BULLETIN

DE

L'OBSERVATOIRE ASTRONOMIQUE DE BEOGRAD

VOLUME XXV - № 3

RÉDACTEUR
V. OSKANJAN

BULLETIN

L'OBSERVATOIRE ASTRONOMIQUE DE BEOGRAD

ANNÉÉ 1964 Nº 3 VOLUME XXV

LA COMPARAISON DE L'ANCIEN ET DU NOUVEAU PROGRAMME DU SERVICE DE LATITUDE DE L'OBSERVATOIRE D'APRES LES OBSERVATIONS SIMULTANNEES FAITES EN 1960.

G. Teleki et B.M. Sevarlić

Au janvier de 1960.on a commencé à l' Observatoire de Beograd les observations sulvent le nouveau programme contenant 6 groupes de 10 couples de Talcott comparaison des deux programmes. chacun [1] . En 1960, on a effectué les observations simultannees des deux pro- observations suivant les mois en 1960. et grasma les observations de l'ancien programme [2] , commencées des l'an 1949., nombre de sous-groupes observés du noufarent cessées avec la fin de l'an 1960.

Ce travail contient une analyse demi-définitive des observations de deux ans du nouveau programme et donne

1. La Table 1 contient le nombre d' en 1961. Dans la Table 2 on donne le veau programme dans les mames années.

Table 1

		Ancien programme			amme	Nouveau programme 1960				Nouve u programme 961		
		<u>GT</u>	MD coup	<u>RG</u>	_Σ_	<u>GT</u>	MD SOURCE	<u>kG</u> roupes	Σ	MD	<u>RG</u> s group	Σ
			Coup				50 U 5 - 8	toahes	•	. 50 4	s group	60
Yanv.		1	28	-	29	4	_	_	4	8	4	12
řévr.		••	37	-	37	6	1	-	7	2	2	4
Mars		•••	3	21	54	405	Lį.	-	4	6	7	13
Avr.		3	-	58	61	2	1	-	3	5	3	8
Mai		-	See	49	49	2	••	13	15	4	4	8
Juin		-	34	49	83		2	8	10	10	6	16
Jul 11		•	50	13	63	2	4	_	6	4	12	16
Acôt.		-	41	54	95		6	10	16	11	5	1.6
Sept.		-	44	43	87	**	6	8	14	19	8	27
Oct.			20	31	51	~	1	7	8	8	16	24
Mov.		1984	•	5	5	-	-	5	5	6	4	10
Dac.		_	18	12	30		-	3	3		2	2
	Σ.	4	275	335	614	16	25	54	95	83	.73	156
							cou	ples:	475	cou	oles:	780

Table	2

1960		Ia	<u>Ib</u>	IIa	IIb	IIIa	IIIb	IVa	IAP	<u>Va</u>	Vb	<u>VIa</u>	Alp	Σ
G. Teleki	/GT/	-	_	2	2	4	4	1	1	1	1	-	-	16
M. Djokić	/MD/	5	1	-	1	1	2	1	1	2	5	7	5	25
R. Grujić	/RG/	8	7	1		-		3	4	7	7	8	9	54
	Σ	10	8	3	3	55	6	5	6	10	10	15	14	9 5
1961														
M. Djokić	/MD/	4	2	3	3	5	5	6	3	8	6	20	18	83
R.Grujić	/RG/	6	6	2	2	5	4	2	3	10_	11	11	11	73
	Σ	10	8	5	5	10	9	8	6	18	17	31	29	156

Table 3

1960		Ia	Ib	IIa	IIb	IIIa	IIIb	IVa	IVb	<u>Va</u>	<u>Vb</u>	VIa	AIP	Σ
G. Teleki	/GT/	_	_	2	2	4	4		1	1	1	_	_	15
И. Djokić	/MD/	1	1		_	1	2	1	1	1	2	7	5	22
R.Crujić	/RG/	8	7	1	-		_	2	1	7	6	_ 7	8	47
	Σ	9	8	3	2	5	6	3	3	9	9	14	13	84
1961														
M.Djokić	/MD/	4	2	3	2	5	5	6	3	8	6	20	17	81
R. Grujić	/RG/	6	6	2	2	5	4	2	3	7	11_	11	11	70
	Σ	10	8	5	4	10	9	8	6	15	17	31	28	151
1960 + 19	61													
G.Teleki	/GT/		_	2	2	4	4	_	1	1	1	_	-	15
M. Djokić	/MD/	5	3	3	2	6	7	7	4	9	8	27	22	103
R.Grujić	/RG/	14	13	3	2	5	4	4	4	14	17	18	19	117
	Σ	19	16	8	6	15_	15	11	9	24	26	45	41	235

Table 4

	1960	1961	Σ
G. Teleki	1	_	1
M.Djokić	3	2	5
R.Grujić	7	3	10
Σ	11	_ 5	16

Dans la Table 3 est donné le nombre de sous-groupes du nouveau programme soumis à l'analyse. Des Tables 2 et 3 résulte la Table 4 contenant les sous-groupes omis dans l'analyse. Il faut remarquer qu'on a soumis à l'analyse seulement les sous-groupes avec toutes les 5 couples obser - vées.

2. Les étoiles furent pointées en 4 positions [1] dans le champs de l'instrument. Pour le calcul on a employé les valeurs suivantes du tour de la vis micrométrique /R/, de la partie du niveau supérieur / λ_g / et du niveau inférieur / λ_d / ainsi que de leurs coefficients thermiques:

$$R = 40,1582 + 0,00080 / t - t_{of}$$

$$hat{\lambda}_{g} = 1,2684 + 0,00606 / t - t_{of}$$

$$hat{\lambda}_{d} = 1,1798 + 0,00400 / t - t_{of}$$

$$t_{O4} = +15^{\circ}, 4 \text{ C}$$
 $t_{O2} = +15^{\circ}, 0 \text{ C}$
 $t_{O3} = +15^{\circ}, 0 \text{ C}$

La valeur R n'est pas tout à fait sûre, de façon qu'on peut attendre de cette part quelques petites corrections.

Les constantes de la lunette zénithale /l'azimut,l'inclinaison de l'axe,la flexion latérale et la collimation/furent pendant tout le temps dans les limites permises.

Au commencement et à la fin de chaque groupe on a lu le barométre B_o/qui fut ensuite réduit au O^O C/ et au commencement et à la fin de chaque sous groupe on a notté l'état de 4 thermomètres: dans l'abris météorologique T_z , à l'instrument T_i , dans la partie nord T_n et dans la partie sud T_s de la salle d'observation. Des lectures T_n et T_s on a déduit, comme valeur moyenne T_v la température de l'air de la salle à l'emplacement de l'instrument.

3. Les observations furent réduites avec les valeurs R et à données ci-dessus et ensuite corrigées pour l'influences des erreurs progressives et périodiques du micromètre, ainsi que pour les parallaxes moyennes, membres d'Oppolzer et déviations de la verticale provenant du Soleil et pour les erreurs de déclinaisons.

Les corrections de déclinaisons des sous-groupes nous avons obtenues de la manière suivante: Pour chaque observation de sous-groupes on a formé la différence

où γ_s représente la valeur de latitude instantanée déduite des coordonnées du pôle d'après les données du Service International Rapide des Latitudes /SIR/auprès du Bureau International de l'Heure/Paris/ et γ_{it} la valeur obtenue d'observation d'un sous-groupe. On a formé les valeurs moyennes D_i pour l'an 1960. et 1961. et la valeur moyenne pondérée de ces deux valeurs. Ensuite on a formé la somme

$$\sum_{i=1}^{12} D_{i} = k$$

/pour tous les 12 sous-groupes/. Pour la correction de déclinaison de chaque sous-groupe nous avons adopté la valeur

$$\Delta \delta_i = D_i - \frac{k}{12}$$

en exigeant que la condition

$$\Sigma \Delta \delta_i = 0$$

soit accomplie.

Table 5

19	60	190	51	1960-		
Di	ε Di	Di	[©] Di	D _i	ε _{Di}	n
-0;303	±0,041	-07190	±0,030	-0;244	±0,036	19
+ ,063	,044	+ ,195	,093	+ ,129		16
- ,162	,031	- ,345	,045	- ,276	,040	8
- ,036	,072	- ,145	,098	- ,109	,090	6
,190,327	,058	+ ,235	,037	+ ,220	,045	15
	,047	+ ,136	,065	+ ,212	,058	15
+ ,193	,059	+ ,266	,049	+ ,246	,052	11
- ,733	,044	- ,623	,049	- ,660	,048	9
- ,054	,048	- ,144	,030	- ,110	,038	24
- ,254	,044	- ,372	,034	- ,328	,038	26
- ,564 -0;389	,031 <u>+</u> 0;039	- ,506 -0,319			,026 <u>+</u> 0,034	45 41 235
	D ₁ -0;303 +,063 -,162 -,036 +,190 +,327 +,193 -,733 -,054 -,254 -,564	-0;303 ±0;041 +,063 ,044 -,162 ,031 -,036 ,072 +,190 ,058 +,327 ,047 +,193 ,059 -,733 ,044 -,054 ,048 -,254 ,044 -,564 ,031	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

La Table 5 contient les valeurs D_i pour l'an 1960. et 1961. et les valeurs communes pour le laps entier, l'erreur moyenne quadratique / ϵ_{Di} / de leur détermination et le nombre /n/ d'observation

de chaque sous - groupe dans le laps entier 1960 - 1961.

Dans la Table 6 on donne les valeurs de $\Delta \delta_i$ pour les sous-groupes.

Table 6

Sous-groupes	Δδί	Sous-groupes	Δδί
Ia	-0,096	IVa	+0;395
Ib	+ ,278	Ι ν ρ	- ,511
IIa	- ,127	Va	+ ,038
IIp	+ ,040	٧b	- ,179
IIIa	+ ,368	VIa	- ,375
IIIÞ	+0;361	AIP	-0,192

Il faut remarquer que, suivant la méthode employée pour le calcul, dans les valeurs $\Delta \delta_i$ est compris le membre z,c'est

à dire qu'il existe la liaison $\Delta \delta_{\dot{1}} = \Delta \delta_{\dot{1}}' - z \qquad /1/$ où $\Delta \delta_{\dot{1}}'$ est la variation réelle de décli-

naison. La valeur $\Delta \delta_1'$ sera déterminée par la méthode d'enchaînement aussitot où un matériel suffisant d'observation

des deux groupes en une même nuit soit accumulé.

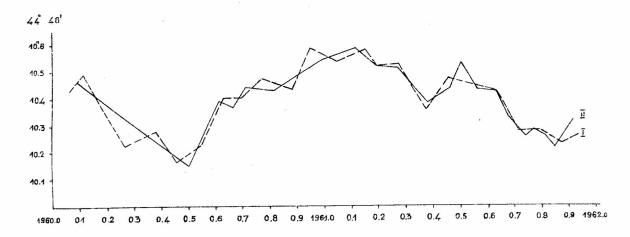


FIG.1

C'est pour cette raison que nous estimons les latitudes obtenues avec les

valeurs nommées R et λ et libérées d' influences systématiques énumérées comme

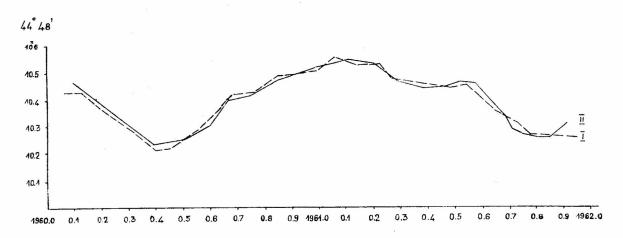


FIG.2

demi-définitives. Ces dernières valeurs des sous-groupes observés furent publiés

dans ce Bulletin avec les données T_z , T_i T_y et B_o .

4. Les valeurs diurnes demi-défini tives de ^φ pour 1960. et 1961. sont données dans ce Bulletin [4]. Partant de ces
données nous avons déduit la courbe de
variation de latitude en deux manières;
à l'aide de valeurs moyennes mensuelles
/méthode I/ et à l'aide de points normaux
formés de dix sous-groupes /méthode II/.
Les valeurs ainsi obtenues sont données

dans la Table 7 et à la Fig.l. Index I et II dénottent les courbes obtenues suivant les méthodes I et II respectivement. Parmi les données obtenues par la méthode II la dernière valeur /entre parenthèses/fut déduite de 5 données seulement.

Les valeurs ainsi obtenues furent adoussies par la méthode de barycentres et données dans la Table 8 et à la Fig.2.

Table 7

	I sous-		II	-
Moy.moment	groupes	φ	Moy.moment	φ
		44° 48°		44° 48°
1960,059	4	10,427	1960,091	10,465
,112	6	10,491	, 277	10,324
,215	ζĻ	10,332	,405	10,230
, 268	3	10,224	,499	10,152
,381	9	10,277	,617	10,390
,459	10	10,165	,667	10,370
,542	5	10,221	,717	10,443
,634	14	10,404	,819	10,433
,700	14	10,405	,993	10,540
,772	7	10,477	1961,111	10,584
,886	5	10,430	,194	10,521
,952	3	10,584	,269	10,516
1961,046	11	10,537	,388	10,383
,155	4	10,580	,466	10,439
,200	13	10,520	,503	10,527
,275	8	10,526	,568	10,432
,378	8	10,364	,632	10,425
,465	15	10,477	,679	10,333
,534	14	10,457	,711	10,282
,628	15	10,429	,739	10,259
,711	27	10,283	,7 77	10,286
,796	24	10,280	,809	10,270
,871	10	10,233	,850	10,218
1961,937	2	10,263	/1961,913/	/10,314/

Table 8

	<u> </u>		<u>II</u>
	sous-		
Moy.moment	groupes	ф	Moy.moment φ
		440 489	440 48,
/1960,059/	4	/10;427/	/1960,091/ /10,465/
,126	14	10,427	,258 10,340
,180	13	10,380	,394 10,235
,318	16	10,281	,507 10,257
,401	22	10,219	,594 10,304
,447	24	10,219	,667 10,401
,558	29	10,290	,734 10,415
,648	33	10,377	,843 10,472
,688	35	10,419	,974 10,519
,7 55	26	10,429	1961,099 10,548
,846	15	10,483	,191 10,540
,989	19	10,516	,284 10,473
1961,054	18	10,554	,374 10,446
,133	28	10,535	,452 10,450
,217	25	10,532	,512 10,466
,270	29	10,479	,568 10,461
,394	31	10,460	,626 10,397
,472	37	10,445	,674 10,347
, 542	44	10,454	,710 10,291
,644	56	10,366	,742 10,276
,723	66	10,315	,775 10,272
,771	61	10,274	,812 10,258
,825	36	10,266	/ ,846/ /10,258/
/1961,937/	2	/10,263/	/1961,913/ /10,314/

De la courbe sur la Fig.2 on a pris les valeurs de φ pour chaque O,l de l' année. Ces valeurs, d'après les méthodes I et II, ainsi que leur moyenne /M/, sont données dans la Table 9. Les deux premières valeurs sont représentées aussi à la Fig. 3, tandis que les valeurs M et la variation de latitude déduite des coordonnées du pôle avec la latitude moyenne 44° 48° 10,427 /la courbe en pointillés/ sont données à la Fig.4. La variation de la latitude déduite des coordonnées du pôle du SIR est donnée dans la Table 10.

Table 9

	<u> </u>	II	<u> </u>
	φ	φ	φ
	44°048,	44 ⁰ 48,	44°48,
1960,1	10,427	10,"456	10,442
,2	10,367	10,380	10,374
,3	10,292	10,305	10,298
, 4	10,220	10,235	10,228
,5	10,250	10,253	10,252
,6	10,333	10,315	10,324
,7	10,420	10,408	10,414
,8	10,458	10,449	10,454
,9	10,497	10,490	10,494
1961,0	10,524	10,522	10,523
,1	10,543	10,548	10,546
,2	10,533	10,537	10,535
,3	10,476	10,469	10,472
,4	10,460	10,447	10,454
,5	10,450	10,460	10,455
,6	10,402	10,426	10,414
,7	10,330	10,309	10,320
,8	10,270	10,260	10,265
,9	10,265	10,303	10,284

Table 10

	φ ,		Ψ 5		Ψs
	44048,		44048,		44°48
1960,0	10,567	1960,7	10;372	1961,4	10,460
,1	10,482	,8	10,432	,5	10,417
,2	10,383	,9	10,477	,6	10,369
,3	10,301	1961,0	10,490	,7	10,347
,4	10,272	,1	10,507	,8	10,337
,5	10,275	, 2	10,516	,9	10,327
1960,6	10,317	1961,3	10,507	1962,0	10.346

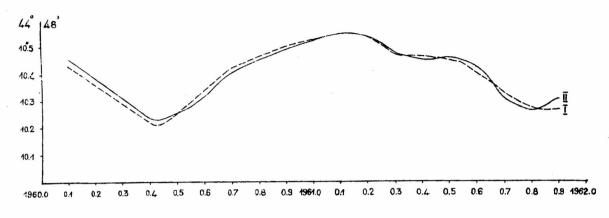


FIG.3

FIG. 4

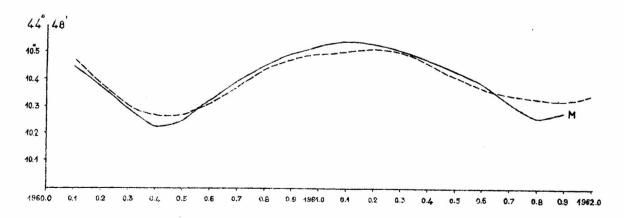


FIG.5

nous avons estimé comme plus réel de re- données de la Table 9. Les valeurs gulariser en une deuxième approximation altérées sont données dans la Table 11. nos courbes I, II et M. De cette façon

En s'inspirant des données du SIR on a obtenue de petites altérations des

Table 11

	I .	II	<u>M</u>
	Contraction of the Contraction o	φ	φ
1960,7	44 ^c 48° 10°405	10,390	10;398
1961,3	10,510	10,510	10,510
, 4	10,475	10,480	10,478
, 5	10,435	10,440	10,438
1961.6	10,385	10,385	10,385

La courbe définitive M et la courbe calculée sont données à la Fig. 5. Les différences que montrent nos courbes en comparaison avec la courbe calculée /"internationale"/ sont données dans la

Table 12. Dans la première colonne se trouvent les données déduites d'après la Table 9 et dans la deuxième d'après la Table 11.

Table 12

	I		II	II		<u>M</u>	
	Δ	△ (¢		Δφ		Δφ	
	d _{I,I}	d _{I,2}	d _{II,1}	d _{II,2}	d _{M,1}	d _{M/2}	
1960,1	-0,055		-0,026		-0,040		
,2	- ,016		- ,003		- ,009		
,3	- ,009		÷ ,004		- ,003		
,4	- ,052		- ,037		- ,044		
,5	- ,025		- ,022		- ,023		
,6	,016		- ,002		· ,007		
,7	+ ,048	+07033	100	+0,018	+ ,042	+0;026	
,8	+ ,026		+ ,017		, 022		
,9	o20, 4		+ ,013		,017		
1961,0	+ ,034		+ ,032		÷ ,033		
,1	÷ ,035		,041		+ ,039		
,2	+ ,017		+ ,021		+ ,019		
,3	- ,031	÷ ,003	- ,038	· ,003	- ,035	+ ,003	
,4	,000	- ,015	·· ,013	- ,020	- ,006	- ,018	
,5	÷ ,033	- ,018	÷ ,043	- ,023			
,6	÷ ,033	- ,016	÷ ,057	- ,016	÷ ,045	- ,016	
,7	017		- ,038		- ,027		
,8	- ,067		- ,077		- ,072		
1961,9	-0,062		-0,02%		-0,043		

À cause de la limison /1/ on ne peut pas traîter ces différences comme membre z. Notre courbe de variation de latitude n'est pas tout-à-fait indépendante des coordonnées du pôle, c'est à dire des données du SIR.

5. La latitude moyenne fut calcolée par la méthode de A.J.Orlov, à l'aide de l'expression

 $\frac{\varphi_{m} = \frac{1}{20} \sum_{0}^{4} \left(\varphi_{t}^{+} \varphi_{t+5}^{+} \varphi_{t+6}^{+} \varphi_{t+6}^{+} \right)}{\text{en formant ensuite les valeurs movennes}}$

de chaques deux données successaves. Pens la Table 13 on donne les données de la latitude moyenne déduites des données de la Table 9.

Four la latitude moyenne noue avers adopté la valeur

φ_m = 444° 48° 107427 qui est la valeur obtenue par chacuce des trois méthodes employées. La valeur sembable peut être déduite en partent des données de la Table 11.

Table 13

		e continues de de la continue de la	II	M
		φ ,,	φ	φ ₃₈
1960,9	4404g,	10,423	10,428	10,428
1961,0		10,428	10,427	10,428
1961,1		10,426	10,426	10,426

6. Pour estimer la précision de nos observations nous avons formé les différences des latitudes demi-definitives obtenues des sous-groupes a et b pour chaque séance d'observation, pour le laps

entier 1960-1961. Le nombre de séances employées /n/, les différences noyennes de deux années / \(^2\)/et les erreurs moyennes quadratiques de leurs déterminations / \(^2\)_m/ sont donnés dans la Table 14.

Table 14

Groupes

	I	II	III	ĨΫ	V	VI	Programme
n	13	€	12	6	18	35	90
Δ	-0,023	+0,026	-0,006	-0,009	-0,040	-0,013	-0,016
ε m	±0,054	±0,039	± 0,069	±0,057	± 0,034	±0,019	±0,042

Si nous dénottons l'erreur moyenne quadratique d'une détermination Δ avec ε_{Δ} et l'erreur correspondante d'une couple avec ε_{τ} , ces deux erreurs sont

liées par l'expression

/un sous - groupe contenant 5 couples/.

Table 15

Groupes

	I	II	III	IV	ν	VI	Programme
Ε	<u>+</u> 0;194	<u>+</u> 0;096	±0,1239	<u>+</u> 0;140	±0,144	<u>+</u> 0;112	<u>+</u> 0;155
ε _D	<u>+</u> 0,306	<u>*</u> 0,152	<u>+</u> 0,378	<u>∗</u> 0,221	<u>+</u> 0,228	<u>+</u> 0,177	<u>+</u> 0,245

Les valeurs $^{\epsilon}_{\Delta}$ et $^{\epsilon}_{p}$ sont données dans la Table 15. On voit que les valeurs $^{\epsilon}_{p}$ varient dans les larges limites de \pm 0,7152 au \pm 0,7378. Ces limites sont déduites d'un nombre assez petit de mesures. $^{\epsilon}_{p}$ atteint son maximum dans le groupe III. La raison nous ne pouvons

e atteint son maximum dans le groupe III. La raison nous ne pouvons trouver qu'après l'analyse définitive d'observations. Pour le moment on peut remarquer seulement que la valeur moyenne des magnitudes d'étoiles et la plus grande dans le groupe III. De plus, on observe le III groupe ayec ses étoiles

relativement les plus faibles dans les mois janvier-mars, quand les conditions atmosphériques ne sont non plus les meilleurs.

Enfin nous pouvons supposer que la valeur du tour micrométrique R demande une correction AR. Dans ce cas la latitude exigera la correction

Δ'φ = q · ΔR . /3/
Nous donnons les valeurs q dans la Table
16 pour les points obtenus par la méthode II et se trouvant dans la Table 8.

Table 16

Moy.moment	q	Moy.moment	<u>q</u>	Moy.moment	<u> </u>
1960,091	-1,7	1960,974	+1,5	1961,626	+1,7
,258	-2,3	1961,099	-0,8	,674	+2,2
,394	-1,7	,191	-2,8	,710	+2,1
,507	+0,3	, 284	-3,4	,742	+2,2
, 594	+2,0	, 374	-2,4	,775	+2,4
,667	+3,1	,452	-1,2	,812	+2,7
,734	+3,3	,512	-0,1	,846	+3,1
1960,843	+2,8	1961,568	+0,8	/1961,913/	/+3,7/

Les valeurs q nous avons aussi représentées à la fig. 6. En cas de la valeur AR constante nous obtenons de l' expression /3/ pour $\Delta' \psi$ une périodicité annuelle. Ce fait peut être employé dans l'analyse du membre \underline{z} .

7. La Fig.7 représente la courbe de la variation de latitude déduite de l'

ancien programme /A/ et du nouveau programme /B/. Les données pour la courbe

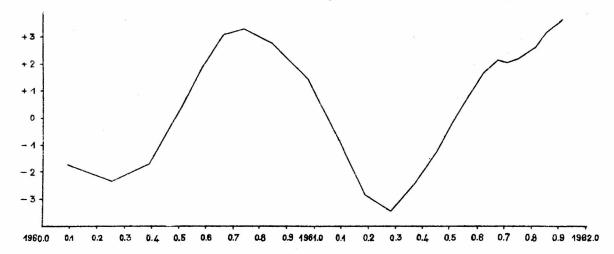
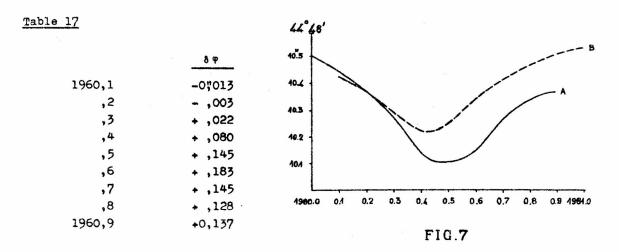



FIG.6

A nous avons prises de notre travail [3]. Les données de l'ancien programme étant déduites des valeurs moyennes mensuelles, nous avons employé pour le nouveau programme aussi les valeurs cor-

respondantes adoussies /Table 9 et 11 colonne I/. La Table 17 donne la différence des latitudes

$$\delta \varphi = \varphi_B - \varphi_A$$
pour chaque O,1 de l'année.

La valeur moyenne des différences δφ atteint +0,092. Dans la première moitié de l'année les courbes sont pas parallèles, tandis que dès l' époque 1960,5 elles montrent la même Ψ_{mB} - Ψ_{mA} * 44° 48' 10",427 - 44° 48'10",256 * +0",171

tendence. Dans la deuxième moitre de l'année la différence moyenne & P atteint +0,148 +0,009,ce qui correspond presqu' entièrement à la différence des latitudes moyennes adoptées

Dans le travail /3/ nous avons montré que la latitude moyenne déduite de l'ancien programme observé en 1960. a la tendence de s'augmenter. La dernière donnée de la latitude moyenne de l'ancien programme nous avons pour l'époque 1960,1 et elle est 44° 48'10"310, ce qui diffère sonsiblement de la latitude moyenne adoptée, déduite du laps de 4 ans /1957,0-1961,0/étant 44°48'10"256. Les anomalies nous attribuons que les courbes A et B ne sont pas parallèles dans le laps 1960,1-1960.5.

Ta différence définitive des latitudes de l'ancieu et du nouveau programme peut être obtenue seulement après une analyse définitive des données d'observations avec les valeurs définitives des constantes instrumentales. On ne peut qu'après cette analyse chercher avec plus de sûreté la cause de cotte différence. Jusqu'à ce moment nous adopterons pour la différence moyenne de latitude déduite de l'ancien et du nouveau programme, en but de leur liaison, la valeur 5 4 = 4 0%148

.

Dans la préparation des données d'observation ont pris part les collaborateurs techniques de l'Observatoire M^{me} B.Kubičela et M^{me} N.Djurić auxquelles nous exprimons ici notre remerclement.

Littérature

- [1] B. Bevarlić et G. Teleki: "Le projet d'un nouveau programme pour le Service de latitude de l'Observatoire", Bulletin de l'Obs. astr. de Beograd, XXIV, NOS 3-4, 1959.
- P.M.Djurković, B.M.Ševarlić et Z.M.Brkić: "Détermination de latitude de l'Observatoire astronomique de Belgrade, 1947", Publ. de l'Obs. astr. de Belgrade, Nº 4, 1951.
- [3] S.M. Ševarlić et G. Teleki: "Variations de latitude de l'Observatoire de Beograd du 1957. C au 1961,0"/sous presse/
- [6] G. Teleki, R. Grajić ot M. Bjokić: "Observations à la lunette mémithais /de 110 mm/ du Sarvice de latitude de l'Observatoire", Bulletin de l'Obs. astr. de Beograd, Vol. XXV, N° 2, 1963.

CIRCULAR ELEMENTS

by R.S. Mitrinović

Pla	net	Ep	ooch	U	Node	Incl	N	A	Observations
1961	\mathtt{TD}_1	10	15.0	211°,316	179°885	51, 230	0.15284	3.45	Oct. 10, 15
1961	TM,	11	4 • O	84.898	317.864	2.454	0.29657	2.227	Oct.12, Nov.10
1961	UA	11	4.0	26.258	7.479	21.254	0.23.521	2.7578	Oct.16,Nov.10
1961	nc	11	4.0	44.264	345,445	13,140	0.17301	3.19	Oct.16, Nov. 4
1961	VB	11	10.0	37.687	5.570	1.934	0.28251	2.3	Nov.4, 10
1961	AG	11	10.0	5.550	36.675	10.055	0.20834	2.83	Nov.4, 10
1961	VD	11	10.0	14.384	32.192	13.885	0.17166	3.21	Nov.4, 10
1961	VF	11	10.0	18.333	24.024	6.197	0.26924	2,375	Nov.4, 10
1961	VM	11	11.0	164.968	253.625	4.438	0.16660	3.29	Nov.9, 11
1961	WA	12	7.0	177.253	252.669	11.809	0.18417	3.06	Nov. 50, Dec. 7
1962	AD	1	28.0	97.629	36,066	1.605	0.17168	3.206	Jan. 10, 28
1962	AE	1	28.0	193,425	300.965	3.558	0.17631	3.15	Jan.10, 28
1962	HA	5	3.0	93.812	122.341	5.391	0.18970	3.0	Apr.27, May, 3
1962	HB	5	3.0	142.172	76.948	3.532	0.42564	1.75	Apr. 27, May, 3
1962	HC	5	3.0	32.811	3.711	4.075	0.23790	2.58	Apr. 27, May, 3
1962	HD	5	3.0	126,316	88.397	5.773	0.24925	2.5	apr. 27, May, 3
1962	JA	5	7.0	158.304	49.237	15.572	0.16704	5.27	May 4, 7
1962	JB	5	7.0	66.127	138.911	3.433	0.46678	1.647	May 4, 7
1962	JC	5	7.0	35.384	180.065	7.926	0.26499	2.4	May 4, 7
1962	JD	5	7.0	42.590	168.256	7.872	0.22124	2.71	May 4, 7
1962	JE	5	7.0	139.896	75.305	5.807	0.30277	2.2	May 4, 7
1962	JG	5	7.0	157.371	54.159	8.352	0.23551	2.6	May 4, 7

Equinox: 1950.0

Possibly 1961 $TD_1 = 1941 SZ$.

Possibly 1961 WA = 1929 WK. The observation of 1961 Dec 3.32 /Goethe Link, MPC-2176/ does not belong to 1961 WA: O-C = $+0.7^{m}$ 7 . -2^{n} .

The observation of 1962 May 3.17 /Goethe Link, MPC-2179/ does not belong to 1962 JA : 0 - C = + 0.2 -1.

	TABLE DES MATIEFES	Page
G.Teleki et B.M.Ševarlić,	La comparaison de l'ancien et du nouveau programme du service de latitude de l'Observatoire d'agrès les observations simultannées faites en 1960	. 73
R.S. Mitrinović	Circular elements	