied within 0.17 and 1.05 limits.

During 1981 and 1982 the parameter **n** had small values from -0.352 to +0.466. During 1983 and 1984 its value grew above 0.5, to attain even 0.915.

Table 1. Mean collimation and flexure values resulting from the Küstner series observations in the period 1981-1984

Clamp	co	$\Delta_{\rm c}$	c	n ₁	a	b	n ₂
E	-0.038 ± 5	$-0^{\circ}030$ ± 52	-0.0068 ± 52	12	+2 ^{\$} .66 ± 55	$-1^{\circ}.67$ ± 21	13
W	-0.067 ± 4	$^{-0.004}_{\pm 52}$	+0.063 ± 52	8	-0.84 ± 55	$^{-2.22}_{\pm 20}$	11

Table 1 gives the mean values of the collimation error ($c = c_0 + \Delta c$) and the coefficients (a, b) in the formula for the fluxure, obtained from the Küstner series observation, where c_0 – the collimation furnished by the laboratory measurements; a – vertical fluxure component; b – horizontal fluxure component; n_1 – the number of the Küstner series from which Δc has been computed; n_2 – the number of the series serving for the computation of **a** and **b**.

The c_0 and c values have opposite signs on clamps E and W, a consequence of the horizontal axis occupying opposite positions at those clamps. Therefore, we are going to employ in the further presentations their absolute values when it comes to comparing their amounts on the two clamps.

The c_0 values on clamp E are nearly double less that those on clamp W, but the respective c values on both clamps are accordant, which might be taken as evidence of dependability of the employed method of the determination.

The **a** and **b** values in their turn are also different of the two clamps, whereby the **a** value on the clamp E is in excess by 3.5, and the one of **b** by more than 0.5, in reference to their respective values on the clamp W. We see from equation (2) the factor of M_0 is unity and the one of **a** is cosz. In some of the K üstner series the stat distribution was not exactly an even one since some state proved unobservable or had to be discarded on account of excessive errors of observation. This made itself felt as separating the coefficients of M_0 and **a**.

An inquiry pertaining to the parameters, c, a and being dependent on the temperature revealed thi dependence being absent, which is also realized from th Figs. 1 and 2.

Fig. 2. Fluxure coefficients a and b dependence on temperature during observation

Fig. 1 illustrates the collimation error versus temperature.

Fig. 2 illustrates the flexure coefficients **a** and **b** versus temperature.

Table	2. Mean	collimation and flexure values resulting from the
Küstn	er series a	and laboratory measurements in 1984

	Kü	stner	series		
Clamp	с	n ₁	a	b	n2
E	-0.05 ± 32	6	+2'.61 ± 59	-1'.'81 ± 22	7
W	+0.092 ± 25	2	-0.71 ± 46	-2.15 ± 18	4
	Labor	atory m	easurement	S	
Clamp	с	n'ı	a	b	n ' 2
E	-0.013 ± 6	30		-1".51 ± 14	30
W	+0.036 ± 7	15		$^{-0.73}_{\pm 24}$	14

The mean values of the collimation error and the fluxure coefficients, resulting from the Küstner series and the laboratory measurements. are displayed in Table 2, where c - the collimation error; n_1 and $n_2 - the$ number of Küstner series involved; n'_1 and n'_2 – the

number of laboratory measurements involved; a – vertical fluxure component; b – horizontal fluxure component.

A comparison of data in Table 1 with those in the upper half of Table 2 reveals the clamp E collimation errors to be well accordant while the one at clamp W in the Table 2 appear signally greater over its homologous in Table 1. As for the \mathbf{a} and \mathbf{b} coefficients they are found fairly consistent.

The c values obtained from the Küstner series and the ones resulting from the laboratory measurements in Table 2 for both clamps differ among themselves by the same amount: 0°.05, which might be considered as betraying an actual difference inherent in this quantity on the two instrument clamps. A disparity of 0".3 on the clamp E is stated in the quantity **b**, but a rather significant one of 1".4 on the clamp W.

Relevant to the right ascension observations, the accuracy of the parameters (u + m) and Δc determination is runing between 0.040 and 0.060, the one of n between 0.020 and 0.040, while that of τ is between 0.010 and 0.020. In declination, the parameter M_0 and a accuracy is confined between 0.30 and 0.70, the one of the parameter **b** between 0.15 and 0.25, and that of the parameter τ between 0.15 and 0.30.

The flexure and the collimation errors, as obtained from the laboratory measurements have also been, like their homologous obtained from the Küstner series, inquired after their possible dependence on the temperature but none could be established.

Fig. 3. LMC system in right ascension

Fig. 6. LMC mean system in declination

THE LMC MEAN INSTRUMENTAL SYSTEM

The systematic differences $\Delta \alpha \cos \delta$ and $\Delta \delta$, computed according to equations (1) and (2) by employing known instrument's parameters, enabled a picture to be gained of the LMC mean instrumental system for the period 1981–1984. The grouping in declination of the systematic differences was performed according to 10° zones (Figs. 3, 4, 5 and 6).

Figs. 3 and 4 illustrate the right ascension and declination systems according to declination for the E and W clamps.

Figs. 5 and 6 illustrate the meaned right ascension and declination systems according to declination.

Remarkable consistency is evident in Figs. 3 and 4 of the right ascension and declination systems on both clamps. More pronounced deflections do occur in the lower transits, but no interpretation can be offered before additional study is made.

From the comparison of the curves illustrating the mean insturmental systems in right ascnession and declination for the period 1973-1975 and 1977-1978 (Dačić, 1984) with their counterparts in Figs. 5 and 6 we get apprised of the following: 1) the right ascension curves exhibit virtually the same course over the declinations 0° through 70°. Small departures arise in

the negative δ and at the lower transits; 2) the curve associated with the declinations, follow virtually the same course over the entire declination range.

CONCLUSIONS

No appreciable changes, in either right ascnesion of in declination, are apparent over longer time intervals if the LMC instrumental system. This is to say that the LMC is a rather steady instrument, capable of yieldin reliable results, a momentous fact in the Sun, plane and stras observations which are on programme of our LMC for already 20 years.

Good accordance is stated of the collimation error furnished by the Küstner series observations, on bot clamps, while there is a discrepancy of about 0.75 in th coefficient **b** values on the two clamps. No reliabilit may be accorded to the coefficient **a** values.

The divergence is confirmed of the collimation error values and of those of the flexure, provided by the laboratory measurements and of those resulting from the Küstner series observation. This divergence for the collimation error might, partially, be interpreted as being due to its varying with the zenith distance. The deviation in the flexure values, to be explained, calls for supplementary inquiry, this above all with the laboratory measurements under various circumstances.

No temperature dependence vould be stated of the collimation error or flexure values whether obtained from the Küstner series observation or from the laboratory measurements.

REFERENCES

- Dačić, M.: 1984, Bull. Obs. astron. Belgrade, 134, 1. Podobed, V., V.: 1968, Fundamental'naya astrometriya, Ed. Nauka, Moskva, 265. Schigolev, V., M.: 1962, Mathematicheskaya obrabotka nabiyu-
- denij, Ed. Nauka, Moskva, 239.

Blazhko, S. N.: 1979, Kurs prakticheskoj astronomii, Ed. Nauka, Moskva, 154.

UDC 522.38

INVESTIGATION OF THE GRADUATION ERROR OF THE BELGRADE MERIDIAN CIRCLE

V. Trajkovska

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

(Received September 6, 1985; revised January 10, 1986)

SUMMARY. Account is given of the organization and analysis of investigation of the graduation of the Belgrade Meridian Circle performed in 1977. Measurements are made half-degree spacing, Bruns' method having been applied. Inquiry is made for possib temperature effects on the measurements.

1. INTRODUCTION

During June and July, 1977, the graduation has been investigated of the Belgrade Meridian Circle (Askania, 190/2578 mm,cicle diameter D = 800 mm) at 0.5 separation. These measurements were first partially processed, the settings at 4° spacing only having been employed, whereby a global notion of the corrections to the graudation and the circle's quality could be provided (Trajkovska, 1979).

Next, the measuring material as a whole was treated, the results obtained being reported in the present paper. The idea followed was to compare the graudation errors as we obtained them with those deduced earlier (Sadžakov, Šaletić, 1968), the latter arrived at by the same (Bruns') method, with the settings having been made also at 0.5 spacing. The incitement to this investigation of ours was presented by the fact that in some circle graduations time dependent systematic displacements have been established, even such in the course of a year (H ϕ g, 1960).

The periodicity of the circle graduation errors was shown in a separate paper (Trajkovska, 1981) by making use of the spectral analysis.

2. METHOD AND ORGANIZATION OF MEASURE-MENTS

The investigation of the cicle graduation at 0.5 spacing was carried out according to the Bruns' method, which allows the use of the rosette R (360, x) as a combination of three rosettes:

R(9, x); R(8, x); R(5, x);

where

$$n = pqr = 9 \cdot 8 \cdot 5 = 360$$

with x representing anyone of the diameters.

The number of the diameter readings is:

2pqr(p+q+r-3) = 13680

with the weight g = 17.6

The number of the constant angles at which th measurements were made over the graduation is specif ed by the relation

$$f = \frac{1}{2} (p + q + r - 2) = 10$$

Concerning the rosette R(9, x) the angles are th following:

200, 400, 600, 800

while the ones for the rosette R(8, x) –

22,5,450,67,5,900,

and for the rosette $R(5, x) - 36^{\circ}$ and 72°

The application principle was the following: with the rosette R(9, x) the angles 20°, 40°, 60° and 80 were employed 40 times starting from

0°, 0°30', ,19°30';

With the rosette (R(8, x) the angles 22,5,45°, 67,5 an 90° were used 45 times starting from

00, 0, 30, ..., 220

and with the rosette R(5, x) the angles 36° and 72° hav been used 72 times, starting from

INVESTIGATION OF THE GRADUATION ERRORS OF THE BELGRADE MERIDIAN CIRCLE

00,0030',...,35030'.

The measurements were carried out by series, which took 25 minutes on the average (any series involving measurements in both senses). For homogeneity, all the measurements were performed by the same observer (the author), the note taking having been made by several persons.

The measurements are visual, having been executed by settings of the movable micrometer thread on the "junior" and the "senior" divisions, twice on each one. It took about 250 effective hours to accomplish the measurements and about 20 extra hours for proper installing and adjusting the microscopes.

The measurements were all performed in the closed MC pavilion. The temperature during these meas rements kept about 20°0 C, its variation in the course of a series reaching 0°9 C. The instrument was in the CW position, the same it occupied in the previous investigations, the purpose being to ensure, as much as possible, the same circumstances, thus providing as legitimate a base as possible for the intended comparison.

3. DEDUCTION OF THE CORRECTIONS TO THE DIAMETER AND THE ACCURACY

The determination of the corrections to the circle diameter from the observational material was carried out according to the scheme suggested by Zverev (1954). First, the means were derived of the micrometer readings by the I and III, as well as by the II and IV microscopes. Next, one found the quantities $D_{x,x+f}$ (differences of the diameters x and x + f readings) in both senses of measurements by series. Then, the quantities d_x^f were calculated, which are the differences between the contiguous angles:

$$\mathbf{d}_{\mathbf{x}}^{\mathbf{f}} = \mathbf{D}_{\mathbf{x},\mathbf{x}+\mathbf{f}} - \mathbf{D}_{\mathbf{x}-\mathbf{f},\mathbf{x}},$$

the subscripts denoting the particular diameter and the superscript the constant angle.

These values enter in the normal equations of the form:

$$22 E_{x} - S_{x}^{5} - S_{x}^{8} - S_{x}^{9} = d_{x}^{20} + d_{x}^{40} + d_{x}^{60} + d_{x}^{80} + d_{x}^{22.5} + d_{x}^{45} + d_{x}^{67.5} + d_{x}^{90} + d_{x}^{36} + d_{x}^{72} = F_{x}$$

solvable on the basic condition that the sum of corrections to all the diamters of the rosette is equal to zero, i.e.

$$\sum_{i=0}^{n} E_x = 0$$

The elimination of the sums S_x^5 , S_x^8 , S_x^9 and the quantity F_x was achieved by introducing new quantities G_x , H_x , K_x , L_x , M_x and N_x the result being the values of the corrections E_x .

The note-book recordings were checked by making summation of the quantities d_x^f , whose sum in any series must be zero. The cheking of quantities featuring on the processing cheme was made in adequate manner.

The estimate of accuracy of the obtained corrections is made by

$$\epsilon_{\rm E} = \pm \frac{\epsilon_{\rm d}}{\rm g}$$

where

 $\epsilon_{\rm d}$ – rms error of one diameter,

g – the weight associated with the determined corrections, amounting to 17.6 in the present case.

The rms error of a diameter reading in these measurings is

$$\epsilon_{\rm d} = \pm 0.25$$

while $\epsilon_E = \pm 0.06$ is the r m s error of the diameter corrections.

4. ANALYSIS AND CONCLUSION

The numerical values of the circle corrections obtained vary between +1¹⁵ 1 and -1¹⁵ 3. The maximum positive corrections appear around 130° and 160°, whereas those negative are found around 70°.

The comparison of these corrections with those found previously (Fig. 1) reveals the following: while no significant changes in the positions of the circle divisions do exist, there nevertheless a small displacement of one curve with respect to the other is evident. For it to be accounted for one has to give consideration to the fact that the two investigations have been made at markedly differing temperatures (the measurements in 1968 have been carried out in March and April, the average temperature being about 10°C while those in 1977 are accomplished in June and July at an average temperature about 20° C). To this must be added the all-out "agening" of the circle, its illumination and, certainly, personal error.

It is important to ascertain the possible temperature effect, this all the more so as besides night observations with this instrument, those by day-time (high day-time

temperature over the summer months) are also made. However, for the diameter corrections dependence on temperature to be brought out, greater number of their determinations at various temperatures is necessary. Since we are lacking such extensive measurements, it being difficult to provide them for the classical, unautomated, instruments, decision was taken to extract from the available material at least some notion about the temperature effect. With this in mind we analysed the quantities $D_{x,x+f}$ (which constitute the basis in the circle corrections calculation) in terms of temperature. Therefore, in using the observational material from 1968 and 1977, we formed the temperature differences Δt and the differences of the quantities $D_{x,x+f}$ for the sets of measurements at the angles 20°, 36°, 45° and 60°. The question arises whether there exist, and if, what sort of mutual dependence of these quantities. In order to establish what form of relation is the most convenient, we supposed the following dependences (linear, quadratic, third power and logarithmic)

$$\Delta D_{(\mathbf{x},\mathbf{x}+\mathbf{f})_i} = D_{01} + \alpha_1 \Delta t_i \tag{1}$$

$$\Delta D_{(x,x+f)_{i}} = D_{02} + \alpha_{2} \Delta t_{i} + \beta_{2} \Delta t_{i}^{2}$$
(2)

$$\Delta D_{(x,x+f)_i} = D_{03} + \alpha_3 \Delta t_i + \beta_3 \Delta t_i^2 + \gamma \Delta t_i^3 \qquad (3)$$

$$\Delta D_{(x,x+f)_i} = D_{04} \exp(\alpha_4 \Delta t_i)$$
(4)

Angle of measur.	k	D _{ok}	а _к	$\beta_{\mathbf{k}}$	γ	σDo	ook	σ _{βk}	σ _γ	σ _o	r
	1	7,752	0.531	_	_	0.991	0,060		_	1.715	0 82
	2	13.585	-0.360	0.030	_	3.580	0.529	0.018	-	1.674	0.83
20°	3	36.166	-5.361	0.375	-0.008	13.858	3.015	0.206	0.004	1.634	0.85
	4	9.315	0.034	·		1.061	0.004	-		0.102	0.84
	1	22,380	0.332	-	-	1.346	0.094	_	_	1.113	0.54
	2	22.758	0.280	0.002	-	6.922	0.953	0.032		1.132	0.54
360	3	165.058	-28.561	1.908	-0.041	42,135	8.494	0.560	0.012	0.968	0.71
	4	22,809	0.012	-		1.050	0.003	-	-	0.040	0.54
	1	0.901	0.175	-	-	0.638	0.059	-	_	1,218	0.43
	2	4.562	-0.584	0.036		1.792	0.354	0.016	-	1.162	0.53
450	3	1.763	0.273	-0.045	0.002	6.435	1.925	0.179	0.005	1.175	0.53
	4	0.560	0.125	-	-	1.445	0.034	-	-	1.307	0.30
	1	-1.159	0.305	-		1.527	0.168	_	_	1.172	0.38
	2	-13.176	3.223	-0.171		5.539	1.311	0.076		1.069	0.57
600	3	-35.567	11.533	-1.163	0.038	28,282	10,373	1.231	0.047	1.079	0.59
	4	0.090	0.827		-	6.202	0.201		-	2.376	0.48

Table 1. The results obtained using the formulae (1), (2), (3) and (4)

where

 D_{01} , D_{02} D_{03} and D_{04} are the most probable values of the quantites $D_{x,x+f}$ at temperature diff. $\Delta t = 0$;

 $\Delta D_{x,x+f}$ – differences of the quantities $D_{x,x+f}$ for 1968 and 1977 of the for the i-th measurements within at angles 20°, 36°, 45° and 60°;

 $\alpha_k, \beta_k, \gamma$ - the searched for coefficients of the temperature terms. The solution by the least square method supplied the looked for values of D_{0x} , α_x , β_k and γ (Table 1). Given are also the r m s error of σ_{D_0} , $\sigma_{\alpha x}$, $\sigma_{\beta k}$ and σ_{γ} , as well as σ_0 - r m s error of one equation of condition and the correlation coefficient r.

These results enable one to state that there existed a temperature dependence of the quantities $D_{x,x+f}$. It is most suitably expressed by the form (3). The measurement series at angle 20° discloses a closer correlation than those furnished by measurements at 36°, 45° and 60° angles. This might be a consequence of the smaller temperature differences with the latter measurements (average temperature differences with them are 3°.4 C, 5°.7 C and 2°.4 C respectively, while the one associated with 20° angle measurements is notable greater -9°.0 C)

From this analysis it transpires that the systematic shift of the Fig. 1. curves might partially be accounted for by the temperature effect.

The author takes the opportunity to thank Dr. S. Sadžakov and ing. D. Šaletic for their advice concerning the use of the Bruns method, Dr. G. Teleki for being helpful at analysing the results, as well as all the colleques who have rendering service at recording the enormous observational material.

REFERENCES

Høg, E.: 1960, Astron. Nachr., 286, Heft 2, 65.

Miyamoto, M.: 1985, An Annual Variation of the graduation Error of Tokyo PMC, IAU Commission 8 meeting, Delhi.

- Sadžakov, S., Šaletić, D.: 1968, Publ. Obs. Astron. Belgrade, 14, 159.
- Trajkovska, V.: 1979, Publ. Obs. Astron. Belgrade, 26, 193.
- Trajkovska, V.: 1981, Publ. Astron. Obs. Sarajevo, 1, 85.

Zverev, M.S.: 1954, Uspehy Astron. Nauk, 6, 3.

A SURVEY OF MERIDIAN OBSERVATIONS CARRIED OUT WITH THE TRANSIT INSTRUMENT OF THE BELGRADE OBSERVATORY IN THE PERIOD 1952 TO 1983

M.Jovanović and L.Djurović

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

(Received October 15, 1985)

SUMMARY: Presented are data on the frequency of observations in the Belgrade Time and Longitude Service, tabular survey of the number of observations performed by individual observers and a graphich illustration of the monthly average number of observations in the period 1952–1983.

Table 1 Broj posmatranih serija⁺ zvezda pojedinih posmatrača 1952.–1983.g. Number of series observed by individual observers 1952–1983.

Posmatrač Godine	ZB	LjM	MJ	DĐ	RM	DV	ML	DM	LÐ	Bl	Broj serij.
1952	122	140		_				-	-		262
1953	141	161	-	-		-	_	-	_	-	302
1954	104	52	_		-	_	_			_	156
1955	107	66		_	-	-		_	_	-	173
1956	81	84	8			-		-	-	_	173
1957	51	65	20		-	_	_			-	136
1958	62	73	66	-	-	-	_	-		-	201
1959	88	31	94	-		-	-	-		-	213
1960	40	46	110	10	-	_	_	_	-	_	206
1961	1	2	108	148		-				_	259
1962	87		72	94					-	-	253
1963	122	_	133	124	71	-		-		—	450
1964	105	_	95	144	100						444
1965	77		88	104	79					·—· ;	348
1966	90		126	131	-		-			_	347
1967	10	_	149	168			_	_		_	327
1968			115	1 35		_		_	_	-	250
1969	_	-	177	14	-	61	57	60			369
1970	_	-	178		-	81	22		-	_	281
1971			144	_	_	121	12		-		277
1972			102		_	113		-	<i>_</i>	-	215
1973			103	-	—	114	~	-		_	217
1974	_	-	98	_		107	_	-		-	205
1975		_	147			31		-	49	_	227
1976		-	118					_	69	-	187
1977	-		135		_			—	83		218
1978		_	59			-	~**		65	-	124
1979			114			_		_	43	-	157
1980			118	-		_		_	39	_	157
1981	_		103		-	-	-	_	67	-	170
1982	_		75			-	_	_	71		146
1983		-	77	31	~		-	-	78	18	204
Prosek:											239

+ Serija je sastavljena od 10-12 zvezda

A series comprises 10-12 stars

More intensive observational activity aimed at pursuing clock correction and longitude started at the Belgrade Observatory's soon as this institution was established at its present location, i.e. since 1934. Great efforts were necessary to overcome difficulties and to master both working technique and scientific achevements involved by regular research work.

It is, however, not until 1951 that regular observations with the transit instrument "Bamberg" were started, but the acquired material was used only for deriving the instrument's constants.

The processed observational material aimed at systematic pursuing of the clock correction and the longitude from 1952 and 1953 conditioned the Belgrade Observatory's Time Service admission to the International Time Service (B.I.H.). The processing and analysis of this observing material is authored by Z.M.Brkić and Lj.A. Mitić.

Fig. 1

Tabela II Pregled broja posmatračkih večeri u periodu 1952.–1983.	J
Number of observing nights in the period 19521983.	

Mesec God.	I	II	III	IV	v	VI	VII	VIII	IX	x	XI	XII	Br. posm. večeri
	_												
1952	7	3	10	14	7	16	22	16	14	14	13	7	143
1953	7	11	22	13	17	15	21	18	20	16	13	19	192
1954	2	8	12	11	16	14	15	21	15	17	7	7	145
1955	9	10	13	19	19	17	13	15	17	13	9	12	166
1956	14	7	8	12	14	13	16	26	19	23	6	11	169
1957	11	15	15	8	5	12	-	8	14	21	10	3	122
1958	13	12	13	8	19	14	22	19	16	12	5	14	167
1959	12	13	12	12	10	15	13	18	16	16	12	4	153
1960	10	13	5	11	12	15	15	18	18	15	11	13	156
1961	11	12	16	18	10	19	21	24	27	23	12	7	200
1962	9	8	10	7	9	8	9	28	16	20	6	11	141
1963	12	11	20	16	18	21	23	12	12	12	16	7	180
1964	12	12	10	19	19	15	24	22	19	18	11	9	190
1965	15	11	20	14	12	22	27	19	21	22	10	9	2 0 2
1966	5	11	12	8	16	14	14	16	21	11	10	5	143
1967	17	11	6	12	15	16	24	17	16	12	6	5	157
1968	4	8	16	13	7	8	11	8	7	17	3	3	105
1969	13	7	6	15	10	11	20	15	18	20	15	1	151
1970	10	5	11	10	9	13	12	19	15	16	. 14	7	141
1971	5	5	6	15	16	16	14	23	12	18	11	10	151
1972	2	8	22	15	13	12	6	6	10	6	12	11	123
1973	9	5	5	7	11	12	10	11	16	20	14	7	127
1974	12	11	15	11	7	8	14	14	13	6	14	6	131
1975	17	14	10	10		4	16	3	19	. 9	8	5	123
1976	4	9	6	6	3	11	12	11	15	11	6	6	100
1977	6	1	18	ġ	9	9	7	14	11	19	6	7	116
1978	3	-	3	2	1	7	10	17	8	10	2	4	67
1979	-	11	11	8	4	8	10	6	12	8	2	5	8.5
198.0	1	4	Î.	7	4	12	5	10	14	ğ	7	_	82
1981	-	6	12	14	10	11	8	1	8	11	9	-	90
1982	_	7	0	10	8	10	6	1	10	7	8	6	82
1083	6	2	7	4	8	3	10	0	15	15	7	2	88
190 3	U	2	,		0	5	10		15	15	/		
S/32	8	8	11	11	11	- 13	14	15	15	15	9	7	137

The observers in the Time Service over the period 1952 to 1983 are: Z.Brkić (ZB), Lj.Mitić (LjM), M.Jova nović (MJ), D.Djurović (DD), R.Momčilović (RM), D.Vesić (DV), M.Lončarević (ML), D.Mandić (DM), L.Djurović (LD) i B.Jovanović (BJ).

Graphic illustration of the avarege number of observing nights by months in the period 1952 - 1983.

The reduction of the observations to the same coordinate system-zero point, is performed by the chain method in various versions. The application of the method assumes the same accuracy level in all of it "links". Such an accuracy is provided inasmuch as the observation frequency is evenly distributed in time. A planing researches involving the application of the method (working out of catalogues from observation made in time services, derivation of the local Z-term) is necessary to known the frequency distribution of the clear nights. This just was the task we set up in the present statement.

CONTENTS

Original research papers:		
A.Kubičela, M.Karabin, I. Vince, and Z. Ivanović	Furhter Belgrade results of the large-scale photospheric velocity research	1
J. Arsenijević, S. Jankov, G. Đurašević, and I. Vince	Variations of the linear optical polarization of κ Draconis	6
V. Kršljanin, I. Vince	Collision broadening and microturbulence sensitivity of some Na I non-resonant lines	12
S.A. Tolchelnikova-Murri	On the problem of classifying modern methods for the right ascension determination	20
D. Đurović	The determination of the Belgrade longitude for the period 1964-1984	20
M. Đokić	Constant of aberration from the latitude observations with the Belgrade Zenith-Telescope	29
H. Debehogne	Plate reduction as the determination of a bijection in mo- dern algebra. Pure matrical solution. Error effect and theo- rem of the minimum. The best-stars method applied to determinate accuracy on GPO-la Silla-ESO plates	
D. Olević, S. Šegan	Accuracy of the astrographic positions obtained with the Belgrade short-focus astrograph	26
and R. Pavlović		36
Dj. Bozhichkovich,	Investigation of levels of the Belgrade Vertical Circle	40
G.M. Popović	New double stars discovered at Belgrade observatory with the Zeiss refractor 65/1055 cm. Supplement VII	49
Review papers:		
M. Vukićević-Karabin, J. Arsenijević	Solar and stellar activity phenomena	53
G. Teleki	Present-day potentialities of refraction influences deter- mination and perspective developments	61
remainary announcements:		
B.D. Jovanović	Solar activity effects on the Danube river level	73
I. Pakvor V. Erceg and D. Olević	The stability analysis of the vacuum meridian marks of the large transit instrument at Belgrade observatory	75
V. Protió Domiole	IDS 14012S4924, IDS 14571S4012)	78
H. Božić	1981 observed from Hvar Observatory (Yugoslavia)	82
G.M. Popović	Micrometer measures of double stars (Series 39)	84
D.J. Zulević	Micrometer measures of double stars (Series 40)	94
V. Trajkovska	Preliminary results of planet observations with the Belgrade	
D. Olević,	Fundamental Asteroid positions obtained with the Belgrade	100
S. Segan, R. Pavlović	Zeiss astrograph	104
Professional papers:		
Z. Stančić	Instrumental systems of the Belgrade large meridian circle	
V. Trajkovska	in the period 1981–84 Investigation of the graduation errors of the Belgrade meri-	119
M. Jovanović, and L. Djurović	dian circle A survey of meridian observations carried out with the tran- sit instrument of the Belgrade Observatory in the pariod	126
	1952 to 1983	130