BULLETIN

DE

L'OBSERVATOIRE ASTRONOMIQUE DE BEOGRAD

VOLUME XXVIII, F.1 N-123

> RÉDACTEUR EN CHEF P. M. DJURKOVIĆ

BEOGRAD 1970

Page	Colonne	Ligne	au lieu de	lire
18		18	:	=
18		17 au dessous	:	=
31	1	14 au dessus	+	annuler
31	2	27 "	4	As
32	1	9 au dessous	•	,
33		2 au dessous	46-41	46-61
36	1	16 au dessus	cortain	certain
36	2	5 "	thereare	there are
38	1	5 "	₊ ⊖₹32	+0;32
39	1	3 "	75-75	75°-75°
42	1	20 "	nelther	neither
42	2	3 au dessous	/d	d
43	2	3 au dessus	7 5 [°] -75	75°- 75 [°]
43	5	17 "	+0,0010	-0,0007
43	5	18 "	0,0158	0,0179
43	5	2 au dessous	0,0007	+0,0010
43	5	l au dessous	0,0179	0,0158
45	1	8 au dessous	Ag	AS
50	1	3 au dessus	A	As

2.

ERRATA

/Bulletin, Vol. XXVIII, F.1, Nº 123/

Page (Colonne	Jigne	au lieu de	lire
- <u>L</u>	1	au dessous de figure		Fig. 1.
4,	2	6 au dessus	lengeth	length
5	1	2 *	grouped into three columns within each Table. The left column indicates measurements immodi ately before flare. the mid one during flare and the right one after flare.	<pre>they should be grouped as follows: Numbers 1-12 in Table 2,1-9 in Table 4 correspond to the measurements before flare. Numbers 13-22 in Table 3 and 6-9 in Table 4 correspond to the measurements during flare. Numbers 23-34 in Table 2,14-20 in Table 4 correspond to the measurements</pre>
5	2	au dessous	j	a vet flate.
		des figures		71g.2. Fig.3. Fig.4.
7	1	M		Phe. S.
7	2			Pie.6.
8	1	37		When 7. Fig 8
8	2	29		
9	2			140 10
15		4 au dessous	inlisoble	6h
16	2	3 au dessus	/dg dg/	$/a_{a} + a_{a}/$

BULLETIN

DE

L'OBSERVATOIRE ASTRONOMIQUE DE BEOGRAD

VOLUME XXVIII , F.1 N⁰123

> RÉDACTEUR EN CHEF P. M. DJURKOVIĆ

BEOGRAD 1970

Rédacteur en chef:

P.M. Djurković, directeur de l'Observatoire

Membre du Comité de rédaction:

Lj. Mitić, astronome adjoint de l'Observatoire.

I. Pakvor, assistant de l'Observatoire.

M. Protić, astronome titulaire de l'Observatoire.

B. M. Ševarlić, doyen de la chaire d'astronomie a la Faculté des sciences naturelles et mathématiques de Belgrade, astronome titulaire de l'Observatoire.

Les travaux et la publication de cet ouvrage ont été financés par l'Union pour les travaux scientifiques de la République Socialiste de Serbie.

Imprimerie: Štamparija Radio-Televizije Beograd, Batajnički put br. 24

Editeur: L'Observatoire astronomique de Belgrade.

BULLETIN

DE

L'OBSERVATOIRE ASTRONOMIQUE DE BEOGRAD

ANNEE 1968 - 1969	F. 1	VOLUME XXVIII

AN ATTEMPT TO ANALYSE THE FLARE POLARIZATION OF SOME UV CETI STARS

A. Kubičela and J. Arsenijević

At the end of 1965 and in the course of 1966 at Belgrade Observatory regular patrol observations of UV Ceti stars were done with the aim to establish eventual changes of polarization paramaters during flares. The main motive for this observational programme was a general need to tind out and to be acknowledged with the polarimetric aspect of the physical processes which take place on these stars. The remark put by Oskanjan (1964) on a possible increase of degree of polari – zation during a flare of AD Leo, was just the reason to adhere to this problem, and its importance was stressed by Greenstein (1960) at a polarimetric meeting in USA.

The observations were done by the Belgrade Astronomical Observatory polarimeter (Oskanjan et al 1965.). The polarimeter was used in combination with the refractor Zeiss 65/1055 cm. Characteristics of polarimeter, continuous recording of the polarimetric signal at one channel and simultaneous recording of the signal, correspon – ding to the observed intergrated radiation flux of the star at the other channel, enabled us to analyse, with good time resolution, polarization chan – ges during the three observed flares.

The observations

Intervals of time covered by the patrol observations are represented in the Table 1. The column 'Observer'' in the Table, contains the following symbols : A = Arsenijević, K = Kubičela. For all that time ($4187^{m} = 69^{h}47^{m}$ of the effective observations) four smaller increases of brightness were observed:

1) On the star EQ Peg, 24.10.65 at 21^{h} co^m TU the increase with amplitude of 0,45 magnitude, Fig. 1, A.

2) On the star EQ Peg, 2.11.65. at 23^h 43^m TU the increase with amplitude of 0,35 magnitude, Fig. 1, B.

3) On the star EQ Peg, 6.11.65. at 17^{h}

34^m TU the increase with amplitude of 0,33 magnitude, Fig. 1, C.

4) On the star AD Leo, 28.02.66 at 20^h 38^m TU the increase with amplitude of 0,20 magnitude, Fig. 1,D.

		H	 	2.1
	~		 · · ·	
_			 ***	-

Stone	Data	Obser-		Tim	e of c	bsei	rvat. UT
Stars	Date	ver	В	egin.	E	nd	Duration
	99 10 66	A 17	h	m	h 10	m	
	22, 10, 00	Α, Κ	19	20 19	19	52 52	100
			21 99	104	22	54	50
IIV Ceti	4, 12, 66	A.K	19	45	20	14	29
V371 Ori	24, 11, 66	A	23	16	24	20	64
1011 011	16.12.66	A	24	15	25	15	60
AD Leo	14.02.66	A.K	18	28	18	42	14
	16.02.66	A.K	18	10	21	12	182
		• • • • •	22	18	26	50	272
	20.02.66	A,K	18	48	19	18	30
			19	37	20	34	57
	26.02.66	A,K	21	45	23	34	109
			24	10	26	20	130
	28.02.66	Κ	18	00	21	02	182
	14.04.66	A,K	23	16	24	16	60
	18.04.66	A,K	21	25	23	45	140
+51 ⁰ 2402	10.10.66	A,K	19	20	20	58	98
DO Cep	24.12.66	K	17	52	18	56	64
EV Lac	6.11.65	Κ	20	22	23	22	180
	20.11.65	A,K	17	23	18	58	95
	2.11.66	A,K	20	43	22	00	77
	4.11.66	Κ	19	15	21	00	105
	8.11.66	Α	20	32	23	00	148
	26.11.66	A,K	17	20	17	3 8	18
			18	30	19	30	60
	4.12.66	A,K	16	47	16	55	8
			17	44	18	10	26
			18	19	18	30	11
EQ Peg	18.10.65	Α,Κ	19	30	24	00	270
	20.10.65	A, K	20	59	23	29	150
	22.10.65	K	20	20	22	20	120
	24.10.65	Κ	20	40	21	05	25
			21	27	22	10	43

		Ohnen		Tim	e of o	bser	vat. UT
Stars	Date	ver	В	egin.	F	End	Duration
	26.10.65	A	h 19	m 40	h 21	m 10	m 90
			21	20	22	15	55
	28.10.65	A,K	19	30	20	10	40
	2,11.65	Α	23	10	23	50	40
	6.11.65	K	17	32	18	17	45
	4.10.66	A,K	21	45	21	58	13
			22	20	24	30	130
			24	41	25	38	57
	6.10.66	A,K	20	05	20	18	13
			20	21	20	30	9
			20	45	21	34	49
			22	01	24	42	161
	8.10.66	A,K	20	36	24	00	204
	16.10.66	A,K	21	55	23	10	75
			23	25	24	03	38
	18.10.66	A,K	21	55	23	04	69
			23	10	24	40	90

Polarimetric data

At that stage of our programme, the analysis of polarimetric record was done only when a change of star brightness was observed. Time survey of the polarimetric measurements in relation to the approximate light curves is given in Fig, 1. Twenty seconds time intervals, during which polarization signal was integrated and one polarimetric measurement obtained, are shown by short lines right under the corresponding light curve and marked with the same ordinal number, as well as the measurements in the Tables 2, 3 and 4. There are no polarimetric data for flare C because it took

place when only the photometric channel of polarimeter was on. All the curves are in the same scale indicated in minutes of time on the abscissa left and right from the common maximum instant, t_{max}. The ordinate scale is defined by the line NM, whose lengeth represents one apparent stellar magnitude. The lower level of the light curves of EQ Peg corresponds to the integrated undisturbed radiation of compoments A and B in the system IDS 23267 NI1923 (Jeffers, 1963) while the basic level for the light curve of AD Leo corresponds to the radiation of unresolved pair 20C 574 AB in the stationary state (Joy, 1960). The time intervals, during which the polarization of radiation has been measured before and after the flares are marked by the number (in minutes) under the left and right end of each light curve.

The polarimetric results are given for each flare separately, in the Tables 2, 3 and 4.

TABLE

2

24.10.65.

EQ Peg

NO		P	<u>.</u> .
	%	m	0
1	2.5	0.054	70
2	1.5	0. 033	52
3	0.1	0.002	70
4	0.4	0.009	144
5	2.2	0.043	40
6	1.3	0.028	75
7	0.6	0.01 3	32
8	0.2	0.004	65
9	2.0	0. 0 43	58
10	1.8	0.039	160
11	1.0	0. 022	45
12	0.2	0.004	100
13	2.8	0.061	175
14	4.0	0.087	6
15	2.3	0.050	25
16	1.0	0.022	120
17	0.3	0.007	0
18	1.9	0.041	24
19	0.2	0.004	160
20	0.9	0.020	10
21	1.3	0.028	12
22	2.4	0.052	24
23	1.2	0.026	10
24	0.5	0.011	175
25	3.1	0.067	20
26	2.8	0.061	2 5
27	3. 5	0.076	45
28	2.1	0.045	30
29	3.9	0.065	32
30	0.6	0.013	40
31	0.5	0.011	45
32	2.0	0.043	15
33	0.8	0.017	54
34	4.0	0.087	5

Measurements are marked with ordinal numbers and grouped into three columns within each Table. The left column indicates measurements immediately before flare, the mid one during flare and the right one after flare. Other columns are:degree of polarization P, in per cent and stellar magnitude, position angle, Θ , of the plane of vibration defined as in Hall's measurements (1958).

EQ Peg	2.11.65.	<u>T</u> A	<u>BLE</u>	3
N ^o		Р	÷	
<u> </u>	%	m	0	
1	0.3	0.007	140	
2	1.8	0.039	10	
3	1.3	0.028	4	
4	1.7	0.037	8	
5	2.7	0.059	8	
6	1.7	0.037	14	
7	0.7	0.015	40	
8	1.7	0.037	15	
9	1.5	0.033	12	
10	1.2	0.026	128	
11	1.8	0.029	15	
12	1.0	0.022	48	
13	0.9	0.020	30	
14	2.5	0.054	20	
15	2.2	0.048	15	
16	2.3	0.053	165	
17	1.5	0.033	15	
18	1.4	0.30	6	
19	1.5	0.033	54	
20	2.1	0.046	50	
AD Leo	28.02.66	<u>T A</u>	BLE	4
N ^O	<u></u>	Р	÷	
<u></u>	%	m	0	
1	2.7	0.059	116	
2	2.2	0.048	120	
3	1.9	0.041	107	
4	1.8	0.039	113	
5	3.1	0.067	117	
6	2.2	0.048	68	
7	3.8	0.083	124	
8	1.8	0.039	110	
9	1.1	0.024	112	
10	3. 5	0.076	134	
11	2.7	0.059	111	
12	1.5	0, 033	112	

Each single measurement in the Table is the result of comparison done between a sine signal (formed out of 10 measurements of photo – multiplier signals at 10 equidistant polaroid positions which covered position angle interval from 0° to 180°) with a calibration sine curve whose amplitude is already known, while the position angles of its extreme values are determined in the mentioned Hall's system. As the data were taken during a flare, the care was paid to the fact that the polarization signal and signal for calibration were recorded at different intensities of the star radiation, so, the polarimetric measurements inside the flare were reduced to the intensity of the star at the instant of observation.

At the reduction of all measurements an additive instrumental sine curve with period of 1800 in position angle, which originates in the optical train of polarimeter was eliminated. Here, however, the depolarizing influence of the objective lens of the refractor, which according to Serkowsky's opinion (1960) was estimated to be about 7 per cent of measured values, was not concerned.

5

All single measurements from the Tables 2, 3 and 4 are shown graphically in figures 2, 3 and 4 respectively. Here, in POO coordinate system (P in per cent, Θ in degrees) each measurement is marked as follows: measurements before flare are open circles, measurements during flare are asterisks and measurements after flare are full circles.

Such a display of polarimetric results is not the right picture of changes of polarization and dispersion of measurements, because the distance between any two points in the figure is not in proportion with the increase of polarization necessary for the transition from one point to another. It concerns specially, points with small degree of polarization. Still, in Figure 2, which contains the most numerous measurements, we can notice different grouping of dots in various phases of observations, what is less striking in the other two figures. So, in spite of the big dispersion of dots (especially at small polarization when measurements of polarization angles have a low weight) in Fig. 2, it is apparently seen that the group of dots representing the measurements done during the flare (asterisks) is shifted towards the smaller position angles in comparision with the group of measurements effected before the flare (open circles). Measurements done in phase after the flare (full circles) take a mid position between the two former measurements, even, we may notice that they are somewhat nearer to the measurements within the flare than to those done before the flare.

Such a grouping cannot be seen in Fig.3, except if we take that the first measurement inside the flare (P=1.2%, $\Theta = 128^{\circ}$) with its position angle deviates considerably from other measure – ments, since the position angle of the other deviated dot (P = 0.3%, $\Theta = 140^{\circ}$) is very vague, being determined with a low weight.

In Fig. 4, as in the former case, the measurements are fewer and flare is of the similar amplitude, but the measurements might be more correct due to bigger brightness of the star. Here also, the first from the four measurements during flare, deviates very much with position angle from other measurements. The, highest degree of polarization is apparent, as in the first case, during and after flare.

In the further consideration, so high time resolution $(20^{\rm S})$ will be given up, and the conclusion will be drawn out of mean measured polarization. First of all, a mean will be taken within the whole group of measurements : before, during and after flare, and then means of each two successive measurements will be taken. By this method we shall achieve a time resolution of several minutes in the first case, or about $40^{\rm S}$ in the second case. At the same time, the dispersion of observed values will be reduced.

The mean values of polarization P (in per cent) and position angle of plane of vibration $\bar{\Theta}$ (in degrees) are given in the Table 5. The mean values were obtained in dependance of the phases of polarimetric signal, on extensive observational material where each measurement of polarization was still represented by a group of ten measure ments of photomultiplier signal. Mean value of position angle in plane of vibration obtained in this way, agrees well with mean weight of position angles of corresponding group of measurements in the Tables 2, 3 and 4, if as a weight, a nominal degree of polarization in per cent is taken. Accordingly, to the mean position angles can be attributed the errors carried out by a method for evaluation of errors in measurements of unequal preciseness (Boljšakov, 1965). The other tabulated values are: n-number of measurements used in evaluating of mean values,

- $\overline{\mathcal{O}_{o}}$ r.m.s. error of degree of polarization (in per cent)
- \mathcal{G}_1 r.m.s. error of a single measurement (in per cent), \mathcal{V}_6 - r.m.s. error of weighted mean positi-

 U_0 - r.m.s. error of weighted mean position angle of vibration plane (in degrees) and U_1 = = r.m.s. error of unit weight position angle (in degrees). The columns in the tables represent phases of observations what has been already pointed out by the intervals of ordinal numbers of observations in each column, These numbers correspond to the ordinal numbers in the Tables 2, 3 and 4.

The r.m.s. errors of degree of polarization in each group were determined by taking in consideration only the values of polarimetric signals at one position of the polaroid. The difference between the mean value of this signal for the entire group and every single measurement, treated in the usual way, resulted r.m.s. errors \mathcal{G}_o and \mathcal{G}_1 in the table.

The mean polarizations from table 5 are indicated in Fig. 5 and 6. A polar coordinate system whose angular argument is a doubled position angle, 2Θ , was applied, and accordingly,each polarimetric data can be represented as an additive vector. The intensity of these vectors is determined by the line OP which corresponds to the polarization of 1%. North and south are at the top, the northeast is at the left.

The Fig. 5 contains the measurements carried out on 24.10.65. Here we have: \overrightarrow{OA} =mean polarization out of 24 measurements before and after flare, \overrightarrow{OB} = mean polarization out of 12 measurements before flare, \overrightarrow{OC} = mean polarization out of 12 measurements after flare, \overrightarrow{OF} = mean polarization out of 10 measurements during flare and

 \widetilde{OF}_1 = mean polarization out of the first 5 measurements inside the flare. Radius of the circle around point O is 0.35% and represents the mean value of r. m.s. error of the mentioned vectors.

The change of mean polarization brought in by the flare is equal to the vector \overline{AF} . In this case it amounts to 1,4% in direction of $2\theta = 329^{\circ}$. In the second case, if the polarization really def-

т	Α	в	L	\mathbf{E}	5

fered before and after flare (what is apparently seen in our observations), the flare has cause the leap of polarization \overrightarrow{BF} with intensity of 2,1% in direction of $2\theta = 350^{\circ}$. However, by the change \overrightarrow{FC} in the amount of 1,4% in direction $2\theta = 109^{\circ}$ after the flare (in total about 30° after the flare)the polarization has not returned to its original value \overrightarrow{OB} .

Star	, EQ	Peg			EQ	Peg	AD	Leo
Date	24.	10.65.			2.11	. 65.	28.	02.66 .
Phase of the Observation	Out of flare	During flare	Before flare	After flare	Out of flare	During flare	Out of flare	During flare
Sequence of measurements	1-12 23-34	13-22	1-12	23-34	1- 9 14-20	10-13	1- 5 10-12	6- 9
n	24	10	12	12	16	4	8	4
P	1.1	1.5	0.9	1.7	1.3	0.6	2.5	2.0
So	0.25	0.50	0, 30	0. 35	0. 20	-	0.22	-
81	1.2	1.6	1.0	1.2	0. 8	-	0.6	-
Ð	3 8	6	65	26	14	11	118	107
v.	6	4	11	4	5	-	3	-
V1	34	28	40	20	24	-	14	-

It might be worth of mentioning that mean value of the first five polarimetric measurements inside the flare, vector \overrightarrow{OF}_1 , in combination with measurements out of flare, increases the change brought in by flare. This effect is more conspicuous when the phenomenon is analysed in detail by taking a mean of the two successive single measurements.

Similarly, and with the same symbols the events of 2.11.65. and 28.02.66. are represented in the Fig.6. Mean position angle of vibration plane of EQ Peg at the left top of the figure,during the flare, is actually the same as out of flare, but degree of polarization is reduced by about 0,7%. The r. m. s. error of degree of polarization for measurements out of flare is $\pm 0,2$ the radius of upper semicircle around point O).

The same small change is seen in the case of flare AD Leo, Fig. 6, down right. There, the change caused by flare results 1,0% in direc-tion of $2\theta = 105^{\circ}$, while the r.m.s. error of the group of measurements out of flare is $\pm 0,22\%$ (the radius of lower semicircle around point O).

It seams that the use of an average of each two single successive measurements results out an acceptable compromise between a good time resolution and a high weight mean value. The measurements of 24.10.65. elaborated in this way were indicated in Fig, 7 - before flare, 8 - during flare and 9 - after flare. Here is also, applied a polar coordinate system with arguments P and 20, and the line OP also amounts to 1%. For a clearer look of the picture, the vectors of polarization are not drawn in full. Their ends are represented with dots, and each phase of observation is marked with mumbers, chronologically. System of dots in each figure is surrounded with an envelope which has been constructed drawing a circle with radius around each dot. The mean values have been obtained so that every measured data took part in formation of mean values twice in combination with the former and the next measurement.

The change of polarization brought in by the flare is seen in deviation of point 1, the first averaged point within the flare, Fig. 8, from the group of points before flare, Fig. 7,. This increase of polarization is shown in Fig. 7, by a vector between points 11 and F, of which is the latter identical with point 1 in Fig. 8. The intensity of vector is 3,6% and the direction $2\theta = 355^{\circ}$. The time interval between instants to which we can attribute points 11 and F is 40° , so that point 11 results out of the last two twentysecond measurements, before flare, and point F from the first two measurements after the beginning of the star brightening. Carrying out a mean of the last measurement before flare and the first measurement during flare, between groups of points before and during flare, (between 11 and F), migh be drawn an intermediate point M in Fig 7 and 8. Then, the mentioned increase would be shown by two vectors : from the point 11 to M and from the point M to F, in Fig. 7. However, this method would not change the amplitude of polarization excess brought in by the flare. Beside this abrupt increase of polarization apparently is seen that the group of points before the flare is more compact and the dispersion of points is smaller than during the flare and after the flare.

In the other two cases the mean values of each two successive single measurements do not show a big jump of polarization parameter at the moment of flare. In Fig. 10, they are shown only by the envelopes of groups of points as follows: the thin line shows the points before flare, the thick line shows the points during the flare, and the interrupted lines show the points after the flare.

Conclusions

1. In the biggest one of the three polarimetrically observed flare, a change of degree of polarization and of the plane of vibration of the stellar radiation have been perceived with a considerable probability. The change was most striking in the first minute of the increased brightness, and in the given conditions of observation, it was most recongnisable at the time resolution of about 40° .

2. In the two smaller and shorter of the three analysed flares, at a time resolution of about 20^{S} (single measurements) it has been noticed that the first or the first two measurements inside the flare deviate from the group of measurements before the flare, but actually these changes

cannot be distinguished from the phenomenon un - der point 3.

3. The variation of polarization parameters has in all three cases (at the first one more

apparently than at the other two later flares) been bigger during and after the flare than immediately before it.

4. In the most thoroughly analysed case (EQ Peg, 24.10.65) the mean values which resulted out of 10 and 12 single measurements, indicated the possibility that the changed state in polarization of radiation lasted longer than the optical flare, Therefore, measurements of polarization of UV Ceti stars would be interesting also if they would be done by a slower polarimeter, but with smaller absolute errors.

* * *

The authors are grateful to Dr. Vasilije Oskanjan for his constructive participation in the preliminary discussions of this observational material.

REFERENCES

Boljšakov V. D.	1965	Teorija ošibok nabljude- nij, Moskva	Oskanjan V.	1964	Publ. Astr. Obs. Beograd,
Greenstein J. L.	1960	Lowell Obs. Bull. N ⁰ 105, p. 309.	Oskanjan V., Kubi- čela A., Arsenije-		N 10.
Hall J. S.	1958	Publ. US Naval Obs. se- cond Series, XVII, part VI.	vić J.	1965	Bull. Astr. Obs. Beograd, XXVII, N ⁰ 2, p. 1.
Jeffers H.M.	1963	IDS Catalogue - Lick Obs. Publ. XXI	Serkowski K.	1960	Lowell Obs. Bull. N ⁰ 105, p. 296.
Joy A.H.	1960	Stellar Atmospheres. ed. J. L. Greenstein, Chicago, p. 653.	(Received = May, 1	967.)	

AN ATTEMPT TO ANALYSE THE FLARE POLARIZATION OF SOME UV CETI STARS

Summary

With a good time resolution the flare polarization of EQ Peg and AD Leo has been 3 times observed during flares, and the results have been phenomenologically analysed. With the time resolution of about 40^{8} (each two successive measurements gave a mean) in one case (EQ Peg, 24. 10.65,) an abrupt change of polarization of about 3% at the beginning of the flare, has been apparently noticed. Single measurements in the other two cases indicated some uncertain variations. There are signs that the change of polarization, which appeared during the flares, has in itself also a component whose duration lasted longer than the optical flares.

POLARIMETRIC OBSERVATION OF RR LYR

J. Arsenijević

Summary

The measured values of polarization are expressed by p and θ for photometric regions B and V, table 1. The mean values of these quantities are determined and found that for the region V $p = 0.^{m} 0055 \pm 0.^{m} 0015, \ \theta = 81^{\circ} \pm 7^{\circ}$ (9 measurements) and for the region B $p = 0.^{m} 0051 \pm 0.^{\circ} 0007, \ \theta = 59^{\circ} \pm 15$ (7 measurements).

Introduction

Some characteristic changes of brightness of short-period cefeids and flare stars of UV Ceti type as well as Balasch - Detre's opinion (1960), led Oskanjan (1964) to express his own assumption on the eruptive character in change of brightness of short-period cefeids. One observation of increased polarization of radiation during the eruptive increase of brightness, observed by Oskanjan (1964a) at Biurakan observatory, and three changes of polarization of some UV Ceti stars, observed at the Belgrade observatory, gave incentive that the assumption on likeness of mechanism which bring about the brightness change of these two type of variables should be substantiated by eventual change of polarisation of RR Lyr radiation. So, to Oskanjan's suggestion, the polarimetric observation of RR Lyr was undertaken.

Observation and analysis

A Schmidt telescope (1900/1800/13500 mm) from the observatory of Torun University and a differencial polarimeter from Astronomical Institute of Polish academy of science was given at our disposal for the polarimetric measurements of RR Lyr in the period of time from 6th to 30th June 1966. Themeasurements were done in Cassegren focus of the telescope in the region B and V of photometric system UBV. For the region B - combination of filters Schott BG12 of 1 mm and 2 mm Schott GG13 was used, and for the region V 2 mm Schott GG14.

Each of Stokes parameters p_x and p_y was determined on the basis of measurements in two position angles. One measurement of degree of polarization and one measurement of position angle of the plane of Vibration of the electric vector in equatorial coordinate system, lasted about 35 minutes. Measurement in a number of position angles would increase precision of measurement, but, simultanously, it would prolong the time of observation to more than 0.1 period. It wold be very inconvenient as it was desired to establish eventual existence of polarization change with change of brightness. The corrections of the measu red values to the standard system, suggested by Serkowski (1960), were done according to the data received from the collaborator at the Institute of Astronomy Rucinsky S. (1966). The instants of maxima were determined according to Cessewitsch's (1966) ephemeris. The mean errors of degree of polarisation \mathcal{E}_{p} and the mean errors of position angle \mathcal{E}_{Θ} for single measurements were determined according to Hall and Serkowski (1963).

In the Table 1 we have the obtained values of degree of polarization p in stellar magnitudes, position angle θ in equatorial coordinate system, corresponding mean error \mathcal{E}_p and \mathcal{E}_{θ} , phases corresponding to the middle of the interval of observation, corresponding instants of universal time UT and the dates. The Table is arranged according to the increasing phases.

TABLE 1.

Date	UT	Phase tric region	P V	ε _p	θ	80
			•			
1966. VI. 16.	$22^{h}58^{m}$	0. 02	0 ^m 0036	0 ^m 0010	90 ⁰	8 ⁰
11	21 46	0.10	0. 0075	0. 0003	84	1
15	21 25	0.12	0. 0103	0. 0015	84	4
23	22 10	0.31	0. 0048	0. 0025	58	15
14	21 44	0.40	0. 0078	0. 0027	78	10
18	21 49	0.45	0. 0079	0. 0034	90	12
23	24 08	0.45	0. 0080	0. 0015	30	5
13	23 23	0.75	0. 0011	0. 0022	69	57
12	22 00	0.84	0. 0056	0. 0023	81	12
	Photomet	ric region	3			
16	23 38	0.06	0. 0057	0. 0020	54	10
15	22 09	0.18	0. 0038	0. 0011	97	8
23	23 18	0.39	0. 0020	0. 0019	44	27
18	24 40	0.51	0. 0067	0. 0003	60	1
22	22 20	0.55	0. 0064	0. 0035	66	16
22	23 16	0.61	0. 0051	0. 0011	44	6
12	22 52	0.91	0. 0046	0. 0020	57	12

The degree of polarization of radiation of RR Lyr depending on the phase of brightness change. The ordinate indicates the measured degree of polarization in stellar magnitudes and the abscissa indicates the phases of brightness change. The full curve shows polarization in photometric region V, and the iterrupted curve shows polarization in the region B. Each dot represents one measurement with corresponding mean errors \mathcal{E}_p .

Position angles of polarization in equatorial coordinate system depending on the phase of brightness change. The Full curve shows position angles in the pho-tometric region V and the interrupted curve the same in the region B. Each dot in the graph represents one measurement with the corresponding mean error \mathcal{E}_{α}

The curves in Fig. 1 represent the obtained values of polarization P for the two measured photometric regions depending on the phases of brightness changes F. Doubled values of mean errors \mathcal{E}_p are indicated by the lines through the corresponding points. In the same way are chown the measured values of position angles θ depending on the phase F in Fig. 2.

The curve in Fig. 1 does not indicate that the degree of polarization depends on the change of brightness i. e. on the phase. At the first sight it seams, that the highest measured value of polarization is in the vicinity of the maximum brightness, while the lowest measured value is in the vicinity of the minimum brightness, but that concerns only the photometric region V. For the region B, the highest measured value corresponds to the phase 0.5.

On account of the small amplitude of polarization with respect to the errors of measure – ments, we may say that the systematic changes in this group of measured data are not established.

Mean values of the measured polarisation

With view to the small number of measurements and obtained values of polarization P and θ with their errors unable to prove the original assumption, it would be most logically to suppose, in this case, that the differences of measu-

Т	Α	в	\mathbf{L}	\mathbf{E}	2	
					_	

red values are due to accidental errors in measurements, as well as to determine mean values of measured quantities for each of the two photometric regions separately.

The mean value of degree of polarization has been determined according to the formula $\bar{P} = /\bar{P}_x^2 + \bar{P}_y^2$. Values \bar{P}_x and \bar{P}_y are weighted mean values out of 9 measurements for region V and 7 measurements for region B. The weight resulted from the mean errors of Stokes parameter $\hat{\boldsymbol{\xi}}_x$ and $\hat{\boldsymbol{\xi}}_y$ of single measurements. The mean values of position angle have been determined according to the formula $\frac{\bar{P}_y}{\bar{P}_x} \cdot R.$ m. s. error of we-

ighted mean of degree of polarization has been determined according to the formula $C_{\overline{p}} = \sqrt{\frac{d_{\overline{p}_x} + C_{\overline{p}_y}^2}{2}}$ The weighted mean values of degree of polarization P and position angle Θ as well as the corresponding R. m. s. errors obtained in this way are:

V region
 B region

 P =
$$0.^{m}.0055 \pm 0^{m}.0015$$
 P = $0.^{m}.0051 \pm 0.^{m}.0007$
 $\theta = 81^{o} \pm 7^{o}$
 $\theta = 59^{o} \pm 15^{o}.$

Up to now polarimetric measurements of RR Lyr carried out by other authors, according to the available data are indicated in the Table 2.

Period of observation	Authors	Р	θ	Errors in P
1956 - 57	T. Schmidt (1958)	0. ^m 0073	53 ⁰	0.0015 mean
1956 - 58	A. Behr (1959)	0. 0068	41	0.0011 "
1961	N. M. Šahowskoy			
	(1963)	0. 0035	87.8	0.0020 sq. mean.

Our measurements in the region V agree, within the limits of errors, with the measu rements carried out by Šahowskoy (1963) and Behr (1959), while Behr's observations, also within the limits of errors, agree with Schmidt's observations (1958). Concerning the differences of measured values of polarization carried out by various authons for much brighter stars used as standards for polarimetric measurements (Serkowski 1960), the agreement among values given in the Table 2 together with our values, may be estimated as quite good. The differences in position angles are also understandable having in mind small values of degree of polarization. Values measured by Šahowskoy are systematically somewhat lower to those given by Schmidt. All together, these data indicate the fact that the differences of measured values of polarization can be attributed only to the

inaccurate measurements but not to the changes of polarizations of the star itself.

Quite another question arises, whether the measured polarization comes from the star itself, or, from the interstellar matter. For the interstellar polarization goes the sign of the difference of degree of polarization between the two measured polarimetric regions, being the same as at the interstellar polarization, resulting out of the measurements carried out by Coyn and Gehrels (1960). On the quantitative agreement between the

measured degrees of polarization and the interstellar polarization, much cannot be said, because the field of measured interstellar polarization in the vict. ity of RR Lyr happens to be extremely unhomogeneous. Conclusion

The change of polarization of the RR Lyr star has not been established. Still, the existance of small changes of polarization, which are below the possibilities of our method of measurement, cannot be excluded. By the momentary conclusion that there are no changes of polarization, the anly a possibility for identification of the origin of measured polarization is eliminated. It might not be quite justified to attribute the measured polarization to the interstellar medium, especially when we consider that it concerns a variable star whose mechanisam of changes of the total radiation from the point of polarization is not sufficiently known.

Finally, I am glad to express with utmost pleasure my thanks to Prof. Piotrowsky of Ins titute of Astronomy in Warsaw; to Prof. Ivanowsky, director of Torun University Observatory, as well as to the collaborators who were so kind as to enable these observations.

LITERATURE

1.	Balas JDetre	1960 K.V.B.B.Mp. 27, 26
2.	Behr A.	1959 Veröff. Göttingen,
		No. 126, 230
3.	Coyn G.V. and	1966 A. J. vol. 71, No. 5,
	Gehrels T.	356
4.	Hall J.S. and	1963 Basic astr. data ed
	Serkowski K.	Strand A.Chicago, Lon-
		don, 95
5.	Oskanjan V.	1964 Fizikai Szemle,
		Budapest
6.	Oskanjan V.	1964a Publ. Ast. Obs.Be-
		ograd, No. 10
7.	Ručinski S.	Private communication
8.	Šahovskoj N. M.	1963 A. Ž. T. XL. No. 6.
	,	1055
9.	Schmidt T.	1958 Veröff, Göttingen
		No. 121 104
10.	Serkowski K	1960 Lowell obs Bull
		No. 105, 318
11	Zesewitesch W	1966 Doggnik Astrono
** .	Debbewitebell W.	1500 ROCZIIK ASLIONO -
		miczny, No. 37

Received: April, 1967.

ANALYSE DE L'INFLUENCE DE VARIATION D'INCLINAISON DES AXES DU TUBE ZENITHAL (A BELGRADE) SUR LA VALEUR DE LA LATITUDE

Par M. Djokić

On a commencé à ramasser le matériel d'observation se rapportant aux variations saisonnières d'inclinaison d'alidade et d'axe de rotation du tube zénithal en avril 1959., d'après la méthode utilisé à Mizusawa et décrite aux articles [1] et [2], et terminé en mai 1965. En effet, l'exploration du niveau d'axe de rotation du tube zénithal en mars 1965. a montré les possibilités d'utilisation de ce niveau devenues limitées (ce qu'on n'avait pas trouvé dans des explorations précédentes). A la fin de 1965. et au début de 1966. on a travaillé sur l'emplacement de l'ampoule de ce niveau par un niveau nouveau et on peut dire qu'après avoir fait cet emplacement, on a continué l'observation de nouveau et c'est cet emplacement qui a causé la duration assez longue.

L'analyse du matériel d'observation ramassé dès le mois d'avril de 1959. jusqu'au avril de 1962. montrée au [1] se rapporte aux variations saisonnières et journales des deux axes d'instrument sur le plan de la première verticale. A cet occasion-là, on a déduit les variations saisonnières d'inclinaison des mesures de soir. Mais, les mesures de soir, on les a faits même sur le plan méridional dès le mois de mai 1961 jusqu'à la fin d'avril 1962 et dès le mois d'avril 1963 jusqu'à la fin du janvier. On a fait des mesures de ce genre même dès le mois d'avril 1961 jusqu' au avril 1962, à l'exeption des mesures de jour (tous les jour à 10 h) qu'on faisait au pavillon fermé, c'est-a-dire dans des conditions inchangées. On a fait des mesures de soir a l'occasion des observations de latitude.

Dès le 5. jusqu'au 6 de mai 1963., on a fait les mesures chaque heures sur 24 heures, en vue de obtenir les variations de jour d'inclinaison des deux axes. C'est a l'occasion de cet expériment qu'on a même lis les niveaux de Talcott à toutes les quatres positions d'instrument (KE, KW, KS, KN) en voulant comparer l'inclinaison dédouite du niveau de Talcott (β) avec l'inclinaison d' axe d'alidade (θ) sur les deux plans. Cette comparaison nous a indiqué qu'il est nécessaire de suivre les variations d'inclinaison des axes d'instrument sur les deux plans (plan de méridien et sur le plan de la première verticale) car il y a une

différence systèmatique entre $\begin{pmatrix} 0 \\ z \end{pmatrix}$ et θ pour les deux plans, ce qu'on peut voir au tableau 1. Depuis 1967. on ramasse régulièrement les données sur cette différence systematique d'inclinaison, cela veut dire qu'on fait la lecture du niveau de Talcott chaque fois qu'on fait les mesures d'inclinaison des axes d'instrument.

$$\Delta'' = \frac{\beta''}{2} - \Theta''$$

$$\int_{-\infty}^{\infty} \frac{\beta^{h}}{2} + \frac{\beta^{h}}{4} + \frac{\beta^{h}}{6} + \frac{\beta^{h}}{8} + \frac{\beta^{h}}{10^{h}} + \frac{\beta^{h}}{12} +$$

TABLEAU 2

Anné 1959 1960 1961 1962 1963 1964 1965 Moy Num.de

nivell. (4) 3 5 7 5 2 (1) 4.5

D'après les donnés du [1] le numéro de nivellement moyen par an du tube zenithal à Mizusawa est deux fois plus petit [2.1] pour la période de 1933 à 1949.

Il est déjà souligné à l'article [3] que le numero de nivellement de l'instrument montre sa stabilité qui est notable à Mizusawa. Puisque les formules de la réduction d'inclinaison sont:

$$\theta = \frac{1}{2} (d_e + d_w)$$
 et $\Psi = \frac{1}{2} (d_e - d_w)$

Pour la premiere verticale et

$$\vec{\theta} = \frac{1}{2} (d_s d_n)$$
 et $\vec{\Psi} = \frac{1}{2} (d_s - d_n)$

Pour le plan de méridien, où d_e, d_w, d_s, d_n représentent les inclina isons d'axe de rotation par rapport au plan horizontal dans les quatres positions d'instrument: KE, KW, KS, KN; toutes les données de d avec des index correspondants sont réduits aux systèmes des coordonnées, on a calculé ses valeurs mensuelles moyennes desquelles on a déterminé les valeurs pour θ et Ψ dans les deux plans.

C'est de cette manière que les valeurs mensuelles pour θ et ψ sont déduites et après les nivelées par la méthode des centres des triangles pondérés on a appliqué l'analyse harmonique.

A l'occasion de mesure de nuit et de mationn on a lis la temperature de l'istrument (T_i) et puis, de là, on a formé les valeurs mensuelles moyennes nivelées par la méthode des triangles pondérés et puis on a appliqué l'analyse harmonique en vue de souligner ce rapport déjà connu entre l' axe et la temperature de l'instrument.

Au tableau 3 on a donné les valeurs moyennes mensuelles nivelées pour θ et ψ déduites pour le plan de la première verticale des mesures de soir pendant la période de 1959 a 1965.

TABLEAU 3

I II III IV V VI VII VIII IX X XI XII 9 -16.[°]86-17.[°]96-19.[°]33-20.[°]77-21.[°]42-21.[°]91-21.[°]48-20.[°]98-20.[°]01-19.[°]01-17.[°]75-16.[°]87

Y - 0.96- 0.51- 0.51- 0.70- 1.55- 2.23- 2.81- 2.93- 2.74- 2.43- 1.93- 1.44

D'après les données du tableau 3, on a déduit les formules harminiques suivantes (t est donné en mois).

- $\theta = -19!'53+2!'47 \sin (t + 111^{\circ})+0!'30 \sin (2t + 99^{\circ}) +0!'06 \sin (3t + 135^{\circ}),$
- $\Psi = -1!'73+1!'23 \sin (t+49^{\circ}) + 0!'16 \sin (2t+297^{\circ}) + 0!'02 \sin 3t.$

La figure 1 contient l'interprétation graphique des données du tableau 3 et aussi l'interprétation de ces formules harmoniques.

Au tableau 4 on a donné les valeurs moyennes mensuelles nivelées pour θ et Ψ déduites pour le plan de méridien des mesures de nuit pour les périodes de 1961 à 1962 et de 1963 à 1965. TABLEAU 4

D'après les données du tableau 4 on a déduit les formules harmoniques suivantes:

 $\theta = +6!'04+3!'80 \sin(t+125^{\circ}) + 0!'55 \sin(2t+171^{\circ}) + 0!'18 \sin(3t+131^{\circ})$

 $\Psi = +1!'02+1!'33 \sin(t+44^{\circ}) + 0!'32 \sin(2t+305^{\circ}) + 0!'14 \sin(3t+214^{\circ}).$

Et la figure 2 contient l'interprétation graphique des donnees du tableau 4 et aussi l'interprétation de ces formules harmoniques.

Le tableau 5 contient les valeurs moyennes mensuelles nivelèes pour θ et Ψ déduites pour le plan de la première verticale des mesures du jour pour la période de 1961 à 1962.

TABLEAU 5

La tableau 6 contient les valeurs moyennes mensuelles nivelées pour θ et ψ déduites pour le plan méridional des mesures de jour pour la période de 1961 à 1962.

TABLEAU 6 I Π III IV v VI VII VIII IX х XI XII 0 : +0!'34-0!'23-0!'40-1!'70-2!'53-3!'89-3!'97-3!'69-2!'67-1!'59-0!'46+0!'04 ₩ : +1.08+1.54+1.49+0.62-0.85-2.26-2.08-1.74-1.47-1.20-0.54+0.20 Des données du tableau 6 on a déduits des formules harmoniques qu'on peut trouver, ainsi que les données de ce tableau, dans la figure 4 $\theta = -1!'73+2!'15 \sin(t+91^{\circ}) + 0!'20 \sin(2t+264^{\circ}) + 0!'06 \sin 3t$ $\Psi = -0.40+1.85 \sin(t+64^{\circ}) + 0.57 \sin(2t+342^{\circ}) + 0!'19 \sin(3t+208^{\circ})$ Le tableau 7 contient les valeurs moyennes mensuelles nivelees de température de l'instrument (Tis)-des mesures de soir, pour la période de 1959 à 1965. TABLEAU 7 $T_{10}: -1.00 - 1.40 - 1.40 - 1.00 - 1.50 - 4.180 - 4.20 - 3.119 - 1.150 - 9.110 - 50 - 8.10 - 1.10 - 50 - 8.10 - 1.10$ La formule harmonique correspond aux données du tableau 7 T_{is} : +10°+10°6 sin (t+267°) + 0°6 sin (2t + 255°) + 0°2 sin (3t + 214°) Le tableau 8 contient les valeurs moyennes mensuelles nivelées de température de l'instrument (Tim) des mesures de jour pour la période de 1961 à 1962. TABLEAU 8 II III IV V VI VII VIII IX I X XI XII $T_{im}: +1!'9+2!0+5!9+10!9+17!5+20!5+22!5+21!6+18!9+14!5+8!7+4!5$ La formule harmonique correspond aux données du tableau 8 T_{im} : +12.04+10.05 sin (t + 2620) + 0.05 sin (2t + 2230) + 0.2 sin (3t + 900).

3. Ce qui est évident dans toutes les formules harmoniques pour θ c'est que le terme annuel est fort plus grand que les autres termes de ces formules et que les angles de phase des termes annuels coïncident, spécialement pour les deux plans où on a effectué les mesures de soir ainsi que celles de jour.

Si on compare d'apres [4], puisque le tube zenithal et l'instrument de passage se trouvent tous les deux à l'aile de l'est du pavillon astrogéodésique de L'Observatoire astronomique à Belgrade sur les pilliers non-mis en contact, les données sur θ aux tableau 3 et 4 avec les données sur T_{is} du tableau 7, on peut voir qu'il n'y a pas de retard d'extremum de la température de l'instrument, ce qu'on a déjà constaté au [4]. Ce fait est probablement la conséquence des conditions différentes sous lesquelles an a effectué les mesures de nuit (les temps de mesure n'étaient pas les mêmes a l'oceasion de l'observation de latitude, puis on a effectué les mesures même au pavillon fermé, spécialement en hiver quand il n'y avait pas d'observation de latitude).

Au [1] les variations saisonnières de θ ne sont pas comparées avec les variations saisonnierès de tempèrature du pavillon ou de l'instrument même (T_i). Si on fait cette comparaison d'après ces donneés on ne trouvera non plus le retard souligné à [4]. Les causes sont à peu près cemblables aux causes déjà citées, car même à Mizusawa, les données sur les variations saisonnières d'inclinaison sont ramassées a l'occasion de l'observation de latitude.

Mais, en comparant les données sur 9 tableaux 5 et 6 avec les données sur T_{im} du tableau 8, on voit le retard dont on a déjà parlé, et par conséquent, on a trouvé le retard pour le plan de la première verticale du même ordre de grendeur qu'au [4]. Pour le plan de méridien, cependent, les extremums d'inclinaison θ et de température (Tim) coincident en temps, ce qui est probablement en relation avec l'époque du jour où la mesure est faite. La constante des conditions de mesure dont on a parlé au début de l'article, il semble qu'est devenue évidente. Pour accentuer les rapports entre l'inclinaison dans les deux plans et la température Tim (ce qu'on a fait au [4]) on a retenu seulement les termes libres et les termes annuels des formules harmoniques.

La figure 5 représente l'interprétation graphique de ces formules harmoniques réduites.

Au [1] les variations saisonnières d'inclinaison s'attribuent à la variation inégale du pillier ou l'instrument se trouve, et dont la cause est la variation saisonniere de l'humidité.

Au [2] on a comparé les variations saisonnieres d'inclinaison avec le cours saisonnier des précipités en utilisant les données de l'Observatoire météorologique à Belgrade. Puisqu'il faut ramasser les données sur les précipités a la proximité du pavillon où on fait l'observation de la variation d'inclinaison, on ne peut pas complètement croire en valeur des résultats ainsi obtenus, bien qu'ils prouvent qu'il y ait une relation entre la variation saisonnière d'inclinaison θ et le cours saisonnier des précipités.

Les données sur la variation d'inclinaison θ dans le plan de la première verticale au cours de toute la période de l'observation mises en graphique (figure 6) indique le fait qu'il y a une variation séculière de ce terme du même type qu'on a déjà effectué au [4]pour l'instrument de passage et son pillier. Cette variation séculière d'inclinaison est donnée pour la période d'observation de 1959 a 1965. par la formule

$$\theta = -0!!46 t - 2!!27$$

(t est donné en mois : des le mois d'avril 1959.)

Le coéfficient de direction est un peu plus petit en valeur absolue que les coéfficients de direction des formules semblables données au [4] A l'occasion d'appréciation de ce fait, il faut tenir compte de ce que les données sur la varia tions d'inclinaison sont obtenues en utilisant deux instruments différents. Puis, les données se rapportent aux deux pilliers qui se trouvent l'un près de l'autre. Ce qui est peut-être d'une importance très grande, c'est qu'il y a une intervalle de quelques années entre deux périodes de ramassage des données pour ces deux instruments.

En comparant les valeurs de θ des tableaux 3 et 4 ainsi que les valeurs de θ des tableaux 5 et 6, on obtient les graphiques se trouvant aux figures 7 et 8 respectivement.

Ces graphiques complètent l'image de mouvement du pillier d'instrument. Les points qui correspondent aux positions moyennes mensuelles du pillier, s'arrangent en sens direct aux mesures de soir ainsi qu'aux mesures de jour.

4. Dans des formules de ψ le terme annuel, aussi, est beaucoup plus grand que les autres termes de ces formules, tandis que les amplitudes et les angles de phase des termes correspondants coincident en mesures de soir ainsi qu'en mesures de jour.

Les variations de tous les inclinaisons Ψ tendent vers les valeurs positives en mois d'hiver, et en mois d'été vers les valeurs négatives-ce qu'on a constaté au [1].

Les figures 9 et 10 montrent la comparaison graphique des valeurs de ψ des tableaux 3 et 4 avec les valeurs de T_{is} du tableau 7, et les figures 11 et 12 montrent la comparaison graphique des valeurs de ψ des tableaux 5 et 6 avec les valeurs de T_{im}du tableau 8.

Au [1] on observe les variations de ψ en dependant de variation de température de l'instrument du pavillon, c'est-à-dire l'élargissement inégal des tourillons d'axe de rotation pendant lequel on constate que cette côté de l'instrument où est l'objectif, est plus sensible à l'influence de température que la côté avec le poids d'équilibration. Enfin, on mentionne que la chaleur de l'ampoule éléctrique, se trouvant dans le poids d'équilibration, qu'éclaire le champs visuel, peut provoquer certaines variations au cours des observations de latitude.

Fig. 9

La figure 13 représente la variation d'inclinaison Ψ des mesures de soir dans le plan de la premiere verticale pour toute la période d'observation. On peut voir que Ψ dans la première partie de la période varie un peu, tandis qu'à la deuxième partie tend vers les valeurs positives.

Le passage des valeurs négatives aux valeurs positives est fait à la fin de 1961. et au début de 1962.

Si on compare la figure 13 avec celle-là 6, on peut voir la tendance de ψ vers l'augmentation séculière.

5. La publication [1] donne le cirite – rium des limites de la distance zénithale des couples de Talcott et les costantes d'instrument: d'azimut (a) d'inclinaison d'axe de rotation (b) et de collimation (c) entre lesquelles l'erreur de la latitude momentanée $\delta \varphi$ d'un couple de Talcott soit plus petite que 0!!005, c'est-à-dire 0!!0005.

Le nouveau programme d'observation de latitude d'après lequel on fait des observations à L'Observatoire astronomique de Belgrade, à partir de 1. du janvier 1960, donne les distances moyennes zénithales des groupes particuliers des couples de Talcott entre 4° et 11°. D'après ce criterium cité à [1] en cas des distances zénit hales de ce genre, toutes les trois constantes d'instrument peuvent être entre $\pm 25"$ et $\pm 22"$ pour pouvoir obtenier $\delta \varphi < 0".005$ Pour pouvoir obtenir $\delta \varphi < 0.0005$ les limites sont $\pm 7!'4$. c'est - à - dire ± 7.0 .

Au cours de toute la période d'observation traitée dans cet article, les valeurs d'incli – naison d'axe de rotation de l'instrument vers le plan horizontal dans le plan de la première verticale (d_e et d_w) (qui ne sont par corrigées à couse de rectification) se trouvaient entre les limites de $\pm 12!$ C'était à l'occasion des mesures de soir, tandis qu'au cours des mesures de jour cette inclinaison était $\pm 7!$ O, dans le meme plan.

S'il $\vec{s'}$ agit de collimation-elle se trouvait dans les limites tres étroites, dès le début de l'observation d'après le nouveau programme de latitude. La distance de ces limites était une dizaine de secondes d'arc.

Cependant, les valeurs d'azimut étaient dans les limites plus larges, en effet, de + 85" a-- 62" pour la pèriode de 1961 à 1965.

La publication [5] attribue ce fait à la nature de l'instrument même et à la méthode d'observation. C'est à l'occasion de l'observation que son tube se tourne autour de l'axe de l'alidade, et par conséquent, ne peut pas être toujour en une même position. On voit que, s'il s'agit de l'inclinaison et de collimation, les conditions posées au [1] sont complètement satisfaisantes. Les limites d'azimut en 1966 et en 1967 étaient aussi satisfaisantes, de + 27" à-11!

* * * *

Cet article est financié des resources des Fonds de RSS.

LITTERATURE:

- S. Yumi, Publications of the International Latitude Observatory of Mizusawa, Vol. II, No. 1.1955, (pp50-66)
- 2 M.Djokić, Publications de l'Observatoire de Beograd, Vol.12
- 3 E. P. Fedorov, Trudy Poltavskoj gravimetričeskoj observatoriji, Tom III, 1950
- 4 Z.M. Brkić, Publications de l'Observatoire de Beograd, Vol. 7, 1961
- 5 B.M.Ševarlić, Publications de l'Observatoire de Beograd, Vol. 8,1961.

RÉSUMÉ

On a donné l'analyse du materiel d'observation sur la variation d'inclinaison d'axe d'alidade et d'axe de rotation du tube zénithal à Belgrade, ramassé pendant la période de 1959 à 1965 pour le plan de la première verticale (E-W), et pendant les périodes de 1961 à 1962 et de 1963 à 1965 pour le plan meridional (S-N), à l'occasion de l'observation de latitude. On a donné, aussi l'analyse du matériel d'observation ramassé au cours de période de 1961 à 1962. en faisant les mesures tous les jours à 10h (les mesures de jour) dans les deux plans.

On a souligné les caractéristiques de variation d'inclinaison des deux axes de l'instrument.

On a decouvert la variation séculière de l'inclinaison d'axe d'alidade dans le plan de la première verticale et pour la période de 1959 à 1965, semblable à celle-là de l'instrument de passage de l'Observatoire astronomique de Belgrade se trouvant en un pavillon avec le tube zénithal.

On a effectué que l'inclinaison d'axe de rotation du tube zénithal vers le plan horizontal avait les limites de $\delta \varphi$ permises par le criterium de la publication [1], au cours de toute la période d'observation, de 1959 à 1965.

INVESTIGATION OF THE ADJUSTMENT OF BELGRADE VERTICAL CIRCLE TUBE A. S. Kharin

Main Astronomical Observatory, Academy of Sciences, Ukrainian S. S. R, Kiev (Golosejevo)

In last years three big classical meridian instruments the meridian, transit and vertical - all 19/258 cm - were mounted and put in opera tion at the Belgrade Astronomical Observatory.All the instruments were received from the Askania Werke in 1923 [1]. Observations made in 1968 with the large Vertical Circle (BVC) after its mounting in a new, building showed that the latitude obtained from the north and south stars had systematic difference [2]. Fig. 1 shows the latitude kindly communicated to the author by Dr.G. Teleki. One can see from this figure that the latitudes derived from observations of the north stars are larger than those derived form observations of south stars. The mean difference determined from 227 observations of 19 north and 18 south stars is 0!'78.

In 1969 the author investigated the position of the line of vision of the BVC in dependence of zenith distance. The autocollimation method was applied without additional measurement of def-

Fig.1

lection of eyepiece end of the tube [3]. For autocollimation measurements we make use of the flat mirror of reasonably high quality ($\phi = 40$, d = 7, N = 0, 5) and autocollimation ocular designed by the chief mechanic of the Belgrad Observatory L. Paunović. The stiff attachment of the mirror to the cell before the objective glass was made like at Golosejevo [4] by means of the duraluminium disk with the central hole for mirror and threaded spring ring.

On the Fig.2 A', A" are the centre of cross-wire and its reflected image accordingly.B' is the rear nodal point of the objective. Y = A' B'A''

is autocollimation angle. Δ , β are angles of flexure of the ocular and objective ends of the tube accordingly. Θ is the angle between the normal N to the mirror and the axis AB of the cube which is at the same time sight-line of the ideal rigid nondeformable tube.

 $\begin{array}{c} \mbox{Accordingly to this scheme the angle} \\ \mbox{\emph{S}} & \mbox{may be written as} \end{array}$

$$\delta = d - (3 + 20)$$
 (1)

In practice the autocollimation readings A_z are measured instead of the angle \mathcal{X} . To obtain the autocollimation readings A_z one should make coincide of the direct and reflected images for any zenith distance Z.

When investigating the Golosejevo Wanshaff vertical circle it was found [5] that the A_z may be written as (the clamp West)

$$A_{z} = A_{o} + \delta_{o} \sin Z + \Delta \delta_{o} \cos Z \qquad (2)$$

Where A_0 is the zeropoint of the micrometre which may be considered as autocollimation reading for a perfect nondeformable tube. X_0 , ΔY_0 are autocollimation angles in horizontal and vertical positions of the tube accordingly. The double sign before ΔY_0 indicates that autocollimation readings depends on the direction of rotation of the tube. The sign "minus" corresponds to direct or positive rotation (autocollimation readings increase). When investigating the BVC we supposed that for the perfectly adjusted tube deflection of its ends should be also of some regular character. In such a case the autocollimation readings should exactly satisfy the equations (2). On the contrary, if the fastening of the objective lenses,micrometers details of both halfs of the cube is not sufficiently rigid, their irregular abrupt displacements results in shifts of the visual axis, and hence, in the changes of autocollimation readings of same character. This in turn affects the residuals of the equations (2).

Thus our task in Belgrad observations was to obtain the series of autocollimation readings with consecutive revolving of the tube through equal intervals of zenith distance.

Altogether we obtained six series of measurements for intervals of 30° from Z = -90° to Z = $+90^{\circ}$ for positive rotation and from Z = = $+90^{\circ}$ to Z = -90° for opposite rotation of the tube. Zenith distance to south from zenith was taken with positive sign. Thus, for each direction of rotation we obtained three series of measurement.

Dependence of the latitude on zenith distance obtained from the BVC observations.

Observations were carried in the morning for the vertical temperature gradient is comparatively small in this hours. The roof of the pavilion was kept close. Still, as the figure 3 shows the vertical gradient was big enough ot the ti-

A A

me of our observations. The difference between temperature near the roof and the floor of the pavilion was up to $1^{\circ}C$.

Fig.3	The vertical temperate the pavilion BVC	ire gradient in
	-from measurements,	28-29 July 1969
0 0 0	-from measurements,	29-30 July 1969
ххх	-from measurements,	30-31 July 1969

Fig.2

DIRECT ROTATION

Z	Set 1	Set 4	Set 6
-90 ⁰	0.6595	0.6835	0.6870
-60	0.8805	0.9030	0.8895
-30	1.4420	1.4545	1.4620
0	2.1710	2.2044	2.1894
+30	2.8755	2.9100	2.9080
+60	3.4140	3.4620	3.4605
+90	3.6325	3.6550	3.6500

REVERSE ROTATION

Z	Set 2	Set 3	Set 5
+90 ⁰	3.6415	3.6585	3.6490
+60	3.4370	3.4960	3.4810
+30	2.9065	2.9445	2.9385
0	2.2022	2,2402	2.2180
-30	1.4750	1.4890	1.4925
-60	0.8930	0.9170	0.9080
-90	0.6670	0.6725	0.6850

Table 1 shows autocollimation readings

for all the six series. Each of the series permitted 7 equations of type (2) to be composed. The solution of these equations by the method least squares gave 6 groups of three-unknowns $A_0, \mathcal{E}_0, \Delta \mathcal{E}_0$ listed in table 2. Table 3 gives 6 series residuals obtained after substitution of the values of these unknowns into the equations. As one can see from table 3, the residuals proved to be essentially larger than those for the Wanshaff vertical circle and moreover were not of random character.

Table 2

SOLUTIONS OF THE EQUATIONS (2)

Set	A _o	80	۵٤٥
1	2.1430	1.4710	-0.0199
2	2.1503	1.4734	+0.0455
4	2.1690	1.4789	-0.0240
3	2.1697	1.4856	+0.0630
6	2.1674	1.4782	-0.0201
5	2.1674	1.4788	+0.0537

For the analysis of these errors the so called model method was used. It consists in searching such physically possible imaginary motions of the line of vision which residuals fit with the obtained from observations.

OBSERVED RESIDUALS

Direct rotation

\mathbf{Z}	Set 1	Set 4	Set 6	Mean
-90 ⁰	-25	-13	- 4	-14
-60	+ 3	+ 5	-16	- 3
-30	+35	+ 8	+32	+25
0	+16	+23	+ 4	+14
+30	-40	-38	-32	-37
+60	-26	+ 1	+ 6	- 6
+90	+37	+14	+ 9	+20
Σv^2	5760	2428	2453	2831

Reverse rotation

\mathbf{Z}	Set 2	Set 3	Set 5	Mean
+90 ⁰	+36	+ 6	+ 6	+16
+60	-24	+16	+12	+ 1
+30	-40	-45	-29	-38
0	+13	+15	- 6	+ 7
-30	+44	+15	+36	+32
-60	- 8	+ 5	-11	- 5
-90	-20	-13	- 7	-13
Σv^2	6041	2961	2523	2968

Let us take one of the set of observations and substitute into the equations (2) for this set the values of $A_0, \mathcal{X}_0, \Delta \mathcal{X}_0$ obtained by the least square method from the same equations. The value of the right parts of the equations so obtained we denote l_z^C ($Z : \pm 90^\circ, \pm 60^\circ$...). If these l_z^C coincide with the autocollimation readings A_z the tube adjustment could be regarded as a perfect one in accordance with the assumption made earlier.

Let us assume now that the objective lenses attachment loosed and 2k is the value of largest possible displacement of the lenses and of the rear nodal point in the cell. When the tube is in horizontal position the lenses under the action of their weight should occupy the extreme position in the cell. Evidently they will remain in this position untill the tube being rotated by zenith distance passes through the zenith. Then after the component of the force of gravity will exceed the force of the friction, lenses will shift to another extreme position in the cell. They will remain in that position untill the tube again turn through zenith in opposite direction.

In such a case when rotation of the tube is positive the right part of the equations (2) for the first four zenith distances $(-90^{\circ}, -60^{\circ}, -30^{\circ}, 0^{\circ})$ will be increased and must be written as

 $l_z^c + k$

For three further settings of the tube, $Z: + 30^{\circ}$, $+60^{\circ}$, $+90^{\circ}$, these right parts must be decreased. i.e. expressed as

 $l_z^c - k$

For reverse rotation of the tube the right parts of equations must be increased $(1_Z^c - k)$ for four settings $Z : + 90^\circ$, $+ 60^\circ$, $+ 30^\circ$, 0° and decrea sed $(1_Z^c + k)$ for three further ones $Z : -30^\circ$, -60°, -90°

Solving such systems and substituting new solutions instead of unknowns, one can obtain the residuals corresponding to described model of the line of vision displacements that will be na med further as"model 1". Let us name such deviations as"standard" unlike original ones that will be named further as "observed". Similar standard deviations can be also obtained for the slack model of eyepiece micrometer of autocollimation mirror. For the latter change of angle δ_o , as it is seen from the equation (1) has an opposite sign for the same direction of rotation of the tube. I

Table 4

"STANDARD" RESIDUALS FOR MODEL 1, k=0.01

Direct rotation

Comparing "observed" deviations with "standard" ones we can conclude that the model with slack of the lenses (model 1) is in agreement with observed deviations.

It was not difficult to find values of k' for every observed set so that its "standard" residuals correspond to the observed ones in the best manner in the sense of the least square method. Let now Δ_o be observed residuals and Δ_c calculated ones; then this condition may be written 25

$$\Sigma (\Delta_0 - \Delta_c)^2 = \min$$

The optimum k' may be find with help of the formule

$$k' = \frac{\sum \Delta_0 d_i}{\sum \delta_i^2}$$
(3)

where $\Delta_{c} = \delta_{i}$ are given in table 4 for k =0,01, and corresponding optimum standard residuals may be obtained as

 $\Delta_{c} = k' \cdot \delta_{i}$

Table 5

OPT_IUM"STANDARD"RESIDUALS FOR MODEL 1

Direct rotation

Reverse rotation

set 3

0.6

+ 1

+ 2

- 1

- 8

+ 9

set5

1.7

+ 3

+ 5

- 4

-22

+24

Mean

1.3

+ 2

+ 4

- 3

-16

+18

+ 2

- 5

Microme	eter slack	Lenses slack					
	دهر	c	-) K'	Set 1	Set 4	Set 6	Mean
Z	∂_i	di	Ξ\r	2.7	2.2	1.6	2.2
-90 ⁰	+ 2	- 2	-90 ⁰	- 4	- 4	- 3	- 4
-60	+ 3	- 3	-60	- 8	- 7	- 5	- 7
-30	- 2	+ 2	-30	+ 6	+ 5	+ 4	+ 5
0	-13	+13	0	+35	+29	+21	+28
+30	+15	-15	+30	-38	-31	-23	-31
+60	+ 2	- 2	+60	- 5	- 4	- 3	- 4
+90	- 6	+ 6	+90	+15	+13	+ 9	+12

z*'

+900

+60

+30

-30

-60

-90

0

Reverse rotation

Microm	eter slack	Lenses slack
Z	Sit	SiB
+900	- 2	+ 2
+60	- 3	+ 3
+30	+ 2	- 2
0	+13	-13
-30	-15	+15
-60	- 2	+ 2
-90	+ 6	- 6

Table 4 gives the "standard" deviati ons obtained for k = 0,01 and for four models, two of which correspond to lenses slack (change of angle B) and two - to micrometer and autocollima tion mirror slack (change of angles d and Θ).

+ 3 + 1 + 3 - 9 - 4 -10The values of k' calculated from (3)

Set 2

1.5

+ 2

+ 4

- 3

-19

+21

and corresponding values Δ'_{c} are listed in table 5. Excluding the optimum standard from observed ones for the model 1, given in table 3, we shall obtain corrected residual deviations. The latter

deviations presented in table 6 were divided into two groups according to the direction of rotation.

Table 6

CORRECTED RESIDUALS (MODEL 1)

Direct rotation

Z	Set 1	Set 4	Set o	Mean
-90 ⁰	-21	- 9	- 1	-10
-60	+11	+12	-11	+ 4
-30	+29	+ 3	+28	+20
0	-19	- 6	-17	-14
+30	- 2	- 7	- 9	- 6
+60	-21	+ 5	+ 9	- 2
+90	+22	+ 1	0	+ 8
Σv^2	2693	345	1357	816
	Rev	ver se rota ti	on	
z	Set 2	Set 3	Set 5	Mean
Z +90 ⁰	Set 2 +34	Set 3 + 5	Set 5 + 3	Mean +14
Z +90 ⁰ +60	Set 2 +34 -28	Set 3 + 5 +14	Set 5 + 3 + 7	Mean +14 - 2
Z +90 ⁰ +60 +30	Set 2 +34 -28 -37	Set 3 + 5 +14 -14	Set 5 + 3 + 7 -25	Mean +14 - 2 -35
Z +90 ⁰ +60 +30 0	Set 2 +34 -28 -37 +32	Set 3 + 5 +14 -14 +23	Set 5 + 3 + 7 -25 +16	Mean +14 - 2 -35 +24
Z +90 ⁰ +60 +30 0 -30	Set 2 +34 -28 -37 +32 +23	Set 3 + 5 +14 -14 +23 + 6	Set 5 + 3 + 7 -25 +16 +12	Mean +14 - 2 -35 +24 +14
Z +90 ⁰ +60 +30 0 -30 -60	Set 2 +34 -28 -37 +32 +23 -11	Set 3 + 5 +14 -14 +23 + 6 + 4	Set 5 + 3 + 7 -25 +16 +12 -14	Mean +14 - 2 -35 +24 +14 - 7
Z +90 ⁰ +60 +30 0 -30 -60 -90	Set 2 +34 -28 -37 +32 +23 -11 -11	Set 3 + 5 +14 -14 +23 + 6 + 4 - 9	Set 5 + 3 + 7 -25 +16 +12 -14 + 3	Mean +14 - 2 -35 +24 +14 - 7 - 6
	Set 2 +34 -28 -37 +32 +23 -11 -11 5104	Set 3 + 5 +14 -14 +23 + 6 + 4 - 9 2819	Set 5 + 3 + 7 -25 +16 +12 -14 + 3 1288	Mean +14 - 2 -35 +24 +14 - 7 - 6 2282

The mean deviations for each group are also presented in Fig. 4. As one can see from that figure both groups have essentially the same character. Corrected residuals lie almost on a stright line for three first settings of the tube before zenith. Near zenith the jump takes place; after that residuals go on a stright line again, but the angle of inclination of this line is diminished. To explain this fact we have to suppose that there exist still one displacement of the lenses in the cell, but it takes place just before the tube passes zenith. That jump ta kes place in the zenith distance zone from -30° to 0° during the positive rotation and in zone from $+ 30^{\circ}$ to 0° during the reverse rotation of the tube.

- for direct rotation of the tub (a),
- and reverse rotation of the tube (b),
- 1 -observed residuals,
- 2 -observed residuals corrected for model 1,
- 3 -observed residuals corrected for models 1 and 2.

Table 8

OPTIMUM "STANDARD" RESIDUALS FOR MODEL 2

Direct rotation

	Set 1	Set 4	Set 6	Mean
z\ ^{κ″}	1.8	0.5	1.5	1.3
-90 ⁰	-11	- 3	- 9	- 7
-60	+ 4	+ 1	+ 3	+ 3
-30	+26	+ 8	+22	+18
0	-24	- 7	-20	-17
+30	- 4	- 1	- 3	- 3
+60	+ 6	+ 2	+ 5	+ 4
+90	+ 3	+ 1	+ 2-	+ 2

Reverse rotation

	Set 2	Set 3	Set 5	Mean
Z\K"	3.1	2.2	1.5	2.3
+90	+18	+13	+ 9	+13
+60	- 6	- 4	- 3	- 5
+30	-43	-31	-21	-32
0	+40	+29	+19	+29
-30	+ 7	+ 5	+ 3	+ 5
-60	- 9	- 7	- 4	- 7
-90	- 5	- 4	- 2	- 4

Table 9

CORRECTED RESIDUALS (MODEL 1 AND 2)

Direct rotation

Z	Set 1	Set 4	Set 6	Mean
- 90 ⁰	-10	- 6	+ 8	- 3
-60	+ 7	+11	-14	+ 1
-30	+ 3	- 5	+ 6	+ 2
0	+ 5	+ 1	+ 3	+ 3
+30	-25	+ 3	+ 4	- 6
+90	+19	0	- 2	+ 6
Σu^2	1173	256	361	104

Reverse rotation

Z	Set 2	Set 3	Set 5	Mean
+9000	+16	- 8	- 6	+ 1
+60	-22	+18	+10	+ 3
+30	+ 6	-13	- 4	- 3
0	- 8	- 6	- 3	- 5
-30	+16	+ 1	+ 9	+ 9
-60	- 2	+11	-10	0
-90	- 6	- 5	+ 5	- 2
Σv^2	1136	740	362	129

"STANDARD"RESIDUALS FOR MODEL 2, k" =0.01

	Direct	rotation	_
\mathbf{Z}		c	i
-90	D	-	6
-60		+	2
-30		+	14
0		-3	13
+30		-	2
+60		+	3
+90		+	2

Reverse rotation

Z	\mathcal{S}_{i}
+90 ⁰	+ 6
+60	- 2
+30	-14
0	+13
-30	+ 2
-60	- 3
-90	- 2

To find "standard" residuals for this new model of the jump of sight line, which can be named as model 2, we must increase calculated values of l_Z^{C} by value of k" for zenith distance : -90° , -60° , -30° , and decrease then by the same quantity for setting : 0° , $+30^{\circ}$, $+60^{\circ}$, $+90^{\circ}$ for positive rotation, and the contrary - decrease for the first three settings : $+90^{\circ}$, $+60^{\circ}$, $+30^{\circ}$, and increase for four consequent ones: 0° , -30° , -60° , -90° for reserve rotation of the tube. Substituting above mentioned values l_Z^{c} $\pm k$ instead of observed A_z in right part of the equations (2) for k == 0.01 we obtained "standard" residuals for model 2 listed in table 7.

Using the formule (3) just as in the first case, we shall find k" satisfying in the best manner the residuals given in table 6. These meanings of k" and corresponding optimum standard deviation for the model 2 are given in table 8. Now if we exclude these standard deviations, we shall obtain twice corrected residuals listed in table 9. This table and Fig 4 show that twice corrected deviations are comparatively not so great and may be explained as due to effect of some neglec ted factors: personal error, parallax, unexcluded temperature tube deformation and accidental errors of observation. Correctness of the assumed models is confirmed by the essential decrease of $2v^2$ after introducing each correction. Values of Σv^2 are given in the last lines of tables 3,6,9.

Summarizing one can conclude that observed residual deviations may be well explained by the two displacements of rear modal point of the objective discussed above.

As the flexure is determined as

$$\Delta Z = \frac{1}{2} \left(\alpha - \beta \right)$$

the value of its change caused by the two displacements of the rear nodal point can be obtained from the expression

$$\Delta \Delta Z = -\frac{1}{2} \left(\Delta_1 + \Delta_2 \right)$$

where Δ_1 and Δ_2 are values of change of the angle β due to displacements of the nodal point. They can be found for every set with help of mean values of k' and k''.

$$\Delta_{1,2} \quad \frac{1}{6} \sum k_i$$

Substituting values k', k'' listed in tables 5, 7 into this formule we can find

$$\Delta_1 = 0!'34$$
, $\Delta_2 = 0!'36$

and common change of the flexure will be

$$\Delta \Delta Z = - 0!'35$$

Now we can show that the disagreement in north and south star observations detected by the Belgrad astronomers is explained just by an error appearing because of the displacement of the rear nodal point.

Let Δ_0 be a correction to observed zenith distances for error in the sight line position which is to appear when the rear nodel point displaces down as a result of displacement of objective lenses under the force of gravity as it was assumed in the models 1 and 2. Evidently if zenith distances are assumed to be positive in both sides from the zenith, this correction also must be positive.

Now if Z_N^1 and Z_S^1 are observed zenith distances, Z_N and Z_S are true ones for north and south stars accordingly, we can write the following relations;

$$Z_{N} = Z_{N}^{1} + \Delta_{o}$$

$$Z_{S} = Z_{S}^{1} + \Delta_{o}$$
(4)

For the true zenith distances and latitude Υ the following relations can be written

where \mathcal{S}_{N} , \mathcal{S}_{S} are apparent declinations of north and south stars accordingly.

If Ψ'_N , Ψ'_S are observed latitudes which can be written as

$$\varphi'_{N} = \delta_{N} - z'_{N}$$
$$\varphi'_{S} = \delta_{S} + z'_{S}$$

then after substituting these expressions and values Z_N , Z_S from (4) into (5) we can write.

$$\begin{aligned} \boldsymbol{\gamma}'_{\mathrm{N}} &= \boldsymbol{\gamma} + \boldsymbol{\Delta}_{\mathbf{o}} \\ \boldsymbol{\gamma}'_{\mathrm{S}} &= \boldsymbol{\gamma} - \boldsymbol{\Delta}_{\mathbf{o}} \end{aligned} \tag{6}$$

Hence, the latitudes obtained from the north stars should be increased and from the south stars - decreased by the same value Δ_o just as it occured in observations at the BVC. The value Δ_o as it is seen from the above results of 227 north and south star observations must be equal to

$$\Delta_0 = 0!'39$$

This value practically coincides with the error for flexure obtained from our investigations ($\Delta \Delta Z = -0!'35$).

As a result of all the above discussion one can conclude that anomalous changes of sight line position are observed for the BVC when the tube is rotated through the zenith.

These changes are caused anomalous slack type displacement of the rear nodal point of the objective. The value and characters of these displacements obtained from the analyses of autocollimation measurements explain well the disagreement in latitudes to be obtained from the observations of the north and south stars.

To remove this defect in adjustment of the tube it is necessary to pay attention to reliability of fastening of the objective lenses in the cell and also to attachment of the objective itself to the tube that may be also a cause of slack of the rear nodal point.

In closing I wish to give my thanks to N. Kravljanac, mechanic and B. Kubičela, calcu – lator, who helped me very much in my research at the Belgrad Observatory. I also express my deep gratitude to Dr. G. Teleki who take upon himself all organization part of this work and the corres – pondent member of the Academy of Sciences of the USSR M. S. Zverev, by whose initiative this work was undertaken.

LITERATURE

- G. Teleki, Publikacije Astronomske Opservatorije u Beogradu, n⁰ 14, 1968, 168-179.
- 2 M. Mijatov, G. Teleki, Trudy 18-j Astrometričeskoj Konferencii SSSR, izd. AN SSSR (in press)
- 3 A.S. Harin, Astrofizika i Astrometrija, 7, 1969, 74-81, izd. Kiev, Naukova dumka.
- 4 A. S. Harin, S. P. Major, N. N. Nazarova, J. S. Jackiv. Sbornik Metody astrometričeskih issledovanij, 10, izd. Kiev, Naukova dumka (in press)
- 5 A. S. Harin. Trudy 18-j Astrometričeskoj Konferencii SSSR, izd. AN SSSR (in press)

BELGRADE LARGE VERTICAL CIRCLE EXAMINATION BY AUTOCOLLIMATIONAL METHOD

G. Teleki

1. The first works with the large vertical circle (Askania 190/2578 mm) at Belgrade Astronomical Observatory indicated already that the instrument used at that time could not give results of needed preciseness [1]. Later-on, certain corrections were done on the instrument, the results were somewhat better, but the observational results had not reached the needed level of preciseness. The analysis of the last series of stars observation [2] brought about the following results: the mean accidental error of one observation was + + 0,'64; the mean systematical error of a north star was + 1, 13, and of a south star was + 0, 76; latitude carried out of north stars observations was 0,78 bigger than latitude obtained by south stars. Studiing all these results, in [2] it was evident that the main sources for systematical and acci dental observational errors were connected with horizontal and vertical axes. The importance that the horizontal axis has pivots of regular form and bearings that may secure steady position, was specially stressed.

Before any start to eliminate these mechanical imperfectnesses, we were of the attitude to discover some other possible sources of disturbance. While we were discovering such imperfectnesses, Dr. A. S. Harin (Main Astronomical Observatory, Academy of Science of Ukrainian S. S. R. , Kiev-Golosejevo) drew our attention to the possible influence of anomalous displacement of the rear nodal point of the objective. When the telescope tube is passing over the zenith, an anomalous change may occur in the position of sight line due to badly fixed objective, micrometric parts or tube parts connected with the central tube parts.

A. S. Harin suggested the use of autocollimational method for this kind of examination. He was so kind accepting to produce for us a corresponding mirror and to start with examinations himself. He stayed in Belgrade in July 1969 and helped us at the start of these examinations, so we take this opportunity, also, to thank him again for the kindness extended to us.

A flat mirror of 40 mm diameter and 7 mm thickness, possessing good characteristics, mounted on a duraluminium disc (diameter 220 mm and thickness 5 mm) fixed to the outer side of the frame which held the objective. At the first time, the autocollimational ocular produced by Lj. Pau – nović was used, but later, from 22nd series, Gauss-ocular was used. The change of ocular was due to the fact that Paunović-ocular was unable to eliminate the parallax of the thread.

Micrometric double thread was used for these measurements. One of the threads was conducted to the middle of the reflected image, and after that followed the micrometric reading. Then, the same action was repeated with the second thread (at the series with ordinal numbers from 1. to 8., each autocollimational reading recorded onemeasurement with each thread, at first, and later it recorded two measurements). Out of these readings the mean value has been carried out what is marked here with A_z . A_s per Harin [3], the value A_z can be represented in the following way:

$$A_{z} = A_{o} + \bigvee_{o} \sin z \pm \Delta \bigvee_{o} \cos z \qquad (1)$$

- where : A_o micrometer zero point, which can be interpreted as an autocollimational reading for an ideal, undeformed tu be,
 - $\boldsymbol{\xi}_{o}$ autocollimational angle of horizontal tube position,
 - ΔY_0 autocollimational angle of vertical tube position,
 - z zenith distance; it is for the south position positive.

The double sign before $\Delta \forall_0$ shows dependance of the tube rotation direction. At the di-

rect rotation, when autocollimational reading is increasing, the minus is used and plus is used in viceversa direction. Such law was maintained when the large vertical circle in Kiev-Golosejevo was examined.

The autocollimational angle itself δ , as per [4], may be represented as follows:

$$\delta = \delta - \beta + 2\theta \qquad (2)$$

where: d - angle of flexure of the ocular tube part,

- β angle of flexure of the objective tube part,
- θ angle of changed mirror position to wards the sight line of an ideal, undeformed tube.

In the practice instead of angle δ we have A_2 , what is represented by expression (1).

Accordingly, the method suggested by Harin has not offered possibilities for determination of tube flexure (values $d - \beta$), but a joint effect is obtained, from which by expression (1) we are able to analyse mechanical deformations of the tube. Indications that this is correct can be found in the examinations done by Harin in Kiev as well as in Hansson's paper [5]. Hansson, also, used the mirror in front of the objective, autocollima tional reading was recorded at various zenith distances, but he did not carry out conclusions ana lysing the data received by the expression (1).

2. Autocollimational measurements from horizon to horizon by 30° rotation

: The first group of measurements included series of autocollimational measurements from horizon to horizon with 30° rotation at the zenith distances. The proceeding was the following: The tube was directed, say to $z = +90^{\circ}$, where autocollimational reading was recorded, then the tube was directed at $z = +60^{\circ}$, and A_z was noted. the proceeding is continued in that way until $z=-90^{\circ}$ was reached. Then, the measurement was repeated but this time from $z = -90^{\circ}$. When the tube was directed to the zenith double autocollimational reading was effected - feet towards the north and feet towards the south - and finally, the mean value was obtained out of that. Accordingly, one series of measurements gave 14 values of A_z . Between each two tube positions in succession, passed 2-3 minutes, at least, and starting from 28th series,10-15 minutes.

Using the expression (1), A_0 , \aleph_0 and $\Delta \aleph_0$ were determined by the method of least squares.

Table 1 indicates the basic data obtained at this group of measurements. In the column "tube rotation direction" <u>a</u> notes order when the measurements started with $z=+90^{\circ}$ while <u>b</u> notes the measurements which started with $z=-90^{\circ}$.Data A_{\circ} , δ_{\circ} and $\Delta\delta_{\circ}$ are given in the units of the value of a revolution of the micrometer screw (R).

Value \mathcal{E} (in seconds of arc) is:

$$\mathcal{E} \underbrace{\bigvee \mathcal{E} \Delta^2}_{n-1} \tag{3}$$

where: $\Delta = (A_z - A_{zc})R$

- A_{zc} calculated value A_{z} as per expession (1),
- n number of conditioned equation (n = 14),
- R mean value of a revolution of micrometer screw (=20").

The point was to gather as much as possible of effected measurements to be able to judge on the variability of the obtained results. The measurements were conducted by: Harin (H), Teleki (T) and Kubičela (K). We have 43 series in various combinations - with unprotected tube. Finding that the large vertical temperature gradient in the pa - vilion was too high from time to time (sometimes over 1° C/m) we decided to protect the tube, though partly only. The protection was done by double sheets of aluminium folio. The micrometer was also protected, but not completely, because of its mo-vable parts. 14 series have been gathered under these conditions.

The basic results of these measurements are given in Table 1 and in Fig. 1. A remark on it would be: value \aleph_0 has a contra sign depending on the instrument position - position in the east is always negative, and in the west it is always positive. Therefore, it is preferable to introduce in (1) the double sign before \aleph_0 sin z. We shall always talk about the absolute value \aleph_0 , because it has been so represented in Fig. 1.

Values A_0 , $|\chi_0|$, ΔX_0 (all in units of R, the value of a revolution of the micrometer screw), \mathcal{E} (in seconds of arc) and mean air temperature (T) in ^{O}C , as per Table 1. Arrows at the markation for the number of series are noting that the examination on that day are done at open dome. With series 46-41 the tube was protected by aluminium folio.

TABLE 1.

Number of	Instru - ment	Datè	Air temperature $(in {}^{9}C)$	Observer	Tube rotation direction	A _o (in R)	K _o (in R)	۵४ ₀ (in R)	E (in sec. of arc)	Dome
	position.		(11 C)	·					· · · · · · · · · · · · · · · · · · ·	
				Unprotec	ted tube					
1.	w	29. VII. 1969.	$+22^{\circ}2$	н	b	2,1641	+1, 4721	+0.0174	+0!'40	
3.	w	30. VII. 1969.	+21.5	н	ล	2, 1925	+1 4822	+0.0199	0.40	
5.	w	31. VII.1969.	+20.9	н	a	2,1870	+1,4785	+0.0017	0,41	
6.	w	26. VIII. 1969.	+18.7	T	a	1,9510	+1.4918	+0.0469	0, 54	
7.	w	9.IX. 1969.	+ 18.1	Ť	a	1,8676	+1.5190	+0.1129	0,66	
8.	w	**	+ 18.0	T	a	1.8575	+1.5105	+0.0688	0, 85	
9.	w	11.IX.1969.	+ 18.4	T	a	1.8926	+1.5148	+0.0384	0, 53	
10.	w	13.IX.1969.	+ 18.2	ĸ	a	1,8486	+1.4724	+0.0021	0.54	
11.	Е	**	+18.3	к	a	1,8683	-1.4801	+0.0158	0.32	
12.	Е	**	+18,5	т	b	1.8875	-1.4976	+0.0174	0, 31	
13.	w	**	+18,7	T	b	1,8704	+1.4872	+0.0099	0.31	
14.	Е	14.IX.1969.	+18,1	T	b	1,8768	-1.5100	+0.0110	0.38	
15.	w	"	+18,2	Т	b	1,8464	+1.4932	+0.0022	0.27	
16.	w	15.IX.1969.	+19,3	ĸ	a	1,8436	+1,5050	+0.0347	0.39	
17.	w	**	+19,4	т	b	1,8490	+1,5037	+0.0272	0.27	
18.	Е	"	+19,4	к	a	1,8389	-1.4995	+0,0362	0.40	
19.	Е	**	+19,6	т	b	1,8414	-1.4976	+0.0194	0.33	
20.	E	16. IX. 1969.	+18,8	к	b	1,8686	-1,3940	-0,1518	0.37	open
21.	E	11	+18,5	т	a	1,8046	-1,3840	-0,1428	0.73	open
22.	Е	22.IX.1969.	+16,9	К	a	1,9182	-1,5188	+0,0735	0.20	Ľ
23.	Е	**	+16,6	т	b	1,9069	-1,5164	+0,0658	0.31	
24.	w	**	+ 16,5	к	a	1.9029	+1,5159	+0,0647	0,39	
25.	w	**	+16,3	т	b	1,8896	+1.4969	+0.0446	0.25	

0.0	117	24 IX 1969	+ 14, 1	к	a	1,9032	+1,3978	-0,1638	0,41	open
26.	W E	11	+ 14.0	ĸ	a	1,8711	-1,3725	-0,1404	0,65	open
27.	ь г	26 IX 1969	+15.2	т	b	1,9298	-1,5914	+0,0265	0,55	
28.	E F	27 IX 1969	+15.0	Ť	a	1,9293	-1,6133	+0,0348	0,81	
29.	F	29 IX 1969.	+ 12.4	Ť	а	1,9526	-1,0442	-0,0331	0,29	open
30.	E	30. IX. 1969.	+14.8	T	b	1,9342	-1,0754	-0,0220	0,39	open
32	E	1. X. 1969.	+ 17.4	T	b	1,8651	-1,3176	-0,0318	0,69	open
33	w	"	+ 17.4	- T	a	1.8648	+1.3193	-0,0133	0.81	open
34	E	2. X. 1969.	+15.0	Ť	b	1,9046	-1.5080	+0.0289	0.36	
35	w	11	+15.0	Ť	~ a	1.8997	+1.5126	+0.0240	0.34	
36	w	3 X 1969	+ 14.5	Ť	h	1,9026	+1.5481	+0.0301	0, 40	
37	E	11	+ 14.5	Ť	a	1,9103	-1, 5468	+0.0086	0.47	
38	с. Т	6 X 1969	+ 15, 2	Ť	2	1,9265	-1, 5545	+0.0272	0,67	
39	w	11	+ 15, 2	Ť	h	1,9207	+1.5562	+0.0209	0, 55	
40	w	9 X 1969	+ 13.8	Ť	ĥ	1,9511	+1,5761	+0.0377	0, 62	
40.	77 T	11	+13.8	Ť	8	1 9579	-1.5782	+0.0240	0,68	
41.	E F	10 ¥ 1969	+ 13,0	T	a h	1 9674	-1 5741	+0,0462	0,52	
44.	E W	10. A. 1505.	+ 14,0	т Т	0	1 9637	+1 5749	+0,0253	0,02	
43.	VV 117	11 V 1060	+ 14,0	T	a	1 06/1	+1 6018	+0,0235	0,74	
44.	vv	TT. A. 1909.	T 14.0	1	a	T, DOTT	11,0010	10,0000	0,11	
45	E	,,	1 1 4 5	TT.	h	1 0709	-1 5916	+0 0287	0 47	
45.	E	11	+ 14,5	Т	b	1,9792	-1,5916	+0,0287	0,47	
45.	E	11	+ 14,5	T Protected	b tube	1,9792	-1,5916	+0,0287	0,47	<u>, , , , , , , , , , , , , , , , , , , </u>
45.	E	" 20 x 1969.	+ 14, 5	T <u>Protected</u> T	b <u>tube</u> b	1,9792	-1,5916	+0,0287	0,47	<u> </u>
45. 46. 47	E	" 20. X. 1969. "	+ 14, 5 + 13, 7 + 13, 7	T <u>Protected</u> T T	b <u>tube</u> b a	1,9792	-1,5916 -1,5015 +1,5018	+0,0287 +0,0204 +0,0200	0,47 0,29 0,27	<u></u>
45. 46. 47. 50	E E W E	" 20. X. 1969. " 27 X 1969	+ 14, 5 + 13, 7 + 13, 7 + 9, 2	T Protected T T	b tube b a a	1,9792 1,7483 1,7485 1,5706	-1,5916 -1,5015 +1,5018 -1,4584	+0,0287 +0,0204 +0,0200 +0,0066	0, 47 0, 29 0, 27 0, 34	onen
45. 46. 47. 50.	E E W E W	" 20. X. 1969. " 27. X. 1969. "	+ 14, 5 + 13, 7 + 13, 7 + 9, 2 + 9, 2	T <u>Protected</u> T T T	b tube b a a b	1,9792 1,7483 1,7485 1,5706 1,5724	-1,5916 -1,5015 +1,5018 -1,4584 +1,4547	+0,0287 +0,0204 +0,0200 +0,0066 +0,0108	0,47 0,29 0,27 0,34 0,32	open
45. 46. 47. 50. 51. 52	E E W E W	" 20. X. 1969. " 27. X. 1969. " 28. X. 1969.	+ 14, 5 + 13, 7 + 13, 7 + 9, 2 + 9, 2 + 12, 0	T <u>Protected</u> T T T T	b tube b a a b b	1,9792 1,7483 1,7485 1,5706 1,5724 1,5960	-1,5916 -1,5015 +1,5018 -1,4584 +1,4547 -1 4876	+0,0287 +0,0204 +0,0200 +0,0066 +0,0108 +0,0203	0,47 0,29 0,27 0,34 0,32 0,19	open open
45. 46. 47. 50. 51. 52. 53	E E W E W E W	" 20. X. 1969. " 27. X. 1969. " 28. X. 1969.	+ 14, 5 + 13, 7 + 13, 7 + 9, 2 + 9, 2 + 12, 0 + 12, 0	T <u>Protected</u> T T T T T	b tube b a a b b b a	1,9792 1,7483 1,7485 1,5706 1,5724 1,5960 1,5976	-1,5916 -1,5015 +1,5018 -1,4584 +1,4547 -1,4876 +1 4896	+0,0287 +0,0204 +0,0200 +0,0066 +0,0108 +0,0203 +0,0134	0,47 0,29 0,27 0,34 0,32 0,19 0,22	open open
46. 47. 50. 51. 52. 53. 54	E E W E W E W W	" 20. X. 1969. " 27. X. 1969. " 28. X. 1969. "	+ 14, 5 + 13, 7 + 13, 7 + 9, 2 + 9, 2 + 12, 0 + 12, 0 + 11, 2	T Protected T T T T T T	b tube b a a b b b a b	1,9792 1,7483 1,7485 1,5706 1,5724 1,5960 1,5976 1,5799	-1,5916 -1,5015 +1,5018 -1,4584 +1,4547 -1,4876 +1,4896 +1,5001	+0,0287 +0,0204 +0,0200 +0,0066 +0,0108 +0,0203 +0,0134 +0,0134	0,47 0,29 0,27 0,34 0,32 0,19 0,22 0,30	open open
45. 46. 47. 50. 51. 52. 53. 54. 55.	E W E W E W W F	" 20. X. 1969. " 27. X. 1969. " 28. X. 1969. " 30. X. 1969.	+ 14, 5 + 13, 7 + 13, 7 + 9, 2 + 9, 2 + 12, 0 + 12, 0 + 11, 2 + 11, 2	T Protected T T T T T T	b tube b a b b b a b a b a	1,9792 1,7483 1,7485 1,5706 1,5724 1,5960 1,5976 1,5799 1,5820	-1,5916 -1,5015 +1,5018 -1,4584 +1,4547 -1,4876 +1,4896 +1,5001 -1 5018	+0,0287 +0,0204 +0,0200 +0,0066 +0,0108 +0,0203 +0,0134 +0,0134 +0,0119	0,47 0,29 0,27 0,34 0,32 0,19 0,22 0,30 0,28	open open
46. 47. 50. 51. 52. 53. 54. 55. 55.	E W E W E W W	" 20. X. 1969. " 27. X. 1969. " 28. X. 1969. " 30. X. 1969. " 3. X. 1969.	+ 14, 5 + 13, 7 + 13, 7 + 9, 2 + 9, 2 + 12, 0 + 12, 0 + 11, 2 + 11, 2 + 10, 8	T Protected T T T T T T T	b tube b a b b b a b a b a a	1,9792 1,7483 1,7485 1,5706 1,5724 1,5960 1,5976 1,5799 1,5820 1,5775	-1,5916 -1,5015 +1,5018 -1,4584 +1,4547 -1,4876 +1,4896 +1,5001 -1,5018 +1,4931	+0, 0287 +0, 0204 +0, 0200 +0, 0066 +0, 0108 +0, 0203 +0, 0134 +0, 0134 +0, 0119 +0, 0144	0,47 0,29 0,27 0,34 0,32 0,19 0,22 0,30 0,28 0,16	open open
46. 47. 50. 51. 52. 53. 54. 55. 56. 57.	E W E W E W E W E	" 20. X. 1969. " 27. X. 1969. " 28. X. 1969. " 30. X. 1969. " 3. XI. 1969.	+ 14, 5 + 13, 7 + 13, 7 + 9, 2 + 9, 2 + 12, 0 + 12, 0 + 11, 2 + 11, 2 + 10, 8 + 10, 8	T Protected T T T T T T T	b tube b a b b a b a a b b a b b a b b b b b	1,9792 1,7483 1,7485 1,5706 1,5724 1,5960 1,5976 1,5799 1,5820 1,5775 1,5798	-1,5916 -1,5015 +1,5018 -1,4584 +1,4547 -1,4876 +1,4896 +1,5001 -1,5018 +1,4931 1,4941	+0,0287 +0,0204 +0,0200 +0,0066 +0,0108 +0,0203 +0,0134 +0,0134 +0,0119 +0,0144 +0,0132	0,47 0,29 0,27 0,34 0,32 0,19 0,22 0,30 0,28 0,16 0,20	open open
46. 47. 50. 51. 52. 53. 54. 55. 56. 57. 58.	E W E W E W E W E E	" 20. X. 1969. " 27. X. 1969. " 28. X. 1969. " 30. X. 1969. " 3. XI. 1969. " 9. YI 1969.	+ 14, 5 $+ 13, 7$ $+ 13, 7$ $+ 9, 2$ $+ 9, 2$ $+ 12, 0$ $+ 12, 0$ $+ 11, 2$ $+ 11, 2$ $+ 10, 8$ $+ 10, 8$ $+ 8, 4$	T Protected T T T T T T T T	b tube b a b b a b a b a b b b b b b b b b b	1,9792 1,7483 1,7485 1,5706 1,5724 1,5960 1,5976 1,5799 1,5820 1,5775 1,5798 1,6712	-1,5916 -1,5015 +1,5018 -1,4584 +1,4547 -1,4876 +1,4896 +1,5001 -1,5018 +1,4931 -1,4941 -1,4924	+0,0287 +0,0204 +0,0200 +0,0066 +0,0108 +0,0203 +0,0134 +0,0134 +0,0134 +0,0119 +0,0144 +0,0132 +0,0174	0,47 0,29 0,27 0,34 0,32 0,19 0,22 0,30 0,28 0,16 0,20 0,22	open open
46. 47. 50. 51. 52. 53. 54. 55. 56. 57. 58. 50.	E W E W E W E E E	" 20. X. 1969. " 27. X. 1969. " 28. X. 1969. " 30. X. 1969. " 3. XI. 1969. " 9. XI. 1969.	+ 14, 5 $+ 13, 7$ $+ 13, 7$ $+ 9, 2$ $+ 9, 2$ $+ 12, 0$ $+ 12, 0$ $+ 11, 2$ $+ 11, 2$ $+ 10, 8$ $+ 10, 8$ $+ 8, 4$ $+ 8, 4$	T Protected T T T T T T T T T	b tube b a b b a b a b b b b b	1,9792 1,7483 1,7485 1,5706 1,5724 1,5960 1,5976 1,5799 1,5820 1,5775 1,5798 1,6712 1,6722	-1, 5916 -1, 5015 +1, 5018 -1, 4584 +1, 4547 -1, 4876 +1, 4896 +1, 5001 -1, 5018 +1, 4931 -1, 4931 -1, 4924 +1	+0,0287 +0,0204 +0,0200 +0,0066 +0,0108 +0,0134 +0,0134 +0,0134 +0,0134 +0,0132 +0,0174 +0,0174 +0,0095	0,47 0,29 0,27 0,34 0,32 0,19 0,22 0,30 0,28 0,16 0,20 0,22 0,38	open open
46. 47. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60	E W E W E W E E W W	" 20. X. 1969. " 27. X. 1969. " 28. X. 1969. " 30. X. 1969. " 3. XI. 1969. " 9. XI. 1969. " 19. XI. 1969.	+ 14, 5 $+ 13, 7$ $+ 13, 7$ $+ 9, 2$ $+ 9, 2$ $+ 12, 0$ $+ 12, 0$ $+ 11, 2$ $+ 11, 2$ $+ 10, 8$ $+ 8, 4$ $+ 8, 4$ $+ 8, 4$	T Protected T T T T T T T T T T	b tube b a b b a b a b b b a b b a c	1,9792 1,7483 1,7485 1,5706 1,5724 1,5960 1,5976 1,5799 1,5820 1,5775 1,5798 1,6712 1,6729 1,6729	-1,5916 -1,5015 +1,5018 -1,4584 +1,4547 -1,4876 +1,4896 +1,5001 -1,5018 +1,4931 -1,4941 -1,4924 +1,4867	+0, 0287 +0, 0204 +0, 0200 +0, 0066 +0, 0108 +0, 0134 +0, 0134 +0, 0134 +0, 0134 +0, 0132 +0, 0174 +0, 0095 +0, 0182	0,47 0,29 0,27 0,34 0,32 0,19 0,22 0,30 0,28 0,16 0,20 0,22 0,38 0,28	open open
46. 47. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60.	E W E W E W E E W W E W	" 20. X. 1969. " 27. X. 1969. " 28. X. 1969. " 30. X. 1969. " 3. XI. 1969. " 13. XI. 1969. " " 13. XI. 1969.	+ 14, 5 $+ 13, 7$ $+ 13, 7$ $+ 9, 2$ $+ 9, 2$ $+ 12, 0$ $+ 12, 0$ $+ 11, 2$ $+ 11, 2$ $+ 10, 8$ $+ 8, 4$ $+ 8, 4$ $+ 16, 0$ $+ 10, 2$	T Protected T T T T T T T T T T	b tube b a b b a b b a a b b b a a b b b a a b b b a a b b b b a b b b b a b b b a b b b a b b a b b b a b b b a b b b a b	1,9792 1,7483 1,7485 1,5706 1,5724 1,5960 1,5976 1,5799 1,5820 1,5775 1,5798 1,6712 1,6729 1,6519 1,6519	-1,5916 -1,5015 +1,5018 -1,4584 +1,4547 -1,4876 +1,4896 +1,5001 -1,5018 +1,4931 -1,4941 -1,4924 +1,4867 +1,4820 1,4920	+0, 0287 +0, 0204 +0, 0200 +0, 0066 +0, 0108 +0, 0134 +0, 0134 +0, 0134 +0, 0134 +0, 0132 +0, 0144 +0, 0132 +0, 0174 +0, 0095 +0, 0182 +0, 0185	0,47 0,29 0,27 0,34 0,32 0,19 0,22 0,30 0,28 0,16 0,20 0,22 0,38 0,38 0,38 0,38	open open
46. 47. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61.	E W E W E W E E W W E E	" 20. X. 1969. " 27. X. 1969. " 28. X. 1969. " 30. X. 1969. " 3. XI. 1969. " 13. XI. 1969. " " 13. XI. 1969. "	+ 14, 5 $+ 13, 7$ $+ 13, 7$ $+ 9, 2$ $+ 9, 2$ $+ 12, 0$ $+ 12, 0$ $+ 11, 2$ $+ 11, 2$ $+ 10, 8$ $+ 10, 8$ $+ 8, 4$ $+ 8, 4$ $+ 16, 0$ $+ 16, 0$	T Protected T T T T T T T T T T	b tube b a b b a b b a a b b b a a b b b a a b b b a b b b b a b b b b a b b b b a b b b b a b b b b b a b	1,9792 1,7483 1,7485 1,5706 1,5724 1,5960 1,5976 1,5799 1,5820 1,5775 1,5798 1,6712 1,6729 1,6519 1,6537	-1,5916 -1,5015 +1,5018 -1,4584 +1,4547 -1,4876 +1,4896 +1,5001 -1,5018 +1,4931 -1,4941 -1,4924 +1,4867 +1,4920 -1,4943	+0, 0287 +0, 0204 +0, 0200 +0, 0066 +0, 0108 +0, 0134 +0, 0134 +0, 0134 +0, 0134 +0, 0132 +0, 0144 +0, 0095 +0, 0182 +0, 0185	0,47 0,29 0,27 0,34 0,32 0,19 0,22 0,30 0,28 0,16 0,20 0,22 0,38 0,38 0,38 0,39	open open

Beside the characteristics shown in Table 1, we are introducing another two ones : 1/we are taking mean value from \mathcal{E} out of a number of series with the markation \mathcal{E}_s :

$$\mathcal{E}_{s} = \sqrt{\frac{\Sigma \varepsilon^{2}}{N}}$$

where N represents number of series, and 2/ for each tube position we are carrying out a range(d), difference between the maximal and minimal value $\oint \Delta$ in different series, and according to that we are calculating:

$$d_{\mathbf{s}} = \frac{\sum d}{n}$$

where \underline{n} (= 14) notes number of tube positions in a series.

The results are indicating that all values are variable in a smaller or bigger extend, clearly speaking about cortain unsteadiness of the optical unity. Beside this general remark, there are some others that are worth of mentioning:

a) It is an important constatation that A_0 is a variable value regardless of the fact whether the tube was protected or not.

In Fig. 1 we can see the tendency of change of A_0 in the function of air temperature. The correlation coefficient between A_0 and air temperature for unprotected tube is +0,16 and for protected tube is + 0,39. If, however, we reject values A_0 out of series 1, 3, 5 and 6 (three measurements by Harin and one by-Teleki - carried

out before the systematical gathering of autocolimational measurements) then for the correlation coefficient between A_0 for unprotected tube and air temperature we are getting a very high value of -0, 83. That A_0 is changing according to the time, being in good correlation with air temperature, is considered as quite real. The fact that the tube protection changes to some extend the character of A_0 , must not be neglected, but the changeability of this value still stays. It is taken as very important because A_0 is a kind of stability predicator of micrometer zero point.

b) Absolute value of \mathcal{X}_0 is very changeable when the tube was not protected, but its value can be well stabilized by the protection of tube. The most striking changes are recorded at the open dome. In that state with protected tube, the changes are strikingly less.

c) With unprotected tube the sign of $\Delta \delta_0$ changes when dome is open. This fact as well as the one under point b) speaks that the measurements effected at the closed dome cannot be taken as characteristical for the cases when the instrument was

in the open. When the tube us protected, the changes of $\Delta \forall$ are small, and when the dome is open thereare no changes of sign.

d) As Table 2 indicates, it is characteristical that values $\Delta = (A_z - A_{zc}) R$ are positive in vicinity of zenith while the negative ones are at bigger zenith distances. It might be taken as a systematical quality that does not change at the tube protection, as well. However, a certain disproportion of data Δ according to the zenith may be noticed - so, this problem requires more attention later-on.

e) Tube protection has caused the reduction of \mathcal{E} in certain series, what meant that the differences of measured A_z were reduced from the calculated ones by the expression (1). \mathcal{E}_s is reduced by cca 40%. The range (d) of obtained data is lessened, as well. It is clearly shown in Table 3. Let us emphasize that the mean values of series from 1. to 21., observed by Paunović-ocular, does not differ much from the data belonging to series from 22. - 45. - observed by Causs-ocular.

f) There is a certain difference of measurements between the order \underline{a} and \underline{b} . It is seen in the Table 3. The tube protection has lessened the difference.

This group of measurements proved that the temperature influences may change qualities of the instrument. On account of that we are

realising that the protection of tube done by aluminium folio acts as a kind of stabilisation.

We insisted on the continuation of these examinations with the aim to get the most precise answer to a number of questions. Because of that we mounted the thermistores to measure temperature variations on the tube. One pair was installed at the tube ends by the micrometer, and the other pair near the objective. Both thermistores in the pairs were placed at the opposite ends of the tube in its vertical section.

Beside that, by the thermistores placed in a stick, we measured air temperature differences among the heights suitable for the position of the objective and the ocular when the tube was directed towards the zenith.

The measurements up to 0,004 C were abled to be carried out in all the three cases. Markation of the thermistore pairs is the following:air in the pavilion I, micrometric part II and objective part III.

Tube	zenithal	Mean va	lue of Δ
rotation direction	distance	Unprotected tube	Protected tube
	+ 90 ⁰	- 0''41	- 0,"42
	+ 60	- 0,21	+ 0,02
	+ 30	+ 0,18	+ 0,21
	0	+ 0,28	+ 0,30
	- 30	+ 0,21	+ 0,15
	- 60	+ 0,08	- 0,10
	- 90	- 0,25	- 0,24
a			
	- 90	- 0,37	- 0,24
	- 60	- 0,21	- 0,06
	- 30	+ 0.11	+ 0,20
	0	+ 0,38	+0,19
	+ 30	+0,27	+0,27
	+ 60	+ 0,05	+ 0,02
	+ 90	- 0,19	- 0,29
	а		<u> </u>
	- 90	- 0,12	- 0,44
	- 60	- 0,05	- 0,04
	- 30	+ 0,19	+ 0,26
	0	+ 0,21	+ 0,22
	+ 30	+ 0,20	+ 0,15
	+ 60	+ 0,03	- 0, 01
	+ 90	- 0,31	- 0,22
b			
	+ 90	- 0,26	- 0,22
	+ 60	- 0,03	- 0,11
	+ 30	+ 0,10	+ 0,10
	0	+ 0,24	+ 0,26
	- 30	+ 0,27	+ 0,29
	- 60	- 0,10	+ 0,01
	- 90	- 0,36	- 0,23

TABLE 2.

TABLE 3.

	Unprotected tube		Protected tube	
	Έs	d _s	Es	d s
Total of series	+ 0,"50	1,'61	+ 0,'29	0;'48
Rotation direction: a	+ 0,56	1,98	+ 0,30	0,52
Rotation direction: b	$\frac{1}{2}$, 43	1,24	+ 0,28	0,44

Number of series	Instru- ment position	Date	Air temperature (in ^o C)	Observer	Tube rotation direction	A ₀ (in R)	do (in R)	ΔΫ́ο (in R)	E (in sec. of arc)
				Unprotec	ted tube				
90.	E	26. XII. 1969	0,0	т	a	2.5129	-1 4518	+0 0069	01/20
91.	\mathbf{E}	**	0,0	T	a	2,5129	-1,4010	+0,0009	+0,32
92.	W	29. XII. 1969.	+0,2	T	b	2,5047	+1 4478	+0,0070	0,31
93.	W	**	+0,2	T	Ď	2,5054	+1 4545	+0,0123	0,27
94.	\mathbf{E}	30. XII. 1969.	+0,2	т	b	2,4999	-1 4531	+0,0083	0,28
95.	E	**	+0,2	Ť	b	2,4995	-1,4519	+0,0104	0,19
96.	E	16.I. 1970.	+7.4	T	a	2,4134	-1, 5140	+0,0087	0,23
97.	w	**	+7.4	T	b	2 4127	+1 5135	$\pm 0,0300$	0,25
98.	E	6. II. 1970.	+7.6	Т	b	2,3610	-1 5332	+0,03-7	0,25
99.	w	**	+7,6	Т	a	2,3609	+1 5309	+0,0401	0,34
100.	w	10.II. 1970.	+7,4	Т	a	2,3405	+1 5240	+0,0420	0,34
101.	W	**	+7,4	т	a	2,3417	+1,5260	+0, 0365	0,25
				Protected	l tube		·····	97. 11. – <u>1. – 1. – 1. – 1. – 1. – 1. – 1</u>	
80.	Е	12, XII, 1969.	+2.6			0 5140	1 4804		
81	w		+2.6	т Т	a h	2,5148	-1,4704	+0,0122	0,27
82.	E	15, XII, 1969.	+2,6	1 T	b	2,5135	+1,4717	+0,0120	0,28
83.	w	11	+2,6	I T	d a	2,5067	-1,4715	+0,0133	0,22
84.	E	16. XII. 1969.	+2,0	т Т	a	2,5060	+1,4734	+0,0108	0,21
85.	w	11	+2.4	I T	a L	2,5060	-1,4726	+0,0094	0,25
86.	E	19. XII 1969	+2 6	T T	D	2,5052	+1,4722	+0,0095	0,26
87.	w	"	+2.6	I T	a	2,4975	-1,4692	+0,0113	0,23
88.	E	22, XII, 1969	-0.4	т Т	a	2,4975	+1,4684	+0,0110	0,24
89.	w		-0.4	т Т	a L	2,5206	-1,4644	+0,0069	0,22
104.	E	22. Π. 1970	+0.3	1 T	D	2,5206	+1,4651	+0,0066	0,26
105.	w		+0.3	T T	D	2,4607	-1,4663	+0,0164	0,21
			.0,0	1	a	2,4596	+1,4682	+0,0137	0,18

TABLE 4.

.

		J.Y.	(in R)		$\mathcal{O}\Delta$ (in sec. of arc)			
Positions	Unprotected tube		Prote	Protected tube		Unprotected tube		ed tube
	E	W	E	W	E	W	Е	W
75-75	-0.0230	-0.0091	-0.0084	-0.0070	-0!'46	-0!'18	-0''17	-0!'14
60-60	- 447	- 385	- 311	- 327	- 71	- 57	- 52	- 56
45-45	- 387	- 347	- 376	- 369	- 42	- 30	- 56	- 54
30-30	- 359	- 408	- 235	- 277	- 22	- 27	- 20	- 29
15-15	- 344	- 315	- 223	- 218	- 08	+ 04	- 12	- 12
0-0	- 420	- 387	- 252	- 219	- 16	- 02	- 14	- 08
345-345	- 192	- 241	- 157	- 167	+ 32	+ 30	+ 07	+ 04
330-330	- 257	- 271	- 68	- 72	+ 16	+ 21	+ 23	+ 22
315-315	- 154	- 230	- 72	- 3	+ 30	+ 21	+ 19	+ 32
300-300	- 207	- 223	+ 27	- 22	+ 08	+ 10	+ 32	+ 21
285-285	- 170	- 251	- 7	- 25	+ 01	- 11	+ 18	+ 14
270-270	- 104	- 131	- 13	+ 37	- 03	- 06	+ 07	+ 17
255-255	-0.0073	-0.0042	+0.0011	-0.0001	-0.15	-0.08	+0.02	0.00
-00 -00		0.001		0.0001	0.10	-0.00	10.04	0.00
SA _{zs}	-0.0257	-0.0256	-0.0135	-0.0133	-0.10	-0.06	-0.05	-0.05
SAzs	0.0257	0.0256	0. 0141	0.0139	0.24	0.19	0.21	0.22
255-255	+0.0074	+0,0095	+0, 0043	+0,0043	+0.15	+0.19	+0, 09	+0.09
270-270	+ 242	+ 413	+ 215	+ 187	+ 26	+ 42	+ 29	+ 25
285-285	+ 399	+ 738	+ 221	+ 234	+ 36	+ 69	+ 17	+ 23
300-300	+ 288	+ 670	+ 147	+ 144	- 04	+ 23	- 09	- 05
315-315	+ 367	+ 749	+ 179	+ 125	- 02	+ 14	- 11	- 16
330-330	+ 335	+ 718	+ 291	+ 226	- 17	- 08	+ 06	00
345-345	+ 332	+ 710	+ 163	+ 146	- 20	- 15	- 22	- 18
0-0	+ 461	+ 717	+ 326	+ 287	+ 08	- 15	- 22 + 12	- 10 1 19
15-15	+ 406	+ 610	+ 951	+ 210	+ 06	- 14	+ 12	T 14
30-30	+ 310	+ 375	+ 230	+ 227	- 00	- 14	+ 03	+ 19
45-45	+ 253	+ 333	+ 199	± 156	- 07	- 30	+ 07	+ 12
60-60	+ 108	+ 991	+ 102 + 19	+ 100	+ 07	- 12	- 01	+ 08
75-75	+0 0111	+0 0222	T 40	+ 4±4 ⊧0 0017	- 01	+ 04	- 05	- 04
10-10	+0.0111	70.0223	+0.0057	+0.0017	+0,22	+0.45	+0.11	+0.03
б _А	+0.0284	+0,0506	+0.0177	+0.0157	+0.06	+0.09	+0.03	+0.04
SAz s	0.0284	0.0506	0.0177	0.0157	0.13	0.24	0.11	0.11

TABLE 5.

3. <u>Autocollimational measurements</u> from the horizon to horizon by 15^o rotation. -

This group of measurements, as well as the former one, included series of measurements in both tube rotation directions. The observati – ons were done when the dome was closed, either with or without the tube protection. The observer was Teleki.

Each day included always two series of measurements as follows: the tube was directed to a certain zenith distance and after $10-15^{\rm m}$ autocolimational reading was recorded. After the following $10-15^{\rm m}$ without any change of the zenith distance, the second autocollimational reading was recorded. These two readings were done either at the same instrument position or at the diverse position, when the instrument, after the first reading, rotated by 180° . Values measured at the ends were separa ted into 2 groups (the first group included the measurements done by the first reading at the mentioned zenith distance) and separately A_0 , χ_0 , $\Delta \chi_0$, \mathcal{E} and Δ were calculated.

The table 4 shows carried out values A_0 , \aleph_0 , $\Delta \aleph_0$ and \mathcal{E} . It is seen that A_0 is changable regardless of the fact whether the tube was protected or not, as well as the dependance of this value on air temperature (in connection with it the jump of A_0 is specially interested in the period between 30. XII 69. and 16. I 70., as well as on 22. XII 69. when the temperature was changed). It may be noticed that \aleph_0 and $\Delta \aleph_0$ are depending on temperature with the unprotected tube and their tranguility at the protected tube. The jump of $\Delta \aleph_0$ of

temperature variations between 30. XII 69. and 16. I 70. was of our special interest. Value \mathcal{E}_{s} with the protected tube (<u>+</u> 0,'24) difers slightly from the one when the protection of tube was not done (<u>+</u> 0,'28).

The mean difference between micrometrical readings at two horizontal tube positions is 2,96R (\approx 59,"2). The most striking changes are in the zenith zone - between 0° - 15° of zenith distance variations are about 0,37R and in the horizon (from 75° to 90° of zenith distance) are 0,05R. This difference was slightly changed when the tube was protected (2,94R), and when the tube was not protected (2,98R), but a better systematication of data was gained when the tube was protected.

By analysing this group of autocollimational measurements the main purpose was to point out the difference in the micrometric readings at the same tube positions (at the same zenith distances). In Table 5, values σA_z are indicated. Those are the differences between the micrometric readings done in the first part of autocollimational measurements and also in the second part, at the sa - me tube position, when the tube was brought into that position from the other direction. 75° , 60° etc., are noting the reading on the vertical graduated circle. 345° marks the zenith, while 75° and 255° of horizontal position (at E instrument position, when the objective is in direction of the south, graduated circle indicates 75°). All values in Table 5 are the averages out of 3 series of the measurements.

Right way is apparent the difference in δ_{A_Z} depending on the direction of the tube rotation towards the requested position. With series whose order of measurements is $75^{\circ} \longrightarrow 255^{\circ} \longrightarrow 75^{\circ}$, differences are almost completely negative and at the order $255^{\circ} \longrightarrow 75^{\circ} \longrightarrow 255^{\circ}$ are always positive, what speaks about equal influence at all times. It means that, if, for example, the measurements are done in E instrument position, when the tube is rotated to a certain zenith distance from the south direction (75°), the autocollimational readings are always smaller than when the tube is rotated from the north direction (255⁰). These differences are not small - with the unprotected tube they reached the average value of 0,05R, too, what is about 1". It can be seen, also, that the tendency of these variations is not changed either with the protected or unprotected tube, but the temperature tube protection brings about a striking reduction of the value \mathcal{O}_{A_z} . In table 5 mean values of $\mathcal{O}_{A_z}(\text{marked } \mathcal{O}_{A_z})$ are given, as well as the mean values of the absolute value of $\mathcal{O}_{A_z}(\text{marked } \mathcal{O}_{A_z})$ ked $|SA_{z}|_{s}$).

The same Table 5 contains values $\sigma \Delta$

too, as the difference of the carried out values Δ in the first and second tube position, at the same zenith distance and in the same series of measu – rements. We see that here the tendency is not so striking as being the case with \mathcal{O}_{A_z} , but the most apparent in the order $75^{\circ} \longrightarrow 255^{\circ} \longrightarrow 75^{\circ}$ is that the transit over zenith brings about certain systematical changes.

Readings by thermistore pairs II and III have given us temperature differences at the two opposite tube ends. For the same tube positions the differences of these values are formed in the same way as with $\mathcal{O} A_z$ and $\mathcal{O} \Delta$ (the first position minus the second position). These values marked \mathcal{O} II and \mathcal{O} III were correlated with the corresponding values $\mathcal{O} A_z$ and $\mathcal{O} \Delta$. Since the influence of both thermistore measurements should be expected, we also effected correlation with their total sums (markation \mathcal{O} (II + III)/ as well as well as with their differences /markation \mathcal{O} (II -III)/. The correlation coefficients (r) are given in Table 6.

			- 255 ⁰	o ^(III-III)		+40	+35		-15	-18
	0,01		→ 75° →	(III+II)		+20	+18		-15	-10
	units of	e	255 ⁰	дш		-32	-34		-08	+14
	r in	cted tub	0	δII		+26	+26		-16	-14
		Prote	255°-> 75	م (III-III)		-63	-67		-74	-77
			750→	ى(III+III)		- 65	1 68		-76	-77
6.				о Шр		-28	-30		-32	-30
ы				δΠ		-64	-67		-76	-76
A B L			► 255 ⁰	م (III-III)	vith δ_{A_Z}	+58	+63	with $\delta \Delta$	-66	-13
Ŧ			→ 75 ⁰ —	م (III+III)	rrelation v	+62	+64	rrelation v	-60	+24
		эе	255 ⁰ -	η Δ	Col	+29	+45	ပါ	+13	+65
		cted tuł		δII		+61	+65		-64	+10
	Unprote	· → 75 ⁰	م(III - III)		-02	+25		-78	-77	
			→ 255 ⁰	(III+II)/		-08	+22		-83	-80
			750-	βШβ		-26	ы Г		-48	-53
				βΠ		ו ני	+27		-81	-77
		Instru-	ment	position		ы	Μ		ы	M

Let us point out that with the unprote-cted tube, δ II reached the maximum of value 0,51 C, and δ III the value of 0911C. With the protected tube the maximal values are reduced 3-4 times. The dominating role belongs to the te-

mperature regime on the micrometric tube part (thermistore II). Since the changes on the thermistore pair III are relatively small, it is very difficult to conclude whether the combination (II + III) or (II-III) is more real.

The correlation coeficients in connection with $\mathcal{O} A_z$ are carrying chiefly the sign of $\mathcal{O} A_z$. The correlation security with the protec-

ted tube is bigger and bigger, what means that the protected tube is less exposed to the disturbing influences then when it is unprotected.

With correlation values in connection with $\delta \Delta$, effects linked with direction of rotation are striking-at $75^{\circ} \rightarrow 255^{\circ} \rightarrow 75^{\circ}$ correlation is very high and in the other case it is very low. The protected tube in this case also give a better picture on systematical influence with clearer uniform tendency.

Two thermistore pairs are unable to show real changes occurring in the tube, which are causing the changes in the autocolimational reading. Still, we may say, with certain security, that the temperature variations on the tube have a great influence on the value of the autocolimational reading. A very big influence comes from the rotation direction of the tube - the tube conducted from one direction "carries" with itself a certain determined grade of the tube flexure, which becomes slightly deformed while the tube passes over the zenith. That "carried" flexure is probably of the temperature origin.

Aluminium folios have greatly reduced the temperature differences on the tube, but they have not eliminated them. It is understandable, as all parts of the micrometre could not be protected by aluminium folios.

The temperature field, where the instrument is placed, suffers changes during the observation. The absolute air temperature changes, but the temperature gradient in it undergoes the most changes. That couses specially sensitive changes in the movable parts of the instrument. The most sensitive part is the tube, being mostly uncovered and whose thin walls posses a small thermal inertion [6]. Change in the temperature regime causes the change of the tube characteristics and may bring about abrupt changes in the size of flexure. Therefore the demand [7] for a very precise mechanical production of a meridian instrument tubes that will be capable to gain symmetry and homogeneity of the tube walls thickness, can by understood as quite justified. Unfortunately, it may be the case that just the Belgrade vertical circle

dissatisfies at that point - we must not forget that this instrument has been produced right after the World War I on account of the War reparation. But, as shown by the previous data, the size of temperature differences is not inconsiderate.

If the tube is very sensitive to the temperature influences, then it should be understood why the majority of the vertical circles cannot give satisfactory results. The observations are done in two instrument positions where the temperature regime in the tube was different, what causes, inevitably deviations that cannot be calculated. If we add to it that with the vertical circles the size of flexure is very changeable [8], than the results of great accuracy cannot be expected from the vertical circle.

It is evident that the changed temperature regime does not influence only the tube but also the micrometer and the objective. The micrometer is neither a symmetrical body nor is the fixing of the objective symmetrical. Let us mention that the objective we posses is fixed by the three screws: when on the vertical gradual circle we read 75° , one of the screws is in the vertical section downwards, while the other two are at the sides above it. This might have influence on autocolimational reading depending on the tube direction - at that point we do not think at a possible rocking of the objective in the frame, but at the change of objective position together with the frame due to changed temperature conditions.

The temperature changes may cause changes in the parts where the tube is linked with the central tube part and where the tubes are linking mutually and also where connection with the micrometer and the frame of objective is created. Accordingly, tightness of linking may be reduced, as that causes already the changes in the size of autocolimational reading, even in the flexure as well.

The size of the temperature gradients is different between the nights and nights either when the dome is opened [6] or closed. Therefore, it is very difficult to effect any comparisons, especially between the data carried out when the dome was opened and closed - it is indicated as well in our experiences explained under 2c.

As far as the disturbing factors are concerned, an emphasis should be given to the influence of the observer. It nas been proved that the presence of the observer beside the instrument is quite sufficient to change the moving thread position more than 0,125,9.

All above explained speaks in contribution of the tube protection, what is naturally very important. It may be granted as acceptable that the temperature factors have caused the noted changes with our autocollimational readings at the same zenith distances (at the same tube positions).

4. <u>Autocollimational measurements</u> through the whole circle with 30° rotation.-

A set of autocollimational measure – ments with 30° rotation has been effected through the whole circle, with an aim to emphasize, as much as possible, the systematical influences. The measurements have been done in both directions, when the tube was covered by aluminium folio and when the dome was closed. $10-15^{\circ}$ massed between two autocollimational readings. Two series of measurements, in two instrument positions, have been carried out in a day. All the measurements have been conducted by Teleki.

There have been 24 series of examinations in the total. One series, as before, enclosed measurements in the first and diverted direction of the tube rotation. Both in E and W instrument positions the equal number of measurements has been effected with the starts 75° and 255° in the both directions. We are giving in the following tables the data representing the mean values of the measurements in E and W instrument positions.

Table 7 contains values ∂A_z (already defined). Under 1 we are marking the first direction of rotation (in direct or retrograde direction) and under 2 we are marking the opposite direction. The value ∂A_z indicates the existance of systematical differences between the autocollimational reading in the same tube position depending on the direction of tube conduction - if the objective is above the horizon, the retrograde direction is always giving bigger autocollimational micrometric readings, but it is quite opposite if the objective is below the horizon. We may notice that this difference is even more important at the appearance of the difference "R-D".

Table 8 contains the difference of the autocollimational readings (marked d*) at those tube positions that mutually differ by 180°. According to it we can see that the smallest deviations are when the zenith distances are 0° and 180°, while the biggest when the tube takes a horizontal posi tion. This undoubtedly points to the tube flexure what is due to the gravitation. It is very important to mention that the autocollimational reading gai ned in the zenith is always bigger from the one gained in the nadir, if the tube is conducted in the direct way. The changes d* for the zenith and the nadir are strikingly bigger if the tube is in retrograde direction of moving. This is proved either by mean values of (d* (marked d*s), as well as the mean absolute value of d_* (marked $|d_*|_{\sigma}$), which contains all measurements.

T A B L E 7.

Direction	Positions	б А _z	Positions	& Az
	75 ⁹ 75	-0, 0239	255 ² 255 ⁰	+0,0100
	45- 45	- 536	225-225	+ 90
le	15- 15	- 463	195-195	+ 238
rac	345-345	- 471	165-165	+ 338
1 O G G	315-315	- 288	135-135	+ 268
etr	285-285	- 92	105-105	+ 80
ž	255-255	- 154	75-75	- 59
5	225-225	- 99	45-45	- 296
an	195-195	+ 13	15-15	- 246
ain	165-165	+ 346	345-345	- 290
t	135-135	+ 301	315-315	- 246
ec	105-105	+ 80	285-285	- 33
dir	75-75	-0, 0005	255- 255	-0,0038
÷	SAzs	-0,0124	SA _{ZS}	+0,0010
	$ SA_{z} _{s}$	0,0237	$ \delta A_z _s$	0,0158
	75 ⁰ 75 ⁰	-0,0124	255 <mark>-</mark> 255 ⁰	+0,0058
	105-105	- 86	285-285	+ 230
	135-135	- 199	315-315	+ 183
ct	165-165	- 334	345-345	+ 306
ire	195-195	- 304	15-15	+ 283
ġ	225-225	- 83	45-45	+ 27
~	255-255	- 8	75-75	+ 5
sur	285-285	+ 169	105-105	- 86
nir	315-315	+ 164	135-135	- 201
e 1	345-345	+ 208	165-165	- 317
ad	15-15	+ 156	195-195	- 188
180	45-45	+ 86	225-225	- 129
etro	75-75	-0,0002	255-255	-0,0038
1. r	δ A,	-0,0028	δA ₂₅	-0, 0007
		0,0148		0,0179

in units of R

ų,

T A B L E 8.

in units of R

.

Direction	Positions	d*	Positions	d*
	75-255 ⁰	-2.9748	255 [°] 75 [°]	+2,9803
	45-225	-2.5789	225- 45	+2.5748
	15-195	-1.4777	195- 15	+1.4792
	345-165	+0.0104	165-345	-0.0140
ect	315-135	+1.5091	135-315	-1.5090
dir	285-105	+2.6018	105-285	-2.5945
1. 0	255-75	+2.9791	75-255	-2.9779
	d*s	+0.0099	d*s	-0.0087
	d* s	2.0188	d* s	2.0185
()	75 ² 255 ⁰	-2.9940	255 ⁹ 75 ⁰	+2.9758
ade	105-285	-2.6190	285-105	+2.6058
50 D	135-315	-1.5680	315-135	+1.5604
tro	165-345	-0.0921	345-165	+0.0768
re	195-15	+1.4301	15-19 5	-1.4308
oi	225-45	+2.5352	45-225	-2.5362
	255-75	+2.9663	75-255	-2.9644
	d*s	-0.0488	d*s	+0.0411
	d* s	2.0292	d* s	2.0215
	0	0.0754	0,50,50	.0.0754
e	10-200	-2.9754	200-70	+2.9754
rad	105-265	-2.0088	285-105	+2.0148
660	130-310	-1.5462	310-130	+1.5498
str	105-345	-0.0712	345-105	+0.0761
re	195-15	+1.4266	15-195	-1.4330
	225-45	+2.5318	45-225	-2.5431
	255-75	+2.9636	75-255	-2.9656
	d*s	-0, 0399	d*s	+0.0392
	d* s	2.0177	d*s	2.0225
	75 ⁰ 255 ⁰	-2.9642	255 [°] 75 [°]	+2,9699
	45-225	-2.5487	225-45	+2.5587
ect	15-195	-1.4726	195-15	+1.4801
ire	345-165	+0.0170	165-345	-0.0138
q	315-135	+1.5099	135-315	-1.5114
2.	285-105	+2.5833	105-285	-2.5832
	255-75	+2.9638	75-255	-2.9701
	d*s	+0.0126	d*s	-0.0100
	d* s	2.0085	d*s	2.0125

TABLE 9.

			in units	of R
Direction	Positions	D	Positions	D
1. direct	$\begin{array}{r} 75^{\circ} & 75^{\circ} \\ 45-105 \\ 15-135 \\ 345-165 \\ 315-195 \\ 285-225 \\ \hline \\ D_8 \\ \end{array}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	255 ⁻² 255 ⁰ 225-285 195-315 165-345 135- 15 105- 45 D _S	$\begin{array}{r} +0.\ 0024 \\ -145 \\ -191 \\ -140 \\ -107 \\ -0.\ 0052 \\ \hline -0.\ 0102 \end{array}$
	Ds	0.0117	Ds	0.0110
2. retrograde	$\begin{array}{r} 75^{\circ} & 75^{\circ} \\ 105- & 45 \\ 135- & 15 \\ 165-345 \\ 195-315 \\ 225-285 \end{array}$	$\begin{array}{rrrr} -0.0277 \\ -& 610 \\ -& 777 \\ -& 921 \\ -& 602 \\ -& 228 \end{array}$	$\begin{array}{r} 0\\ 255-255\\ 285-225\\ 315-195\\ 345-165\\ 15-135\\ 45-105\end{array}$	$\begin{array}{r} +0.\ 0114 \\ + \ 268 \\ + \ 675 \\ + \ 768 \\ + \ 621 \\ + \ 428 \end{array}$
	D ₈ D 8	-0.0569 0.0569	Ds Ds	+0.0479 0.0479
retrograde	$75^{\circ}_{-}75^{\circ}$ 105-45 135-15 165-345 195-315 225-285	-0.0118 - 296 - 502 - 712 - 694 -0.0474	255 ⁻ 255 ⁰ 285-225 315-195 345-165 15-135 45-105	+0.0098 + 380 + 602 + 761 + 566 +0.0337
-1.	D _s D s	-0.0466 0.0466	D _s D _s	+0.0457 0.0457
direct	75 - 75 - 75 - 75 - 75 - 75 - 105 - 135 - 135 - 345 - 165 - 315 - 195 - 285 - 225	$\begin{array}{r} -0.\ 0004 \\ + \ 124 \\ + \ 147 \\ + \ 170 \\ + \ 226 \\ +0.\ 0222 \end{array}$	255 ⁻² 255 ⁰ 225-285 195-315 165-345 135- 15 105- 45	$\begin{array}{rrrr} -0.\ 0002 \\ -\ 21 \\ -\ 231 \\ -\ 138 \\ -\ 82 \\ -0.\ 0224 \end{array}$
2	D _s D _s	+0.0148	D _s D _s	-0.0116 0.0116

Table 9 contains differences of autocollimational reading (marked D) at those tube posi – tions that are symmetrical according to the horizon (say objective 30° above and below the horizon). A_s a rule, it appears that the autocollimational read – ings are always bigger if the objective tube part is above the horizon. This table contains also the characteristics that we emphasized in Table 8.

Once more, this group of measurements indicated that there is an existence of a systematical difference depending on the direction to where the tube was directed into a certain position.

The autocollimational examinations through the whole circle on the meridian circle in Lunds were carried out by Hansson [5]. In the table 4 of his paper, the existance of the difference among the autocollimational readings depending on conducted direction to a certain zenith distance was indicated. The mean absolute value of the difference data in direct or retrograde direction was 4,5 (μ what,according to [10], of the angle value, came to 0,40. The mean value of all $| S A_{z} |_{s}$ in our table 7 has resulted 0,"36. Therefore, size of this difference with both instruments is very similar. According to [5] these differences must be caused by unsatisfactory mechanical qualities of the tube but not of the settings of the lens.

Let us remark that the miximal variation of the autocollimational readings at the rotation of the tube through the whole circle, in Lunds was 36" and in Beograd 60", what is strikingly bigger.

5. Autocollimational measurements of the fictive stars at $z = 30^{\circ}$. – Since in our obser – vations of stars a systematical difference between data obtained through south and north stars observations appeared, we tried to see these differences by autocollimational measurements, immitating so the usual observational method of stars on the vertical circles. The autocollimational measurements of the fictive stars was done at 30° zenith distance south and north from the zenith in two instrument positions. Being customary at the star observations, the tube conduction was always from different directions at two instrument positions. The observer : Teleki. Each series of measurements included 12 fictive stars, 6 from the south and 6 from the north and they followed alternatively. The tube was with and without protection and the dome was temporary open.

We take the equation (1) in this form:

$$A_{z} = A_{o} + \chi_{o} \sin z + \Delta \chi_{o} \cos z \quad (4)$$

The double sign before of X indicates the dependence on position of the instrument : at $E X_0$ is a negative value, at W it is a positive value.

Depending on the instrument position and direction of rotation, for $z=\pm30^{\circ}$, out of (4) the following combinations are emerging:

	direction							
Е,	direct,	$z = +30^{\circ}$		A _{=EDS} =A	$ \delta_{sin} 30^{\circ}$	- DY cos	30^{O}	(5)
E,	direct,	z=-300	:	$A_{z EDN}^{Z EDS} = A_{o}^{O}$	+ $\delta_0^0 \sin 30^0$	$-\Delta \chi_0^0 \cos$	30 ⁰	(6)
E,	retrograde,	z=+30 ⁰	:	A _{zERS} =A _o	$- \chi_{o} \sin 30^{\circ}$	$+\Delta \chi_0 \cos$	30 ⁰	(7)
E,	retrograde,	z=-30 ⁰	:	A _{zERN} =A _o	+ $\aleph_0 \sin 30^\circ$	$+\Delta \delta_0 \cos$	30 ⁰	(8)
W,	direct,	$z = +30^{0}$:	A _{zWDS} =A _o	+ $\chi_{0} \sin 30^{\circ}$	$-\Delta \aleph_{o} \cos \theta$	30 ⁰	(9)
W,	direct,	z=-30 ⁰	:	A _{zWDN} =A _o	$- \chi_0 \sin 30^{\circ}$	$-\Delta \delta_{0} \cos$	30°	(10)
W,	retrograde,	z=+30 ⁰	:	A _{zWRS} =A _o	+ $\chi_{o} \sin 30^{\circ}$	$+\Delta \delta_0 \cos$	30 ⁰	(11)
W,	retrograde,	$z = -30^{\circ}$:	A WRN=A	$-\chi_0 \sin 30^0$	$+\Delta \chi \cos$	30 ⁰	(12)

Indexes of A_z are marking the instru ment position (E, W), direction of the tube rotation

(D-direct, R-retrograde) and the star position (S--south, N-north).

In the first group of our measurements north fictive stars were observed in the order ER--WD, while the south stars in the order WR-ED. Out of the equations (8) and (10), respectively (11) and (5) follow :

$$\Delta \mathbf{A}_{zEWN} = \mathbf{A}_{zERN} - \mathbf{A}_{zWDN} = 2 \, \mathbf{\chi}_{o} \, \sin \, 30^{\circ} + 2 \, \Delta \mathbf{\chi}_{o} \, \cos \, 30^{\circ} \tag{13}$$

$$\Delta A_{zWES} = A_{zWRS} - A_{zWDS} = 2 \chi_{o} \sin 30^{\circ} + 2 \Delta \chi_{o} \cos 30^{\circ}$$
(14)

and from here

$$\Delta A_{zEWN} - \Delta A_{zWES} = \emptyset$$
 (15)

In the second group of the measurements the north stars were observed in the order WD-ER, while the south order was ED-WR. That brought to:

$$\Delta A_{zWEN} = A_{zWDN} - A_{zERN} = -2 \chi_0 \sin 30^0 - 2 \Delta \chi_0 \cos 30^0$$
(16)

 $\Delta A_{zEWS} = A_{zEDS} - A_{zWRS} = -2 \chi_{o} \sin 30^{\circ} - 2\Delta \chi_{o} \cos 30^{\circ}$ (17)and from here:

$$\Delta A_{zWEN} - \Delta A_{zEWS} = \emptyset$$
 (18)

Accordingly, if we accept the equation (1), it would come to the value (13) - (18). Our autocollimational measurements of the fictive stars at $z = +30^{\circ}$, however, cannot confirm the conclusions (15) and (18). We are giving a special emphasis on this fact.

In the first group of measurements the differences of autocollimational measurements were always positive as indicated in equations (13) and (14). But the differences ΔA_{zEWN} and ΔA_{ways} in our measurements diverse to zero. We obtained:

$$\Delta A_{zEWN} - \Delta A_{zWES} = (A_{zERN} - A_{zWDN}) - (A_{zWRS} - A_{zEDS}) = - (A_{zWDN} - A_{zERN}) - (A_{zWRS} - A_{zEDS}) = p$$

respectively

$$(A_{zWDN} - A_{zERN}) + (A_{zWRS} - A_{zEDS}) = -p$$
(19)

The second group of measurements gi ves the expression (19) too.

The table 10 contains the basic data from these measurements. "Vertical temperature gradient" is the mean value of air temperature differences measured by the thermistore pair I. ΔA_s signs the mean value of all ΔA_{zE} and ΔA_{zW}

in one series of the measurements, and μ its mean

error. r is correlation coefficient between the individual ΔA_{π} and indications of separate thermistores.

Maximal changes of differences with unprotected tube, indicated by II thermistore is 0.16. and III 0,011 C. When the tube is protected II gives value 0,05, and III 0,02 C, what is conspicuously smaller.

With the unprotected tube ΔA_s is changeable and it veries in wide limits, while, on the contrary, the protected tube brings about from evening to evening conspicuously smaller changes of these values. The values (4 indicate to the fact that the protection of tube reduces considerably dispersion of value $\,\Delta\,\,A_{\rm Z}\,$ in the same series (during a night) of measurements. Their changes are relatively the smallest at the open dome. If the tube has not been protected, the changes of separate values ΔA_{π} are correlating well with the corresponding values in the combination of thermistore data (II-III) - the only exception is the measurement done on 19.170., when, however, a negative temperature gradient was in the pavilion. The value r, at the protected tube, does not show much of ony striking tendency.

The value p, except only in one case, when was practically zero, is always a positive value. The question is - what is this fact pointing to? It shows that in the equation (1) the value A_0 is changable and not constant as it was originally supposed. Or, another possibility, that (1) is not real and does not indicate the real phisical state of our instrument (it might be necessary to form another, new, equation which will correspond to our instrument, or, the equation (1) should undergo certain modification).

If A_0 represents a changeable value - if the change of Ao is existing between the measurements effected from evening to evening (as already indicated) but, also, in short periods of time in two tubes positions (probably caused by diverse temperature influences on the tube) - it may be unders tood that micrometric zero point is changed actually. This statement is very important as that means that at the calculation of latitude or declination out of the stars observation it cannot be supposed that micrometric zero point in two instrument positions remains unchanged. In case the micrometric zero point is changeable, in calculations of zenith distance that brings about the following correction:

with north stars:
$$\Delta z_N = \frac{1}{2} (M_{OW} - M_{OE}) R$$
 (20)

with south stars: $\Delta z_s = \frac{1}{2} (M_{OE} - M_{OW})_S R$ (21) where M and M are micrometric zero points in E respectively W position of instrument. Out of (20) and (21) we may obtain:

 $\Delta z_{N}^{-}\Delta z_{S}^{-} = \frac{1}{2} \left[(M_{OW}^{-} M_{OE}^{-})_{N}^{-} (M_{OE}^{-} M_{OW}^{-})_{S} \right] R$ respectively

$$\Delta z_{N}^{-} \Delta z_{S}^{-} \frac{1}{2} \left[(M_{OW}^{-} M_{OE}^{-})_{N}^{+} (M_{OW}^{-} M_{OE}^{-})_{S} \right] R (22)$$

At the supposition of the changeability of the micrometric zero point, the value in bracket in (22) may be equalized with (19), what brings us to:

$$\Delta z_{N} - \Delta z_{S} = -\frac{1}{2} p R \qquad (23)$$

Since \underline{p} is practically always a positive number, it means that Δz_N is always smaller than Δz_S . Therefore, if the micrometric zero point is movable, than we could add to the latitude of the south stars more than it may be reduced from the latitude carried out from the north stars. According to that it is pointed to the possibility of existance of the systematical difference between latitudes carried out from the north and south stars observati ons just in the way shown with the results in [2].

The value \underline{p} is not constant. This is concluded on the grounds of analysis from the previous autocollimational measurements as well as from some new ones. Autocollimational measurements at various zenith distances have been analysed so that the difference of autocollimational readings was taken in consideration when the tube was in the zenith and also in the determined zenith distance (therefore it concerns the difference $A_{z=0} - A_{z=0}$). The absolute values of these differences indicated to the existance of deviation depending on the fact whether the tube was directed towards the south or north and that the same was chiefly of a systematical character. The difference of the absolute values $(A_{-} - A_{-})$ at the same zenith distances towards north and south (if the sign is + the north values is bigger) will be marked by $d_1^{}$. At the 15^0 tube rotation, and E instrument position, at $z=15^{\circ}$ d₁ is -0,0020R, at z=90^o about -0,0500R (=1"). In \overline{Wpo} sition, those values are nearly alike as in E position, but with sign +, speaking about only one systematical influence. - From the measurements through the whole circle, with 30⁰ rotation, is following chiefly systematical influence, as well, but the most striking is the change of value d_1 in the function from the tubes rotation direction - the differences d₁ are biger when the retrograde movement is in action.

Values d₁ are not constant, but very changeable. This has been ascertained by the measurements carried out by M. Mijatov. In E position, the tube has been continously moved accross

	T A B	L E 10.					ΔA_{s}	$\sqrt{\mu}$ i p in unit r in unit	s of R s of 0.01	
date	AIF temp.	Vert. temp. gradient	$\Delta \mathbf{A}_{\mathbf{s}}$	ľ	d	$r/\Pi/r$	r/m/	r/II + III/	r/II - III /	Dome
	(in ^o C)	(in ^o C/2, 5m)		5						
					Unprotect	ed tube				
15. X. 1969.	+14.7	+0.9	1.5058	+0.0253	+0.0139	+47	+86	+75	- 62	
16. X. 1969.	+13.4	+0.1	1.4074	- 819	+ 248	-84	+68	-28	-80	open
19. I.1970.	+ 0.2	-0.1	1.4608	256	+ 40	+10	+34	+17	+01	ı
24. I.1970.	- 0.6	+0.3	1.4693	554	+ 152	-92	+49	-80	-90	
27. J. 1970.	+ 2.6	>+2.0	1.4807	169	ני ו	-59	+26	00	-82	
18.III. 1970.	+ 5.8	>+2.0	1.4975	345	+ 21	-12	+52	+23	-48	
20.Ш. 1970.	+ 5.3	+1.5	1.4903	+0.0492	+0.0217	-81	06+	+46	-89	
					Protected	tube				
21. X. 1969.	+13.6	+1.3	1.4879	+0.0281	+0.0020	+11	00	+07	+14	
22. X. 1969.	+10.8	-0.4	1.4792	399	+ 55	-35	-31	-43	-17	open
5.XI.1969.	+12.4	+1.5	1.4944	207	+ 47	+16	+11	+23	+08	I
18.111.1970.	+ 5.9	>+2.0	1.4802	+0.0150	+0.0002	+17	-53	-23	+40	

F

the arc from 120° , from and to 60° of the zenith distances in both directions. The main purpose has been to examine the behaviour of the autocollimational measurements in the zenith zone, where the tube was been rotated by 2° . Table 11 is indicating the obtained values of d_1 , their mean value (d_{1s}) and the mean absolute value $(|d_1|_s)$, as well

as the correlation coefficients \underline{r} among the values d_1 and corresponding thermistore indications. The difference among the measurements done on 9. IV and 10. IV was only because on the other day the observations were done without the tube dew cap. The dome was closed, the tube was without protection.

TABLE 11.

				in units of R
zonithal	9.	April 1970.	10. Ap	oril 1970.
distance	I	Direction	Dire	ection
	Direct	retrograde	direct	retrograde
60 ⁰	-0.0503	+0.0025	+0.0186	-0.0192
50	- 375	+ 192	- 174	- 210
40	- 236	+ 168	- 509	- 65
30	- 174	+ 508	- 412	+ 80
20	- 22	+ 613	- 110	+ 288
10	- 90	+ 360	- 212	+ 307
8	+ 47	+ 555	+ 96	+ 145
6	+ 272	+ 312	- 104	+ 42
4	+ 435	+ 437	- 127	+ 132
2	+0.0332	+0.0275	-0.0232	-0.0097
d _{1s}	-0.0031	+0.0344	-0.0160	-0.0043
^d 1 s	0.0249	0.0344	0.0216	0.0156
r(II)	+ 0.97	+ 0.52	+ 0.35	+ 0.49
r(III)	- 0.95	- 0.27	- 0.17	- 0.53
r(II + III)	+ 0.97	+ 0.57	+ 0.58	+ 0.33
r(II – III)	+ 0.97	+ 0.47	+ 0.27	+ 0.51

The results are showing variability of the data d_1 . It is seen that the maximal influence is not in great extend dependent on the tube zenith distance. A relatively good correlation with temperature changes is apparent, being registered on thermistores.

Observational conditions at autocollimational measurements and the observations of stars are different and therefore it would be impossible to give a comparison of numerical data. Our pur – pose was only to point out that the autocollimatio – nal measurements were confirming the existance of difference at the same zenith distances depen – ding on the fact whether the tube was directed to – wards the north or south what may bring about changes in the latitude values just in the way we have already established.

6. Other examinations. - A connection among the variations of the autocollimation readings and the changes of thermistore indications near the objective (III thermistore pair), has been searched. The tube was in the horizontal position, and autocollimation and thermistores were read every 2^m On 24th September 1969. two series of measurements were carried out. In the first, that lasted 26^m, the change of autocollimation was followed, accordingly it was obtained that the correlation coefficient was r=+0,55. The second series lasted 46^m, but in the middle of that interval the dome was closed. That closing brought about considerable changes of values, while for the correlation coeficient, for the whole series, the value of +0,90 was obtained. According to that there was

a high correlation with indication of III thermistore pair and in the same way as percieved with the unprotected tube in table 6 and 10. A_s natural it appeared that a special care should be paid to the question of the objective position.

With the unprotected tube and closed dome, a number of times the tube was directed to $z = +45^{\circ}$ (south) starting always with the tube from the zenith or from the horizon, either with careful or listless conduction. The following results were obtained:

	a) from the zenith to $z = +45^{\circ}$	b) from the horizon to $z = +45^{\circ}$	Difference a - b
by careful tube conduction	23, 3698	23, 3635	+ 0,0063
by listless tube conduction	23,3753	23, 3657	+ 0,0096

The above clearly indicates the existence of difference depending on the direction of the tube conduction, as well as how carefully we are conducting the tube to the determined position. In any way is evident that the careful conduction is causing a smaller number of the systematical deviations.

7. <u>Conclusion</u>. - These examinations are indicating that the characteristics of the optical and mechanical tube unity of this instrument are chan geable, in the function of the temperature factors mostly, and that these changes are causing considerate influences on the observational values. The tube protection does not eliminated these disturbances but it reduces their influence of accidental character what is, after all, very important, and it confirms the necessity for the tube protection. The autocollimational measurements are justifying the possibility of the existance of the systematical differences in the latitudes obtained from the south and north stars observations.

The newest observations of stars when the tube protection was effected by the aluminium folios, showed that the difference between the north and south stars latitudes was still existing. The change in accordance with the prevous condition is the fact that with the protected tube the dispersion of data is lessened. Therefore, that tendency is the same as the one with the autocollimational measu – rements. The above explanation points out the fact that certain corrections have to be done on the Belgrade vertical circles what does not mean only the stabilisation of axes, as mentioned in [2], but also it requires rectification of the tubes imperfec – tness as regards the optical and mechanical symmetry – tems which are causing considerate disturbances.

The fixing of the parts and mechanical quality of the tube should be also examined. Only after elimination of these drawbacks, the tube and its parts should get a good protection against the outer temperature disturbing factors (experiences given in [6] are chiefly used for this isolation).

After these important technical check--ups have been completed and the corrections do ne, new observations of stars should be carried out (with new autocollimational measurements al so) and only then we would be able to judge whether the Belgrade large vertical circle is capable for qualitative observations of stars by the absolute method, or even with a relative method. If it is the case, then it would be obligatory to adhere to the modernisation of the observations of stars and circle readings - being certainly the second part of the previously mentioned request.

Besides Dr. A. S. Harrin, I wish to thank also to Mr. M. Mijatov for the useful advices, to Mrs. B. Kubičela for his cooperation at the examinations and calculations, and Miss D. Balaban for the translation of this paper.

June 1970.

Summary:

By the autocollimational method, the stability of the tube's optical and mechanical unity of the Belgrade large vertical circle has been examined under various conditions. These examinations indicated that the general charactheristics of the tube are changeable, in the function of the temperature factors chiefly, and that the same may have a great influence on the observational values. The real existance of differences in the observational data of north and south stars has been established, being pointed out already in $\begin{bmatrix} 2 \end{bmatrix}$.

References

- (1) G. Teleki, Publ. Obs. astr. Beograd, 14, 1968.
 pp. 168-179.
- (2) G.Teleki M.Mijatov, Trudy 18. astrometr. Konf. SSSR (in press).
- (3) A.S. Harin, Trudy 18. astrometr.Konf.SSSR (in press).
- (4) A. S. Harin, Astrofizika i Astronomija, Kiev,7, 1969, pp. 74-81.
- (5) N. Hansson, Ark. Astr., 3, 13, 1962, pp. 137-154.

- (6) N. N. Pavlov, Astr. Zu., XXX, 1, 1953, p. 87.
- (7) C.B. Watts, Telescopes, Ed. G. Kuiper-B. Middlehurst, The University of Chicago Press, 1960, p. 80.
- (8) M.S.Zverev, Uspehi astronomičeskih nauk,
 V, 1950, pp. 46-48.
- (9) G.van Herk, Bull. astr. Inst. Netherl., XIV, 486, 1958, pp. 155-160.
- (10) A. Reiz-N. Hansson, Novye instrumenty i metody v meridiannoj astrometrii, Moskva--Leningrad, 1959, p. 62.

OBSERVATIONS DES PETITES PLANETES A L'OBSERVATOIRE ASTRONOMIQUE DE BELGRADE EN 1967, 1968 ET 1969

par D. Olević

On donne ici les positions précises des petites planètes plus brillants au cours de 1967(28), 1968 (52) et 1969 (55) observées au Zeiss astrog raphe 160/800 mm de Belgrade.

Nous avons utilisé les Astro Platten Agfa et ORWO en 1967 - 1968 et les plaques Gevaert en 1969. Le temps d'utilisation des plaques était surpassé pour quelques plaques, ce qui produit la difficulté au cours de mesures. Nous avons faits les mesures à la machine d'Askania dans les deux positions de la plaque qui diférrent de 180°.

Deux tableaux contiennent:

- I: Numero d'ordre, l'époque d'observation, l'assension droit, la declinaison, log du facteur parallactique en d et d et 0-C;
- II: Numero d'ordre, nombre du cliché, l'étoiles de repères (catalogue BD ou l'autre), les dépendences.

TABLEAU II

N	No. Cl.	BD	Yal. vol.	Dépendences
1.	100/67	$+17^{0}1882$	18	0.392 851
		+16 1770	11	. 414. 611
		+16 1779	R	.192 538
2.	102/67	+17 ⁰ 1882	18	0.392 836
	0	+16 1770	**	.414 885
		+16 1779	**	.192 279
3.	107/67	+1701882	18	0.209 694
	,	+16 1770	11	.520 657
		+17 1896	11	.269 648
4.	10/67	- 2 ⁰ 5883	17	0.357 801
		- 4 5833	11	.326 009
		- 3 5592	11	316 190

5.	14/67	- 4 ⁰ 5815	17	0.368 252
	/	- 3 5577	11	.388 112
		- 4 5837	"	.243 635
6.	21/67	- 5 ⁰ 5870	17	0.411 273
		- 5 5885	11	.316 994
		- 4 5793	"	.271 734
7.	23/67	- 6 ⁰ 6075	17	0.262 716
		- 4 5775	11	.384 824
		- 5 5885	**	.352 459
8.	31/67	- 4 ⁰ 5759	17	0.499 944
		- 6 6075	**	.344 906
		- 5 5880	**	.155 150
9.	38/67	- 4 ⁰ 5716	17	0.261 087
		- 7 5839	16.	.366 185
		- 5 5866	17	.372 719
10.	50/67	- 5 ⁰ 5820	17	0.318 213
		- 6 6052	16	.413 693
		- 5 5855	17	.268 094
11.	54/67	- 5 ⁰ 5820	17	0.290 793
		- 6 6052	16	.408 338
		- 5 5855	17	.300 870
12.	78/67	$+22^{0}1764$	25	0.354 919
		+20 1913	**	.364 872
		+21 1707	11	.280 209
13.	98/67	+22 ⁰ 1780	25	0.223 488
		+21 1693	**	.435 889
		+21 1707	"	.340 623
14.	105/67	$+21^{0}1689$	25	0.430 434
		+22 1780	11	.320 006
		+21 1707	**	.249 560
	40/05	90 = 69 1	17	0 306 609
15.	40/07	- 3 3031	11	447 288
		- 4 0010 9 5661	11	246 102
		= a auor		

No	No. Cl.	BD	Yal.vol.	Dépendences
		I	1	
16.	34/67	+ 4 ⁰ 327	22	0.258 834
		+ 4 340	20	.324 979
		+ 3 273	11	.416 181
17.	29/67	+24 ⁰ 503	25	0.412 173
		+23 473	"	.269 314
		+25 580	24	.318 512
18.	37/67	+24 ⁰ 506	25	0.399 304
		+24 512	11	.255 702
		+25 565	24	.344 987
19.	45/67	+24 ⁰ 490	25	0.357 186
		+23 462	11	.339 619
		+24 506	**	.303 194
20.	65/67	+21° 422	25	0.404 923
		+22 466	11	.348 590
		+20 539	**	.246 486
21.	66/67	+21° 422	25	0.412 275
		+22 466	**	. 342 284
		+20 539	"	. 245 441
22.	84/67	+18 ⁰ 376	18	0.252 409
		+18 383	"	. 424 157
		+18 391	"	.323 434
23.	86/67	+18 ⁰ 376	18	0.269 177
		+18 383	**	.404 175
		+18 391	**	.326 648
24.	91/67	+17 ⁰ 457	18	0.280 086
		+18 376	11	.318 304
		+18 383	"	.401 610
25.	94/67	+18 ⁰ 370	18	0.212 627
		+17 457	**	.308 627
		+18 376	tt	.478 7-6
26.	93/67	+29 ⁰ 742	24	0.260 882
		+30 732	11	.389 886
		+29 750	**	.349 232
27.	96/67	+30° 713	24	0.405 746
		+30 732	**	.238 939
		+29 750	**	.355 315
28.	16/67	- 1 ⁰ 4336	21	0.358 882
		- 1 4341	**	.337 686
		- 2 5826	17	303 432

TABLEAUI

N	P	Planète	1967	TU	d (:	1950)	δ	(1950)	(p_△)	(p _δ ∆)	(0 -	C)
1.	11	Parthenope	nov.	28.12609	8 ^h 33 ^r	ⁿ 53. ⁸ 491	+16	°51' 42!'5 6	8.489	0.612	0. ^m 0	0'
2.			nov.	28.15803	8 33	53.463	+16	51 42.56	9.098	0.619	0.0	0
3.			dec.	1,11742	8 34	5.699	+16	53 46.63	8.461	0.611	0.0	0
4.	30	Urania	sep.	3.97337	23 7	9.642	- 3	8 36.63	8.676	0.812	-2.8	-16
5.			sep.	5.97545	23 5	19.319	- 3	17 29.22	8.847	0.813	-2.8	-15
6.			sep.	21.95426	22 50	56.260	- 4	31 5.05	9.183	0.819	-2.8	-16
7.			sep.	23,92185	22 49	22.111	- 4	39 31.69	8.942	0.822	-2.7	-15
8.			sep.	27.90494	22 46	24.482	- 4	55 34 .81	8.864	0.825	-2.6	-15
9.			okt.	6.83791	22 41	13.302	- 5	24 56.14	8.490n	0.828	-2.5	-14
10.			okt.	23.81115	22 38	9.000	- 5	46 5.09	8.517	0.830	-2.2	-13
11.			okt.	25.80281	22 38	24.287	- 5	45 17.92	8.395	0.830	-2.2	-13
12.	40	Harmonia	nov.	16.10209	745	47.156	+21	0 27.43	8.565n	0.547	0. 0	0
13.			nov.	28.08755	7 47	2.006	+21	19 34.4 8	8.132	0.541	0.0	0
14.			dec.	1.07539	7 46	19.691	+21	29 56.27	7.370	0.538	0.0	0
15.	4 8	Doris	okt.	6.89624	23 26	34.256	- 2	3 5 0.83	8.664	0.809	-0.1	- 1
16.	201	Penelope	sep.	30.01709	1 56	16.882	+ 4	50 15.54	8.618	0.749	+0.5	+ 1
17.	230	Athamantis	sep.	26.06154	3 31	0.983	+25	6 43.15	8. 677n	0.469	+1.9	+ 2
18.			sep.	30.12230	3 31	15.5 3 6	+24	59 35.12	9.195	0.492	+1. 8	+ 2
19.			okt.	14.04311	3 27	48.665	+24	11 10.88	8.677	0.488	+2.0	+ 2
20.			nov.	2.95097	3 13	5.651	+21	57 15.41	8. 487n	0.530	+2.2	+ 3
21.			nov.	2.98647	3 13	3.619	+21	56 55.94	8.843	0.533	+2.2	+ 3
22.			nov.	20.86251	2 56	1.739	+19	12 53.49	9.023n	0.583	+2.1	+ 3
23.			nov.	20.90765	2 55	59.080	+19	12 25.94	8.279	0.576	+2.1	+ 3
24.			nov.	22.92136	2 54	13.601	+18	53 33.50	8,876	0.583	+2.1	+ 3
25.			nov.	24.90290	2 52	33.742	+18	35 14.6 8	8.628	0.586	+2.2	+ 3
26.	349	Dembowska	nov.	22.97883	4 48	39.049	+30	6 33.06	8.219	0.344	+0.2	0
27.			nov.	24.95759	4 46	42.342	+30	9 31.94	8.434n	0.342	+0. 2	0
28.	419	Aurelia	sep.	7.94732	22 40	53.805	- 1	14 16.31	8.743	0.800	-0.2	- 8

TABLEAUI

NO	Pl	anète	1968	TU	of (1950)	${\mathcal S}_{\ (1950)}$	(p∆,)	(p Δ _δ)	(0- C)	
1	1	Ceres	mart	24, 04367	$14^{h}26^{m}43.732$	-0° 6'48!'42	7.905	0.790	-0.21	+0!'3
2	-	CCICB	mart	27 01418	14 25 8,981	+ 0 4 16.03	8.652n	0.789	-0.12	-0.5
3			apr.	1.00447	14 22 2.851	+ 0 22 46.99	8. 045n	0.787	-0.03	-2.9
4.			apr.	18, 96141	14 7 34.392	+ 1 18 41.48	8.123	0.780	-0.21	+1.8
5.			apr.	23, 93954	14 3 7.618	+ 1 28 19.69	6.386n	0.779	-0.19	+0.1
6.	2	Pallas	feb.	20.01352	11 47 56.328	- 6 6 20.46	8.290n	0.738	-0.66	-3.5
7.	_		mart	23, 94682	11 27 10.033	+ 7 5 40.65	8.905	0.729	-0.57	-2.4
8.			mart	26.94560	11 25 21.145	+ 3 14 1.01	9.008	0.719	-0.67	-3.2
9.			apr.	18.88991	$11 \ 17 \ 29.462$	+15 2 23.67	9.137	0.645	-0.73	-3.3
10.	3	Juno	mart	24.08361	14 50 32.559	- 4 21 43.19	8.853	0.792	-0.20	-0.2
11.			mart	27.07789	14 49 14.750	- 4 1 19.62	8.922	0.818	+0.01	+1.3
12.			mart	30.03709	14 47 47.481	- 3 40 47.29	7.653n	0.817	-0.01	-0.5
13.			apr.	18.99685	14 34 29.496	- 1 20 22.28	8.757	0.800	-0.20	+0.7
14.			apr.	23.95898	14 30 34.988	- 0 47 52.77	6.987	0.796	-0.16	-1.4
15.			maj	3.92261	14 22 37.126	+ 0 10 13.93	7. 922n	0.789	-0.15	-1.2
16.	4	Vesta	dec.	·7.79658	1 26 21.911	- 0 30 29.55	8.220	0.794	+0.09	+0.7
17.			dec.	10.80353	1 26 16.674	- 0 17 14.10	8.752	0.793	+0.503	+0!'3
18.	6	Hebe	jun	9.01667	18 48 41.230	- 5 22 56.73	8.115	0.828	0 ^m 0	0'
19.			jun	26.93365	18 33 10.454	- 6 14 28.73	8.677n	0.833	0.0	0
20.	10	Hygie	avg.	6.04850	0 29 4.184	+ 8 8 0.73	9.027n	0.719	+0.1	-2
21.	11	Parthenope	feb.	5.90279	7 46 52.548	+20 49 35.56	8.542	0.549	0.0	0
22.			feb.	19.87778	7 36 55.213	+21 36 8.61	8.938	0.541	0.0	0
23.	13	Egeria	mart	23.98657	13 35 24.106	+ 5 43 22.24	8.687n	0.742	0.0	0
24.			mart	26.972 3 4	13 3 2 32. 986	+ 4 46 26.00	8.77 3 n	0.742	0.0	0
25.			mart	29.97321	13 29 32.638	+ 4 48 49.15	8. 478n	0.750	0.0	0
26.			mart	31.98294	13 27 27.983	+ 4 49 55.51	8.139	0.750	0.0	0
27.			apr.	18.93363	13 8 16 .278	+ 4 36 59.60	8.684	0.752	0.0	0
28.			maj	3.86665	12 54 45.379	+ 3 48 25.58	7.653	0.759	0.0	0
29.	15	Eunomia	nov.	1.02244	4 19 29.540	+38 35 44.69	8.578	9.968	0.0	0
30.	16	Psyche	maj	3.94866	14 58 41.450		7.756	0.868	+0.2	+2
31.	21	Lutetia	teb.	19.97013	10 2 59.666	+16 36 2,26	8.780	0.010	-0.3	0
32			feb.	22, 97880	$10^{h} 0^{m} 15,455$	+16 ⁰ 52' 7''86	9.044	0.614	-0.3	0'
33.	22	Kaliona	mart	23, 92064	11 0 42, 595	+27 37 41.85	8,827	0.414	0.0	õ
34.		F	mart	26.91140	10 58 31.686	+27 36 19.31	8,835	0.415	0.0	0
35.			apr.	24. 83919	10 47 14.856	+25 49 11.29	9.040	0.462	0.0	0
36.	39	Laeticia	jun	9.05538	19 23 0.080	- 8 40 56.06	8.721	0.847	-1.4	+4
37.	40	Harmonia	feb.	5.85928	6 48 17.921	+25 28 45.34	8.358	0.459	0.0	0

		1 +	+ 1	+1	0	0	0	0	0	4 +	0	+3	+2	+	0	0	
	(O-C)	-0.3	-0.2	-0.2	+0.2	+0.2	0.0	+0.3	+0.3	+0.5	0.0	-0.9	-2.3	0.0	0.0	0.0	
	(β Δ q)	0.796	0.710	0.709	0.859	0.850	U. 857	0.877	0.842	0.828	0.760	0.468	0.661	0.608	0.640	0.601	
	(7⁰∇ d)	8.792	8.610	7.940	8.051	8.726	8.812	8.691n	8. 635	8.554n	7.464n	8.835	8.020	8.887	8.171n	8. 705n	
A U 1	S (1950)	- 0 51 26.70	+ 8 50 34.26	+ 8 59 0.65	-10 38 33.21	- 9 13 2.03	-10 35.25.09	-10 40 57.38	- 7 40 26.43	- 5 36 8.71	+ 3 43 54.79	+25 15 16.73	+13 11 4.71	+17 16 37.46	+14 50 20.32	+17 40 15.17	
ABLE	ok (1950)	11 6 31.113	2 32 51.176	2 30 46.935	$16 \ 6 \ 43.751$	16 0 55.110	13 7 3.718	$16\ 35\ 42.120$	16 17 28.295	22 2 46.691	4 2 32.634	8 18 59.855	12 34 7.610	9 14 33.955	7 3 31.170	6 53 18.416	
Т	968 TU	31.90377	10.84346	17.81083	25.02669	4.01393	24.92245	3.99970	27.95609	5.97425	31.99815	19.89964	24.87912	22.93435	1.11934	16.97368	
	1	mart	dec.	dec.	apr.	maj	apr.	maj	maj	avg.	a okt.	a feb.	apr.	a feb.	nov.	dec.	
	anète	Ariadna	Nvsa		Europa	•	Sapho	. oI		Julia	Antigon	Nansika	Prokne	Eleonor	Davida		
	Id	43	44		52		80	85		89	129	192	194	354	511		
	N0	38	39.	40.	41.	42.	43.	44.	45.	46.	47.	48.	49.	50.	51.	52.	

D

¥

E

Ч

1

NO No Cl. BD Yal. vol. Dépendences $+ 0^{0}3185$ 1. 25/68 21 0.179 366 + 0 3186 11 .415 529 + 0 3196 ** .405 104 $+1^{0}2924$ 2. 34/68 21 0.340 176 - 0 2821 ** .277 214 ** + 0 3196 .382 610 $+ 0^{0}3165$ 3. 50/68 21 0.317 294 +03171** . 320 469 +1294120 . 362 237 + 1⁰2889 56/68 4. 20 0.251 562 +1289511 . 325 962 +22783** .422 475 $+1^{0}2872$ 5. 63/68 20 0.264 280 +1288911 .440 162 11 + 2 2773 .295 558 - 4⁰3148 6. 11/68 0.257 192 17 - 6 3456 11 . 399 516 " - 5 3377 .343 292 + 7°2443 7. 21/68 22/10.351 217 + 8 2512 ** .253 027 + 7 2461 ** .395 756 + 8°2504 8. 31/68 22 0.219 786 + 9 2497 ** .580 059 11 + 8 2515 .200 154 +14⁰2368 9. 53/68 19 0.228 820 +16 2242 18 .298 426 +15 2326 19 .472 754 10. 27/68 - 303675 0.248 998 17 - 3 3686 11 .401 757 11 - 4 3772 .349 245 - 3⁰3679 11. 37/68 0.438 170 17 - 4 3763 11 .315 932 - 3 3686 11 .245 898 - 3⁰3674 12. 0.288 549 45/68 17 - 3 3680 .. .383 177 - 2 3907 ** .328 274 - 1⁰2963 13. 58/68 21 0.269 456 - 0 2847 " .371 981 - 1 2973358 563 - 0°2833 0.441 712 14. 64/68 21 11 + 0 3203 .317 008 ** 0 2847 .241 279 - $+ 0^{0}3178$ 15. 78/68 21 0.428 864 + 0 318011 .408 158 11 .162 978 + 0 3185

TABLEAU

II

т	Α	в	\mathbf{L}	\mathbf{E}	Α	U	II

					No	No C1.	BD	Yal.vol.	Dependences
NO	No Cl.	BD	Yal.vol.	Dépendences	31.	B/68	+18 ⁰ 2313	18	0.281 138
						2,11	+16 2077	11	. 546 095
16.	125/68	- 1 ⁰ 188	21	0.265 822			+16 2080	**	. 172 766
	(1995 - 000 - 199	- 1 196	**	. 499 044					
		- 0 240	**	.235 134	32.	17/68	$+18^{\circ}2302$	18	0.175 969
10	107/00	0 000	01	0 957 917			+17 2164	**	. 477 211
17.	127/68	$-0^{\circ}229$	21	0.357 217			+17 2169	**	.346 820
		- 1 196	,,	.203 040	33.	19/68	+28 ⁰ 1959	24	0.325 290
		- 0 240		. 379 730			+28 1961	**	.288 103
18.	89/68	- 5 ⁰ 4768	17	0.226 964			+27 1978	11	. 386 608
		- 5 4787	11	.418 810	9.4	20/09	0001051	94	0.970.916
		- 6 4941	11	. 354 226	J4.	29/00	+27 1931	24 11	470 191
19	97/68	- 6 ⁰ 4791	17	0 300 360			+20 1901		250 552
10.	01/00	- 6 4809	16	485 441			721 1310		. 209 000
		- 6 4812	11	214 198	35.	66/68	+26 ⁰ 2133	24	0.134 658
Parallel Control of		0					+26 2136	11	.635 374
20.	102/68	+ 7° 59	22	0.350 127			+26 2137	**	.229 968
		+ 8 62	**	.271 457	36	91/68	- 8 ⁰ 4960	16	0 199 702
		+775	**	. 378 416	00.	51/00	- 9 5130	10	480 694
21.	3/68	+21 ⁰ 1677	25	0.392 942			- 8 4977	**	319 603
10-10-10-10	1054 8 - 10	+20 1922	**	. 428 576			0		.010 000
		+21 1724	11	.178 482	37.	1/68	+2501446	24	0.353 964
	= /20	.00 1544	0.5	0 505 014			+25 1469	"	.385 198
22.	7/68	+22 1744	25	0.585 314			+25 1478	**	.260 837
		+21 1058	**	. 171 085	38.	46/68	- 0 ⁰ 2407	21	0.428 006
		+21 1001		. 243 001		2014 • 17	- 0 2409	11	. 474 362
23.	22/68	+ 5 ⁰ 2769	22	0.226 444			- 0 2414	11	.097 631
		+ 4 2768	**	.456 226	90	199/69	, o0 hor	0.0	0 105 000
		+ 5 2783	**	.317 330	39.	120/00	+ 0 300	44	0.173 878
24	32/68	$+ 4^{0}2755$	22	0.261 563			+ 8 390	11	. 300 223
	02,00	+ 5 2769	"	. 312 187			10 - 101		. 443 030
		+ 5 2774	**	. 426 250	40.	129/68	+ 80 385	22	0.336 788
• -		-0	~ ~				+ 8 396	11	.453 010
25.	42/68	$+5^{\circ}2749$	22	0.226 165			+ 8 407	11	.210 202
		+ 5 2757		.412 617	41.	73/68	$-10^{0}4252$	11	0.380128
		+ 5 2769	"	.361 218			-10 4258	11	. 416 869
26.	49/68	+ 5 ⁰ 2749	22	0.486 536			-10 4265	**	.203 002
		+ 6 2751	**	.183 949	40	00 /00	004050	10	
		+ 5 2757	"	.329 515	42.	82/68	- 9°4278	16	0.290796
97	55/69	+ A09607	99	0 971 977			- 9 4291		. 229 142
41.	55/08	+ 4 2091	44	0.211 211			-10 4242	11	.480 062
		+ 5 2120		. 231 321 196 706	43.	69/68	- 9 ⁰ 3628	16	0.437 761
		+ 4 2703		. 430 790			- 9 3636	**	.173 598
28.	75/68	+ 4 ⁰ 2666	20	0.404 061			-10 3627	11	.388 641
		+ 3 2714	**	.210 461	44	83/68	-1004990	11	0 955 990
		+ 4 2684	71	. 385 478	11.	03/00	-10 4339	11	0.355 340
20	111 /60	000 000	4 0 1 20	0.055.445			-10 4358		2490 249
23.	111/00	+38 876	AGKZ	0.355 445			-10 4010		. 340 431
		+30 011		. 271 114	45.	88/68	- 7 4275	16	0.333 077
		TOO 000		. 3/3 440			- 6 4399	**	.294 868
30.	79/68	-12 ⁰ 4178	11	0.261 606			- 7 4275	**	.372 054
		-11 3858	ŤŤ.	.395 072	46.	100/68	- 6 5901	16	0.335.069
		-12 4192	11	. 343 321			- 5 5697	17	. 310 769
							- 6 5914	16	. 354 161

NO	No Cl.	BD	Yal.vol.	Dépendences
47.	110/68	+ 3 ⁰ 552	20	0.303 839
		+ 3 557	**	.489 534
		+ 3 563		. 207 127
48.	8/68	$+25^{\circ}1898$ +26 1770	24	0.362 476 .237 380
		+25 1912	"	.400 144
49.	67/68	+13 ⁰ 2551	19	0.340 944
		+13 2561 $+12$ 2562	**	$.471\ 522$ $.187\ 534$
	15 (00	1009150	18	0 290 538
50.	15/68	+18 2150 +17 2053	н 10	. 461 014
		+17 2057	**	.248 448
51.	114/68	+14 ⁰ 1558	19	0.228 477
		+14 1568 +15 1461	**	. 463 556
59	131/68	+17 ⁰ 1435	18	0.285 973
02.	101/00	+17 1447	**	.583 473
		+17 1469	**	.130 554
	ТА	BLEA	U II	
No	T A No Cl.	BLEA BD	U II Yal.vo	1. Dépendences
N ⁰ 1.	T A No Cl. 19/69	BLEA BD +16 ⁰ 3563	U II Yal.vo 18	1. Dépendences 0.388 740
N ⁰ 1.	T A No Cl. 19/69	B L E A BD +16 ⁰ 3563 +15 3525 +15 3543	U II Yal.vo 18 "	 Dépendences 0.388 740 423 024 188 236
N ⁰ 1.	T A No Cl. 19/69	B L E A BD $+16^{\circ}3563$ +15 $3525+15$ $3543+21^{\circ}3498$	U II Yal.vo 18 " 25	 Dépendences 0.388 740 423 024 188 236 345 565
N ⁰ 1. 2.	T A No Cl. 19/69 30/69	B L E A BD +16 $^{0}3563$ +15 3525 +15 3543 +21 $^{0}3498$ +21 3515	U II Yal. vo 18 " 25 "	 Dépendences 0.388740 423024 188236 0.345565 .357311
N ⁰ 1. 2.	T A No Cl. 19/69 30/69	B L E A BD +16 ⁰ 3563 +15 3525 +15 3543 +21 ⁰ 3498 +21 3515 +21 3518	U II Yal.vo 18 " " 25 "	 Dépendences 0.388 740 423 024 188 236 345 565 357 311 297 124
N ⁰ 1. 2. 3.	T A No Cl. 19/69 30/69 36/69	B L E A BD + $16^{0}3563$ + $15 3525$ + $15 3543$ + $21^{0}3498$ + $21 3515$ + $21 3518$ + $22^{0}3402$	U II Yal. vo 18 " " 25 " " 25	 Dépendences 388 740 423 024 188 236 345 565 357 311 297 124 282 658 516
N ⁰ 1. 2. 3.	T A No Cl. 19/69 30/69 36/69	B L E A BD +16 $^{0}3563$ +15 3525 +15 3543 +21 $^{0}3498$ +21 3515 +21 3518 +22 $^{0}3402$ +22 3418 +22 3435	U II Yal.vo 18 " 25 " " 25 "	 Dépendences 0.388 740 423 024 188 236 0.345 565 357 311 297 124 282 658 633 516 183 826
N ⁰ 1. 2. 3.	T A No Cl. 19/69 30/69 36/69	B L E A BD $+16^{\circ}3563$ +15 3525 +15 3543 $+21^{\circ}3498$ +21 3515 +21 3518 $+22^{\circ}3402$ +22 3418 +22 3435 $+24^{\circ}3377$	U II Yal.vo 18 " 25 " " 25 " " 25	 Dépendences 388 740 423 024 188 236 345 565 357 311 297 124 282 658 633 516 183 826 309 628
N ⁰ 1. 2. 3. 4.	T A No Cl. 19/69 30/69 36/69 41/69	B L E A BD $+16^{0}3563$ +15 3525 +15 3543 $+21^{0}3498$ +21 3515 +21 3518 $+22^{0}3402$ +22 3418 +22 3435 $+24^{0}3377$ +23 3327	U II Yal. vo 18 " 25 " 25 " 25 " 25 " 25	 Dépendences 388 740 423 024 188 236 345 565 357 311 297 124 282 658 633 516 183 826 309 628 449 633
N ⁰ 1. 2. 3. 4.	T A No Cl. 19/69 30/69 36/69 41/69	B L E A BD $+16^{\circ}3563$ +15 3525 +15 3543 $+21^{\circ}3498$ +21 3515 +21 3518 $+22^{\circ}3402$ +22 3418 +22 3435 $+24^{\circ}3377$ +23 3327 +24 3421	U II Yal.vo 18 " 25 " " 25 " " 25 " "	 Dépendences 388 740 423 024 188 236 345 565 357 311 297 124 282 658 633 516 183 826 309 628 449 633 240 739
N ⁰ 1. 2. 3. 4.	T A No Cl. 19/69 30/69 36/69 41/69 44/69	B L E A BD $+16^{0}3563$ +15 3525 +15 3543 $+21^{0}3498$ +21 3515 +21 3518 $+22^{0}3402$ +22 3418 +22 3435 $+24^{0}3377$ +23 3327 +24 3421 $+24^{0}3369$	U II Yal. vo 18 " 25 " 25 " 25 " 25 " 25 " 25	 Dépendences 388 740 423 024 188 236 345 565 357 311 297 124 282 658 633 516 183 826 309 628 449 633 240 739 302 963 343 354
N ⁰ 1. 2. 3. 4. 5.	T A No Cl. 19/69 30/69 36/69 41/69 44/69	B L E A BD $+16^{\circ}3563$ +15 3525 +15 3543 $+21^{\circ}3498$ +21 3515 +21 3518 $+22^{\circ}3402$ +22 3418 +22 3435 $+24^{\circ}3377$ +23 3327 +24 3421 $+24^{\circ}3369$ +23 3287 +24 3377	U II Yal.vo 18 " 25 " " 25 " " 25 " " 25 " " 25 " " 25 " " " 25 " "	 Dépendences 388 740 423 024 188 236 345 565 357 311 297 124 282 658 633 516 183 826 309 628 449 633 240 739 302 963 343 354 353 683
N ⁰ 1. 2. 3. 4. 5.	T A No Cl. 19/69 30/69 36/69 41/69 44/69 42/69	B L E A BD $+16^{\circ}3563$ +15 3525 +15 3543 $+21^{\circ}3498$ +21 3515 +21 3518 $+22^{\circ}3402$ +22 3418 +22 3435 $+24^{\circ}3377$ +23 3227 +24 3227 +24 327 +24 3377 $- 4^{\circ}4583$	U II Yal. vo 18 " 25 " 25 " 25 " 25 " 25 " 25 " 25 " 3 17	 Dépendences 388 740 423 024 188 236 345 565 357 311 297 124 282 658 633 516 183 826 309 628 449 633 240 739 302 963 343 354 353 683 227 001
N ⁰ 1. 2. 3. 4. 5.	T A No Cl. 19/69 30/69 36/69 41/69 44/69 42/69	B L E A BD $+16^{\circ}3563$ +15 3525 +15 3543 $+21^{\circ}3498$ +21 3515 +21 3518 $+22^{\circ}3402$ +22 3418 +22 3435 $+24^{\circ}3377$ +23 3327 +24 3421 $+24^{\circ}3369$ +23 3287 +24 3377 $- 4^{\circ}4583$ - 5 4780	U II Yal. vo 18 " 25 " 25 " 25 " 25 " 25 " 25 " 25 " 2	 Dépendences 388 740 423 024 188 236 345 565 357 311 297 124 282 658 633 516 183 826 309 628 449 633 240 739 302 963 343 354 353 683 227 001 415 909 257 000
N ⁰ 1. 2. 3. 4. 5. 6.	T A No Cl. 19/69 30/69 36/69 41/69 44/69 42/69	B L E A BD $+16^{\circ}3563$ +15 3525 +15 3543 $+21^{\circ}3498$ +21 3515 +21 3518 $+22^{\circ}3402$ +22 3418 +22 3435 $+24^{\circ}3377$ +24 3421 $+24^{\circ}3369$ +23 3287 +24 3377 $-4^{\circ}4583$ -5 4780 -4 4601	U II Yal.vo 18 " 25 " 25 " 25 " 25 " " 25 " " 25 " " 25 " " 25 " " 25 " " " 25 " " " 25 " " "	 Dépendences 388 740 423 024 188 236 345 565 357 311 297 124 282 658 633 516 183 826 309 628 449 633 240 739 302 963 343 354 353 683 227 001 415 909 357 090
N ⁰ 1. 2. 3. 4. 5. 6.	T A No Cl. 19/69 30/69 36/69 41/69 44/69 42/69 42/69	B L E A BD $+16^{\circ}3563$ +15 3525 +15 3543 $+21^{\circ}3498$ +21 3515 +21 3518 $+22^{\circ}3402$ +22 3418 +22 3435 $+24^{\circ}3377$ +24 3421 $+24^{\circ}3369$ +23 3287 +24 3377 $- 4^{\circ}4583$ - 5 4780 - 4 4601 - 4 4566	U II Yal. vo 18 " 25 " 25 " 25 " 25 " 25 " 25 " 25 " 2	 Dépendences 388 740 423 024 188 236 345 565 357 311 297 124 282 658 633 516 183 826 309 628 449 633 240 739 302 963 343 354 353 683 227 001 415 909 357 090 299 730 307 737

8.	47/69	- 4 ⁰ 4537 - 4 4547 - 4 4561	17 ''	0.460287 .098759 .440953
9.	78/69	+12 ⁰ 555 +13 651 +12 564	19 ''	0.182 365 .361 005 .456 630
10.	79/69	+12 ⁰ 555 +13 651 +12 564	19 ''	0.183 451 .359 649 .456 899
11.	80/69	+ 9 ⁰ 1623 22 + 8 1750 + 9 1639	/2	0.421241 .168067 .410692
12.	91/69	+ 9 ⁰ 1639 22 + 8 1780 22 + 8 1781	2/2 2/1 "	0.145972 .660505 .193523
13.	92/69	+ 9 ⁰ 1639 22 + 8 1780 22 + 8 1781	2/2 2/1 ''	0.137374 .669454 .193172
14.	58/69	+17 ⁰ 123 +16 96 +16 97	18 '' ''	0.329311 .228970 .441719
15.	59/69	+17 ⁰ 123 +16 96 +16 97	18 ''	$\begin{array}{c} 0.\ 331\ 080\\ .\ 231\ 374\\ .\ 384\ 763\end{array}$
16.	63/69	+17 ⁰ 123 +16 96 +16 97	18 "	0.384763 .303740 .311496
17.	68/69	$^{+16}{}^{0}$ 62 $^{+16}$ 74 $^{+15}$ 122	18 '' ''	0.353962 .304478 .341559
18.	81/69	$+14^{0}$ 76 +15 95 +14 111	19 18 19	$\begin{array}{c} 0.342\ 216\\ .374\ 596\\ .283\ 188\end{array}$
19.	3/69	$+25^{0}2109$ +24 2099 +24 2102	24 25 24	0.296141 .321787 .382072
20.	7/69	$^{+25}{}^{0}2105$ $^{+24}$ 2099 $^{+24}$ 2102	24 25 24	$\begin{array}{r} \textbf{0. 414 305} \\ \textbf{. 410 435} \\ \textbf{. 175 259} \end{array}$
21.	12/69	+25 ⁰ 2089 +25 2105 +24 2099	25 24 25	0.096 498 .438 419 .465 082
22.	20/69	- 8 ⁰ 3905 - 9 4075 - 9 4083	16 ''	0.365289 .129729 .504982
2 3.	22/69	- 9 ⁰ 4062 - 8 3905 - 8 3908	16 ''	$\begin{array}{c} 0.\ 202\ 633\ .\ 530\ 545\ .\ 266\ 821 \end{array}$
24.	26/69	- 8 ⁰ 3884 - 8 3905 - 8 3908	16 ''	$\begin{array}{c} \textbf{0.373} \ \textbf{150} \\ \textbf{.463} \ \textbf{989} \\ \textbf{.162} \ \textbf{851} \end{array}$

No	No Cl.	BD	Yal.vol.	Dépendances	N ^O	No Cl.	BD	Yal.vol.	Dépendences
25.	27/69	- 7 3900	16	0.299 624	41	87 /69	$+16^{0}$ 196	18	0.362.876
		- 7 3906	11	. 278 945		01/00	+15 268	11	377 634
		- 7 3912	"	.421 432			+16 210	"	. 259 492
26.	32/69	- 7 ⁰ 3900	16	0.412 814	42.	82/69	+ 9 ⁰ 550	22/2	0.203 644
		- 7 3903	**	.210 937			+ 9 556	11	.573 725
		- 4 3906	11	.376 249			+ 9 567	**	. 222 631
27.	35/69	- 7 ⁰ 3881	16	0.148 523	43.	90/69	+ 9 ⁰ 550	22/2	0.187 250
		- 7 3884		.607 297			+ 9 556	**	.604 382
		- 7 4050		.244 180			+ 9 567	**	.208 368
28.	48/69	-15 5881	12	0.207 142	44.	57/69	+ 7 ⁰ 5055	22	0.084 030
		-14 5936		. 432 202			+ 8 5079	**	.377 705
		-14 5949		. 360 655			+ 8 5095	**	. 538 220
29.	49/69	-15 5881	12	0.229 887	45.	62/69	+ 8 ⁰ 5079	22	0.334 048
		-14 5936		. 415 748			+ 8 5090	"	.407 040
	1999 16 - • • • • • • • • • • • • • • • • • • •	-14 5949		. 354 365			+ 7 5066	"	. 258 911
30.	71/69	+ 6° 626	22	0.297 626	46.	55/69	- 2 ⁰ 5785	17	0.488 618
		+ 7 595		. 292 783		•	- 1 4336	21	.210 658
		+ 6 636	,,	.409 590			- 3 5490	"	.300 724
31.	72/69	+ 6 ⁰ 626	22	0.299 725	47.	56/69	- 2 ⁰ 5785	17	0.492 316
		+ 7 595	"	.289 837		.,	- 1 4336	21	. 210 500
		+ 6 636	**	.410 438			- 3 5490	11	.297 184
32.	83/69	+ 6 ⁰ 619	22	0.397 852	48	61 /69	- 205793	17	_
		+ 5 590	"	.271 821	10,	01/00	- 2 5794		-
		+ 6 636	**	.330 327	40	CC /CO	004000	01	0 941 979
33.	84/69	+ 6 ⁰ 619	22	0.398 477	.49.	00/09	-0^{-4338}	21	0.341 270 919 478
		+ 5 590	**	. 275 258			- 0 4342	**	339 244
		+ 6 636	"	.326 265		/	- 0 4354		
34.	60/69	+17 ⁰ 315	18	0.280 837	50.	67/69	- 0 4338	21	0.347 738
		+18 277	**	.361 020			- 0 4354	11	336 992
		+17 327	**	.358 143			- 0 4354		. 330 992
35.	64/69	+17 ⁰ 315	18	0.323 129	51.	5/69	+1702291	18	0.478 816
		+18 277	**	. 362 653			+17 2294		.231 650
		+17 327	11	.314 218			+18 2423		. 289 334
36.	69/69	+170 274	18	0.286 124	52.	14/69	+18°2408	18	0.382 911
		+16 217	**	. 493 749			+17 2291		.410 437
		+17 288	**	. 220 127			+18 2423		.206 652
37.	70/69	+170 274	18	0 291 004	53.	29/69	$+ 1^{0}3450$	20	0.208 754
•	10/00	+16 217	11	497 613			+ 2 3343	"	.468 887
		+17 288	**	. 211 383			+ 2 3373	"	.322 358
38.	76/69	$+17^{0}$ 274	18	0.293 191	54.	40/69	+ 1 ⁰ 3397	20	0.265 414
	,	+16 210	11	431 909			+ 2 3265	**	.371 998
		+16 217	**	. 274 900			+ 2 3283	17	.362 587
39	77/69	+170 274	18	0 290 405	55.	34/69	- 7 ⁰ 4468	16	0.713 515
		+16 210	10	. 446 326			- 8 4469	**	.165 853
		+16 217	**	. 263 269			- 8 4484		. 120 632
40	82/69	+160 205	19	0 248 592					
	52/00	+17 274	10	. 353 797					
		+15 273	**	. 397 671					

TABLEAU I

_

_____ · ___ · __ · __ ·

NO	Pl	anete	1969	TU	d (19	50)	б	(1950)	(p Δ_{J})	(p ∆3)	(O-C)	
1	2	Pallas	apr.	10.12709	$18^{h}36^{m}$	44 ^{,8} 691	+15	⁰ 36'33!'29	9.035n	0.634	-0. ⁸ 27	-0!'4
2.	_	1 41140	mai	15.05930	18 37	18.871	+21	36 25.44	8. 582n	0. 536	-0.22	+1.0
3.			maj	23, 95926	18 33	16.369	+22	45 54.94	9.368n	0.558	-0.30	+1.6
4.			iun	10.99111	18 20	57.861	+24	12 9.42	8.260	0.486	-0.26	+0.5
5.			jun	18.95592	18 14	23.895	+24	21 52.70	6.601	0.483	-0.25	-1.8
6.	3	Juno	jun	11.02347	18 48	50.371	- 4	54 19.51	8.635	0.824	+0.08	+0.3
7.			jun	19,00356	18 42	42.137	- 4	48 42.78	8.774	0.824	+0.08	+0.3
8.			jun	23.95774	18 38	32.768	- 4	49 35.15	8.247n	0.825	+0.12	+1.9
9.	5	Astrea	okt.	7.07187	49	5.450	+13	13 31.75	7.476n	0.660	0. ^m 0	0'
10.			okt.	7.15007	49	5.677	+13	13 25.35	9.302	0.676	0.0	0
11.	6	Hebe	okt.	7.14965	7 20	30.964	+ 8	48 52.44	9.162n	0.725	0.0	0
12.			okt.	11.10660	7 25	26.828	+ 8	31 57.16	9.361n	0.726	0.0	0
13.			okt.	11.13128	7 25	28.579	+ 8	31 50.69	9.235n	0.720	0.0	0
14.	7	Iris	sep.	8.99792	0 56	11.262	+17	7 32.12	8.614n	0.608	0.0	0
15.			sep.	9.02500	0 56	10.681	+17	7 34.01	8.864	0.608	0.0	0
16.			sep.	9.98611	0 55	53.048	+17	8 32.18	8.864	0.609	0.0	0
17.			sep.	30.87784	0 43	34.376	+16	21 13.73	9.263n	0.635	0.0	0
18.			okt.	8.92778	0 37	8.173	+15	30 33.43	8.290	0.631	0.0	0
19.	9	Metis	mart	9.84306	9 29	17.745	+24	27 16.35	8.941n	0.487	0.0	0
20.			mart	10.82676	9 28	42.001	+24	27 38.93	9. 094n	0.494	0.0	0
21.			mart	12.80593	9 27	35.353	+24	27 47.16	9.310n	0.517	0.0	0
22.	11	Parthenope	apr.	22.00764	15 6	32.342	- 9	32 37.73	8.468	0.852	0.0	0
23.			apr.	26.01632	15 3	10.780	- 9	14 32.91	9.022	0.848	0.0	0
24.			apr.	28.00590	15 1	26.284	- 8	5 41.9 8	8.978	0.843	0.0	0
25.			maj	14.94339	14 45	42.819	- 7	58 58.13	8.912	0.843	0.0	0
26.			maj	16.93949	14 43	54.962	- 7	52 51.20	8, 949	0.841	0.0	0
27.			maj	23.90639	14 38	2.408	- 7	44 44.34	8.799	0.841	0.0 m	0
28.	16	Psyche	jun	23.99687	21 4	56.300	-14	23 24.37	9.258n	0.868	+03	+1'
29.		37%.	jun	24.04846	21 4	55.444	-14	23 27.39	8. 735n	0.876	+0.3	+1
30.	39	Laeticia	okt.	5.05276	4 3	45.202	+ 6	51 20.00	8. 761n	0.731	0.0	0
31.			okt.	5.08510	4 3	45.137	+ 6	51 8.45	8.442	0.731	0.0	0

1

TABLEAUI

8 (1950) L (1950) NO $(p \Delta_{d})$ $(p \Delta S)$ Planete 1969 TU (O-C) + 6⁰26'38!'68 4^h 3^m22, 116 9.160n 0.737 0.0 0 9.00767 32. okt. 0 9.04271 + 6 26 25.72 8.738n 0.735 0.0 33. okt. 4 3 21.694 0.0 0 34. 43 Ariadne 9.05938 2 7 45.793 +18 19 22.52 9.213n 0.590 sep. +18 19 31.92 0 10.02648 2 7 33.347 8.994n 0.580 0.0 35. sep. 0 36. 4.98090 1 52 3.063 +17 15 10.56 7.844n 0.606 0.0 okt. 1 52 0 37. 5.01010 1.079 +17 15 2.02 8.817 0.608 0.0 okt. 38. 6.98576 1 50 7.153 +17 4 28.40 8.400 0.609 0.0 0 okt. 4.700 0 39. 7.02538 1 50 +17 4 16.49 9.120 0.617 0.0 okt. 40. okt. 8.96389 1 48 9.532 +16 53 13.19 8.210n 0.612 0.0 0 41. okt. 10.95104 1 46 8.336 +16 41 15.11 8.514n 0.614 0.0 0 + 9 40 32.42 42. 51 Nemauza okt. 11.02223 4 15 43.718 9.045 0.704 0.0 0 0 43. 11.06774 4 15 43.147 + 9 40 13.30 7.505 0.702 0.0 okt. 44. 137 Meliboea 8.95208 23 34 48.142 + 9 0 28.48 8.287n 0.709 +3.0 +9 sep. 45. 9.93993 23 34 10.687 + 8 51 34.68 8.636n 0.710 +3.0 +9 sep. 46. 324 Bamberga 8.87999 22 35 45.536 - 1 53 49.25 9.001n 0.804 +0.6 +6 sep. 47. 8.90729 22 35 43.836 - 1 53 37.71 8.467n 0.804 +0.6 +6sep. 48. 9.88698 22 34 44.796 - 1 47 53.79 8.865n 0.803 +0.6 +6 sep. 49. 22 18 35.544 5 34.06 8.915n 0.789 +0.6 +6 sep. 30.81499 + 0 30.84549 22 18 34.619 + 0 5 42.63 7.426n 0.790 +0.6+6 50. sep. 51. 349 Dembowska 9.93646 10 52 19.347 +17 22 54.72 8.176 0.619 0.0 +1 mart 52. 12.88127 10 49 52.030 +17 29 28.08 0.0 +1 mart 9.012n 0.608 354 Eleonora 53. maj 15.02534 17 31 51.201 + 1 59 58.68 7.746n 0.774 0.0 0 54. jun 10.95076 17 10 51.296 + 2 16 5.16 8.481 0.772 0.0 0 17 35 1.067 55. 532 Herculina maj 17.05510 - 8 7 46.31 8.910 0.844 0.0 0

TABLE DES MATIERES

Length B

page

1.	A. Kubičela, J. Arsenijević: An attempt to analyse the flare polarisation of some UV Ceti stars	3
2.	J. Arsenijević: Polarimetri c obs ervation of RR Lir	11
3.	M. Djokić : Analyse de l'influence de variation d'inclinaison des axes du tube zénithal (à Belgrade) sur lavaleurde la latitude	15
4.	A.S.Kharin (Klev) : Investigation of the adjustment of Belgrade vertical circle tube	23
5.	G. Teleki: Belgrade large vertical circle examination by autocollimational method	31
6.	D. Olević : Observations des petites planètes à l'Observatoire astronomique de Belgrade en 1967, 1968, 1969	5 3