UDC 521-525 YU ISSN 0373-3734

BULLETIN

DE

L'OBSERVATOIRE ASTRONOMIQUE DE BELGRADE

№ 134

BEOGRAD 1984

BULLETIN

DE

L'OBSERVATOIRE ASTRONOMIQUE DE BELGRADE

FOUNDED IN 1936

PUBLISHING COUNCIL:

A.Kubičela	(Astronomical Observatory, Belgrade), Chairman,
Đ Jøvić	(Boris Kidrič Institute of Nuclear Sciences, Belgrade),
M.Kuzmanoski	(Department of Astronomy, Faculty of Sciences, Belgrade University, Belgrade),
M.Mitrović	(Astronomical Observatory, Belgrade),
S.Sadžakov	(Astronomical Observatory, Belgrade),
G.Teleki	(Astronomical Observatory, Belgrade)

EDITORIAL BOARD:

G.Teleki, Editor-in-Chief, G.Popović, Editor, J.Arsenijević, Lj. Mitić, M.Mitrović

Published by Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

Director of the Astronomical Observatory: M.Mitrović

The publication of this issue is financially supported by the Republic Community of Sciences of Serbia

Printed by

Biro za grafičku delatnost Instituta za vodoprivredu "Jaroslav Černi" Beograd – Bulevar vojvode Mišića 43/III; Tel.: 651–067

BULLETIN

DE

L'OBSERVATOIRE ASTRONOMIQUE DE BELGRADE

N⁰ 134

UDC 522.3

INSTRUMENT SYSTEM OF THE BELGRADE MERIDIAN CIRCLE

M. Dačić

(Received May 15, 1983)

SUMMARY: Investigation has been executed of the systematic difference "FK4 system minus instrument system" of the Belgrade meridian circle. The data, used in the present analysis, were acquired during two periods – 1973/75 and 1977/78 – by the observation of Küstner series, with a total of about 1000 transits. The data processing was accomplished in two stages. The first stage consisted in the instrument parameters being calculated by the method of least squares. In the second stage (O – C) deviations in both coordinates have been determined. The instrument system is presented in the form $\Delta \alpha_{\delta} \cos \delta$ and $\Delta \delta_{\delta}$. Thus it was established that the instrument systems at both clamps were close to each other and that the mean instrument system kept steady over several years.

1. INTRODUCTION

The deduction of the "instrument system" of the Belgrade meridian circle Askania, 190/2578 mm in both coordinates has proceeded on the basis of data, acquired by observations of the, so called, Küstner series (Küstner, 1900). These series comprise, as a rule, all the declinations accessible to observation with a particular instrument. The data, provided by the observation of such series. constitute an exellent means of getting insight into the instrumental features, but also into those of the observer and the totality of conditions of observation (Zverev, 1950).

Underlying the deduction and the analysis of the "instrument system" of the Belgrade meridian circle, of which account is given in the present paper, are observations of the Küstner series, carried out during two periods – June 1973 to July 1975, and March 1977 to March 1978. The stars have been observed at both CE and CW clamps. These series turned out to be unevenly distributed in time, a result of the observation of NPZT stars having been given priority (Sadžakov, 1982).

The observation of a Küstner series took two hours at the most, whereby both of the coordinates have been observed simultaneously. A total of 30 series has been observed, the average number of stars in one series being 28 for the first period and 34 for the second. The declinations of the observed stars ranged from -25° to $+80^{\circ}.5$ at the upper, and from $+65^{\circ}$ to $+80^{\circ}.5$ at the lower transits. The number of stars in the zone $+10^{\circ}$ to $+60^{\circ}$ declination is somewhat higher than that in the rest of the meridian arc observed. The stars above $+80^{\circ}$ declination have also been observed, yet in the second period only, their number being, anyhow, very low.

The time of transit of a star over meridian has been determined by the formula:

1

$$T = \overline{T} + c_0 \sec \delta \mp a \cos \varphi \sec \delta + \frac{\omega}{2} \sec \delta$$

where T – registered time of transit, c_0 – collimation, determined with a pair of collimators, a – diurnal aberation, $\frac{\omega}{2}$ – the sum of the contact width and the lost motion.

The reduction of the declinations implied, first of all, the callculation of the circle reading according to the formula:

$$M = \overline{M} + mr + \Delta\lambda + \rho + ktg\delta$$

where \overline{M} – mean value of four microscope – micrometer readings, m – reading of the eyepiece–micrometer, r – the value of the micrometer revolution, $\Delta\lambda$ – correction to the circle division, ρ – refraction, calculated according to Pulkovo Tables, ktg δ – correction for the curvature of the parallel. Thereafter the quantities (M- δ) and (M+ δ) were calculated, whereby the former relates to the CE and the latter to the CW clamps. These are the ,equator points" – a term to be taken coditionally, for no correction, due to the tube flexure, has been applied to them.

2. PROCESSING OF KÜSTNER SERIES BY THE MET-HOD OF LEAST SQUARES.

The observations of the Küstner series were processed in two stages: the first stage consisted in the determination of the instrument parameters (Section 2.1. and 2.2.), while the second implied the calculation of the star position deviations and their being arranged according to the declination (Sections 3. and 4.). Here we present the formulae used in the calculation of the instrument parameters.

Bessel formula, otherwise very handy for the reduction of relative observations, supplies three parameters: (u+m), n and c, for the deduction of the right ascension system of the instrument. Again, the parameter M_o (equator point) or the parameter M_z (zenith point) are used in the derivation of the declination system of the instrument.

The determination of the instrument parameters by the method of least squares proved suitable to a high degree. Besides, it is in harmony with the principle of homogeneity as defined by Khomik (1975). In this, I am anticipated by at least three authors: Bykov (1977) at the Tashkent observatory, and Izvekov, Izvekova (1965) at the Pulkovo observatory.

2.1. Right ascension system and the formation of equations of deviation.

Bessel formula, furnishing the observed right ascension can be written in the form:

$$\alpha' = T + (u + m) + n \operatorname{tg}\delta.$$

Denoting the difference of the catalogue right ascension α and the observed right ascension α ' by $\Delta \alpha$ we obtain:

$$-\Delta \alpha = -(\alpha - T) + (u + m) + ntg\delta$$

where $(\alpha - T)$ is a known quantity. The latter equation should, in principle, enclose the terms which account for the variations of the parameters (u + m) and n. However, a preliminary investigation disclosed that the linear variation in time of (u + m) was the only one deserving attention. This variation will be expressed by the term $\tau(\alpha - \alpha_0)$, where α_0 is some apriori given right ascension. It is, besides, necessary for all the deviations to be reduced to the equator. Thus we have:

$$-\Delta\alpha\cos\delta = -(\alpha - T)\cos\delta + (u + m)\cos\delta + n\sin\delta + \tau(\alpha - \alpha_0)\cos\delta$$
(1)

Under the first variant the instrument parameters and the deviations $\Delta \alpha$ have been determined by the formula (1). However, it appeared necessary to correct the collimation c in the equations (1). Accordingly, we had to resolve – under the second variant – the equations

$$-\Delta \alpha \cos \delta = -(\alpha - T)\cos \delta + \Delta c + (u + m) \cos \delta + n \sin \delta + \tau (\alpha - \alpha_0)\cos \delta$$
(2)

The unknowns could be well separated from each other thanks to the Küstner series covering a very long arc of the meridian. This implied great weights of the coefficients, i.e. their values were trusworthy. It should be noted, however, that the lower transits (their number is, anyhow, very small), on account of the deviations in them being too great, are omitted from our calculations, i.e. only upper transits have been dealt with. This, also, must have contributed to the accuracy.

2.2. Declination system of the meridian circle and formation of the equations of deviations.

In denoting by $\Delta \delta$ the difference of the declination δ , taken from the fundamental catalogue and the observed declination δ ', the equation of deviation assume the form:

 $\begin{array}{ll} \text{CE:} & \Delta\delta = -\left(M-\delta\right) + M_{\text{o}}\\ \text{CW:} & -\Delta\delta = -\left(M+\delta\right) + M_{\text{o}} \end{array}$

where $(M - \delta)$ and $(M + \delta)$ are known quantities.

Küstner series, being extended over a very long arc of the meridian, allow good determination of the flexure. Hence, the above equations can be expanded by the two first Fourier terms: a cos z and b sin z, the former standing for the horizontal and the latter for the vertical flexure components (measurable with the collimators). Preliminary testings proved that the variation in time $\tau'(\alpha - \alpha_0)$ of the equator point was considerable, so that it had to be taken into account. Accordingly, the equations of conditions assume the form:

$$\pm \Delta \delta = -(M \mp \delta) + M_0 + a \cos z + b \sin z + \tau' (\alpha - \alpha_0)$$
(3)

where the circle reading M does not enclose the correction for the flexure.

In the preliminary deduction of the instrument system the horizontal flexure component was the only one determined, i.e. the vertical component was disregarded. We proceeded in this way for two reasons: due to the specific distribution of stars on our programme it proved difficult to separate the M_0 values from those of a; second, the a values were found greatly changeable from one series to the next. Moreover, the a values had to be turned down in a considerable number of series on account of their large errors. However, the results obtained clearly indicated the presence of some influence, proportional to cos z, or to some related function, symetrical relative to the zenith. This was the reson why, besides the first variant, involving the solution of the equations (3), an additional variant:

$$\pm \Delta \delta = -(M \mp \delta) + M_0 + b \sin z + \kappa \sec^2 z + r' (\alpha - \alpha_0)$$
(4)

has been applied.

As evident, in the second variant the assumption is made of the effect of the anomalous refraction being expressible by a term with $\sec^2 z$ (Teleki, 1967).

3. RIGHT ASCENSION SYSTEM OF THE MERIDIAN CIRCLE

The deduction of the right ascension system has been accomplished in two stages. First, the set of normal equations (1) and (2) has been resolved and the values of the instrument parameters calculated and discussed. Thereupon, the deviations have been determined and grouped according to five degree zones. The instrument system has been deduced upon smoothing these deviations. In order to acquire the picture of the instrument system as best as possible, the deviations in the first period (1973/1975) have separately been treated from those in the second period (1977/78), as have been the deviations associated with CE and those in the CW positions.

The instrument parameters have been determined by the equation (1) in the first and by the equation (2) in the second variant, the method of least squares being used with both variants. The only difference cosisted in that, under the second variant, the collimation error has also been determined.

It should be indicated that T has been chosen such, that the differences $(\alpha - T)$ was always positive and less than 60^s. The final results have not, thereby, been affected, but the quantity (u + m) underwent arbitrary changes from one series to the next.

As for the weight unit error, it is larger under the first variant, amounting there, on the average, to ± 0 \$0258, while its value in the second variant attains ± 0 \$0240.

3.1. Analysis of the parameters c and n.

It has been indicated above that the parameter (u + m) assumed, on account of the way of its determination, arbitrary values fromone series to another. Investigation of the behavour of the parameters c and n appeared, therefore, all the more interesting, as there have been no mechanical interferences with the instrument over long time intervals.

On solving the set of normal equations, the correction to the collimation has been derived. Its mean value for the first period (1973/75) is -0.5026. Its value for the second period is $-0^{5}.106$.

The difference between the collimation obtained from the astronomical observations and the one resulting from the collimator readings, as well considerable scattering of $\Delta \alpha \cos \delta$ at lower transits, made us suspect that the collimation value, used in the reduction of observations, had not been a correct one. To clarify the matter we first checked the signs and the micrometer middle wire reading. Thereafter the dead motion and the contact width have been put under scrutiny. These two parameters have, anyhow, been controlled during both periods of observation, at intervals judged appropriate. It was found, however, that the reduction have been performed with correct values of the parameters. The question of the origin of the inconsitencies referred to above remains, therefore, unanswered.

The possibility of this difference originating from the pivot irregularities has also been considered. But the joint effect, produced by the pivots-balancing system on the observation results, even thought it can be considerable, cannot amount to 0° .1 (Mijatov et al. 1975) – the value we obtained for the correction to the collimation for the period 1977/78.

The correction to the collimation, resulting from the observation of the Küstner series could not, at least for the time being, be accounted for. Special, supplemental, observations are obviously necessary for an adequate explanation to be provided. But one can surmise, in view of the collimation being variable with the zenith distance (Pil'nik, 1957) and being different at CE and CW clamps (Pil'nik, 1960), that our instrument is subjected to the same effects. On the other hand, it is quite conceivable that there can be a difference between the collimation, as furnished by the collimator readings, i.e. with the instrument occupying a horizontal position, and the one, resulting from the observation of stars at zenith distances varying from about 75° to 0°. Still other origins of this discrepancy must also be reckoned with.

As for the changes in the collimation value in the course of a year, it could be established by applying the Abbe's criterion (Linik, 1958), that none existed over the period 1973/75, while in the period 1977/78 we had p < 0.05. The values of c, assumed dependent on the temperature, have also been investigated by applying the same criterion. Such a dependence could not, however, be confirmed.

The values of the parameter n display an increasing trend during the first 20 series, especially during 1975, so that no special criterion is even needed for the systematics to be brought out. Subsequent to the 20th series the instrument's azimuth and the inclination have been adjusted so as to diminish the amount of n.

3.2. Derivation of the right ascension system

Following the determination of (u + m) and n under the first variant, and Δc , (u + m) and n under the second, the deviations $\Delta \alpha \cos \delta$ in each one of the observational series have been calculated. The arc of the meridian, comprised between $-22^{\circ}.5$ and $117^{\circ}.5$ declination, has been divided into five degree zones. Further, the values of $\Delta \alpha \cos \delta$ have been arranged according to declination. A small number of stars from $-22^{\circ}.5$ to -24° declination have been included in the zone $-22^{\circ}.5$ to $-17^{\circ}.5$ declination. The data from the first period have separately been treated from those in the second period. Likewise, the CE data have separately been treated from the CW data.

Next, the mean values of the relevant deviations have been deduced. This was followed by deducing the systematic runs of E_a , E_b , W_a and W_b , whereby the use has been made of Abbe's criterion. The notation a relates to the period 1973/75 and the notation b to the

period 1977/78. the systematic run of the quantities $S_a = E_a + W_a$, $S_b = E_b + W_b$, $S_E = E_a + E_b$ and $S_W = W_a + W_b$ have also been derived.

Thus could be found that the mean values of the deviations by zones, as derived under the first variant, exhibit a systematic run for the cases W_a , W_b , S_b , S_E and S_W . No systematic runs have been established for any of the quantities under the second variant.

The mean right ascension systems are illustrated graphically. The Graphs 1 and 2 reproduce the results under

Fig. 1. Mean right ascension systems at clamp E (marked S_E) and at clamp W (marked S_W) for both (1973-75 and 1977-78) periods of observation - first version.

Fig. 2. Mean right ascension system for the periods 1973-75 (marked S_a) and 1977-78 (marked S_b) - first version.

the first variant, The Graphs 3 and 4 represent the results under the second variant. The Graph 5 reproduced the mean right ascension system from both periods. Very few stars have been observed in the zone $\pm 80^{\circ}$ to $\pm 90^{\circ}$ declination, alike at upper and the lower transits. The results, relating to this zone, are marked differently in the graph.

Fig. 3. Mean right ascension systems at clamp E (marked S_E) and at clamp W (marked S_W) for both (1973-75 and 1977-78) periods – second version.

Fig. 4. Mean right ascension system for the period 1973-75 (marked S_a) and the period 1977-78 (marked S_b) – se cond version.

The graphs display a far closed accordance of the right ascension system in the second variant, except for the lower transits. These latter were therefore ignored in the subsequent treating. Why the lower transits differ so sharply from the upper ones cannot, at least for the time being, be adequately answered. Besides graphic presentation, the coefficients of correlation have been calculated. The objective pursued was the finding out of the numerically expressed measure of accordance of the CE and CW systems for both periods, as well as the degree of accordance of the mean systems for both periods. The results are shown in Table I.

Fig. 5. Mean right ascension system according to the first version (marked S_{II}) and the second version (marked S_{III}).

Table I. Correlation coefficients between particular right ascension systems at various clamp positions in both periods of observation.

	I variant	II variant
aller 10 10 Million and	RI	RII
E_a/W_a	0.01 ± 0.22	-0.22 ± 0.21
$E_{\rm b}/W_{\rm b}$	$+0.88 \pm 0.05$	-0.02 ± 0.22
E_a/E_b	$+0.46 \pm 0.18$	$+0.27 \pm 0.21$
W_a/W_b	$+0.45 \pm 0.18$	-0.08 ± 0.22
S_a/S_b	$+0.57 \pm 0.15$	-0.26 ± 0.21
S_E/S_W	$+0.73 \pm 0.10$	-0.39 ± 0.19
S_{I}/S_{II}	R = + 0.2	26 ± 0.21

The closest accordance is found with the E_b and W_b curves under the first variant, i.e. with the uncorrected collimation. As has already been indicated, this correction for the second period amounts to -1^s106 on the average.

The correlation in the second variant, in which the corrected collimation is operated with, is practically nonexistent. The systematic run in declination, as evident from the graph, is insignificant for the upper transits -a result that was to be expected. The coefficient of correlation has been calculated for the upper transits only.

As evident, the mean right ascension system under the first variant, after (u + m), n and the variation in time (in as much as the latter existed) have been found, exhibits a variation in declination. Expecially prononouced is the difference between the northern stars at upper transit and those same stars at lower transit. Nearly identical curve has been obtained in the preliminary examination of the right ascension system, whereby the procedure consisted in determining first the values of n for each one of the series observed and thereafter representing the system in the form Δ (u + m) variation in declination.

In contrast to the first variant, the run in declifation as obtained in the second variant — in which account is taken, among other things, of the correction to the collimation deduced from the observations — is virtually zero for all the zones up to + 80° declination. However, a slight systematic difference can be discerned in the zone beyond + 80°, but it must be remarked that there far fewer stars have been observed than in the rest of the zones.

The deviations under the second variant are small (hardly above the errors of observation), being confined between -0.9007 and +0.9008. The picture is completed by the following facts: The CE and CW systems under both variants are similar; the variations of the parameters c and n are slight. This cannot but be taken as evidence of the Belgrade meridian circle being of satisfactory quality. There still remain, as open questions, the correction to the collimation (or the quantity behaving like it), and the difference between the right ascension system resulting from the upper transits and the one associated with the lower transits.

4. DECLINATION SYSTEM OF THE MERIDIAN CIR-CLE

The declination system has been deduced in analogous way to that applied with the right ascension system. First the instrument parameters have been calculated and the deviations arranged according to the five degree zones. The means have been calculated separately for the CE and CW clamps, as have the means corresponding to the first and the second periods.

Küstner series have been processed according to two variants: underlying the first variant is the equation (3); underlying the second variant is the equation (4). Thereafter the attempt is made to remove the effect of refraction on the observation. The adequacy of this approach of ours remains to be confirmed since no reference to any analogous treatment could be found in the literature. The occasion will present itself at the definite deduction of the declinations system.

The mean error of the weight unit is ± 0 ".406 for the first variant. Under the second variant it amount to ± 0 ."417.

4.1. Discussion of the parameters a, b and κ

As our results indicate, the equator point M_0 assumes different values, exhibiting far greater changes than those found with a, b and κ . These changes are, sometimes, even jumplike. An adjustment of the microscope-micrometer alone is sufficient to provoke appreciable changes in its value. A conclusive discussion of the M_0 variation for several nights, of those depending on the temperature in particular, appears therefore impossible-at least in the present case.

It seems that the horizontal flexure component, held usually as the mean component of the declination system, is the parameter which lends itself to good determination from the astronomical observations. This flexure component in our meridian circle attains considerable values, mostly above 2 seconds of arc.

The examination of the flexure b variations from one night to another, as well as that of the temperature dependent variations, did not furnish any indication of them bearing a systematic character. It was incresting to compare the values of this flexure component deduced from the astronomical observations and those provided with the aid of collimators. Unfortunately, this kind of flexure measurements are available for only 12 last observing nights (1977/78). Thus could be established that the flexure values, resulting from the astronomical observations, amounting to about 2".4, were about twice the values provided by the collimator readings, which attained 1".4.

We are unable to offer definite interpretation of this discrepancy (the same applies to the collin *ion). In this, one should, possibly, proceed from the fact that the instrument tube is placed horizontally at measuring the flexure with the collimators. On the other hand, this same tube is inclined during observation.

This should be connected with the fact that the instrument's objective is fixed at the tube end at three equidistant points. Thus, the objective is - at the same clamp - differently supported for its south, than for its north zenith distances. The situation is reversed after the clamp is changed.

Absolute value of the parameter a ranges from 0" to 3". However, this value does not seem to be particularly well determined. Yet, it turned out that the declination system is improved by introducing the term $\alpha \cos z$. This system is also improved by introducing the term $\kappa \sec^2 z$ in place of $\alpha \cos z$, but somewhat less. But the lesser weight unit error, and the lesser deviations of the mean system, resulting from introducing the term $\alpha \cos z$, suggest that this term is to preferred.

Simultaneous determination of the parameters M_0 , a and κ has also been tried. However, due to their being difficult of mutual separation, the results obtained were very poor.

It could be established by employing the Abbe's criterion that a was not experiencing systematic variations from one night to the next, nor is there any systematic variation with temperature.

4.2. Derivation of the declination system

On calculating the parameters M_o a, b and τ ' under the first, and M_o , b, κ and τ ' the second wariant, deviations have been found and arranged according to groups and zones, in analogy to what has been done in treating the right ascensions.

Next, the variation has been examined for each of the groups, i.e. E'_a , E'_b , W'_a , W'_b as well as for the mean systems S'_a , S'_b , S'_E , S'_W . The examination has been performed by using the Abbe's criterion.

Thus it turned out hat E'_b and S'_b were exhibiting systematic variation under the first variant. Under the second variant systematic variation in declination has been stated in E'_b , S'_a , S'_E and S'_W .

The results of the declination system determination are illustrated graphically. The graphs 6 and 7 reproduce the results obtained under the first variant and the graphs 8 and 9 those obtained under the second variant.

Fig. 6. Mean declination systems at clamp E (marked S'_E) and at clamp W (marked S'_W) for both (1973-75 and 1977-78) periods of observation – first version.

Fig. 7. Mean declination system for the periods 1973-75 (marked S'a) and 1977-78 (marked S'b) - first version.

Fig. 8., Mean declination systems at clamp E (marked S'_E) and at clamp W (marked S'_W) for both (1973-75 and 1977-78) periods of observation – second version.

Fig. 9. Mean declination system for the period 1973-75 (marked S'a) and the period 1977-78 (marked S'b) – second version.

The graph 10 illustrates the mean declination system, i.e. the results of the first and the second variants are compared.

Fig. 10. Mean declination system according to the first version (marked S'I) and the second version (marked S'II).

The CE and CW systems, as well as those resulting from the first and the second periods, exhibit a clear similarity. It is also evident that the mean system exhibits certain run in declination which persits, in spite of the terms with $\cos z$ or $\sec^2 z$ having been applied to.

The similarity of the declination systems at both clamps and in both periods of observation, as well as the absence of the variation in time along with the instrument system being confined between $-0^{\prime\prime}.25$ and $+0^{\prime\prime}.29$ all this tends to suggest that our meridian instrument is furnishing satisfactory results concerning declinations as well.

Here too, in analogy to what has been done with the right ascension system, the coefficients of correlation have been determined for particular cases. These coefficients are summarized in Table II.

Table II. Correlation coefficients between particular declination systems at various clamp positions in both periods of observation

	I variant	II variant
	RI	R _{II}
E_a/W_a	0.28 ± 0.19	0.47 ± 0.16
E'b/W'b	0.64 ± 0.12	0.45 ± 0.17
E'a/E'b	0.67 ± 0.12	0.78 ± 0.08
Wa/Wb	0.19 ± 0.20	0.32 ± 0.19
S'a/S'b	0.62 ± 0.13	0.79 ± 0.08
S'E/S'W	0.66 ± 0.12	0.68 ± 0.11
S'I/S'II	R = 0.86	± 0.05

The accordance of the E'_b and W'_b systems is closer for the first variant. In all other instances the accordance is found closer with the second variant.

Significant values of the correlation coefficients in both variants, in connection with the value resulting from the comparison of the two variants, are an indication of a systematic variation with declination, not removed by the introduction in the equation of condition of either the term acosz or the term $\kappa \sec^2 z$.

5. CONCLUSIONS

The discussion of the instrument parameters and the instrument system leads to the following conclusions:

- 1. The presentation of the instrument system in the form of $\Delta \alpha_{\delta} \cos \delta$ and $\Delta \delta_{\delta}$ provides a more complete picture of the instrument than it was possible by its presentation by way of runs of individual parameters n, (u + m) and M_o . This is particularly true of the right ascension system, keeping in mind that the run of the parameter n does not affect the transits of the equatorial stars.
- The method of least squares proved convenient as it allowed the parameters to be deduced in various com-

binations, whereupon the most appropriate solutations could be decided upon.

3. Close similarity is stated of the right ascension system for both clamps. Moreover, the instrument system did not undergo appreciable changes over longer periods. On applying the correction Δc , the instrument system was virtually reduced to null.

Concerning the lower transits, there appear such deviations which evade being accounted for without additional observations and investigations. The difference between the collimation errors as deduced from the observations and those resulting from the collimators reading are still to be inquired into. It is likely that underlying this difference is the variability of the collimation error with the zenith distance, although other origins cannot be ruled out.

- 4. The declination system at both clamps also display similarity. No significant changes over several years are found. The results point to the existence of the vertical component in the instrument flexure as being real. Here, too, a difference between the flexure, measured with the collimators and the one resulting from the astronomical observations has been stated, possibly a consequence of the objective displacement in its supports.
- 5. The investigations have demonstrated that the Belgrade meridian circle is capable of yielding reliable results. The instrument system is not pronounced and its changes over several years are slight. Attention should be paid in the forthcoming observations to the parameter determination, particularly so if observations are made over extended declination zones.

REFERENCES

- Bykov, M. F.: 1977, Cirk. Tashkent, astron. Obs., 79, 1
- Dačić, M., Gnevysheva, K. G.: 1980, Izv. glav. astron. Obs. Pulkovo, 197, 41
- Izvekov, V. A., Izvekova, A. A.: 1965, Trudy 16 astrometr. Konf., 25
- Khomik, L. M.: 1975, Sovremennye problemy pozitsionnoj astrometrii, Izd. Mosk. univ., 82
- Kustner, F.: 1900, Veroff. Sternw. Bonn, 4, 22
- Linik, Yu., V.: 1958, Metod naimen'shikh kvadratov i osnovy teorii obrabotki nablydenij, Gos. izd. Fiz. at. lit., Moskva, 110
- Mijatov, M., Sadžakov, S., Dačić, M., Šaletić, D., Protić-Benišek, V.: 1975, Publ. Obs. astron. Beograd, 20, 203
- Pil'nik, G., P.: 1957, Astron. Zu., 34, 97
- Pil'nik, G. P.: 1960, Astron. Zu., 37, 567
- Sadžakov, S., Šaletić, D., Dačić, M.: 1981, Publ. Dep. astron. Beograd, 30, 1
- Teleki, G.: 1967, Publ. Obs. astron. Beograd, 13, 60
- Teleki, G.: 1970, Bull. Obs. astron. Beograd, 123, 42
- Zverev, M. S.: 1950, Usp. astron. Nauk., 5, 54
- Zverev, M. S.: 1974a, Trudy astron. Obs. Leningrad. gos. Univ., 30, 177
- Zverev, M. S.: 1974b, ibid, 178
- Zverev, M. S.: 1974c, ibid, 181

ANALYSIS OF SOME CHARACTERISTICS OF THE LEVELS OF THE BELGRADE VERTICAL CIRCLE

M. Mijatov and V. Trajkovska

(Received May 5. 1983)

SUMMARY: On the basis of laboratory examinations of the levels of the Belgrade Vertical Circle, executed in the period 1963 to 1981, mean division values, as well as their dependence on time, air temperature and bubble length, are derived. The formulae (4) and (5) are proposed for use in the reduction of astronomical observations. The level division values, as derived by laboratory measurements, proved to fit in the regular astronomical observations made with our Vertical Circle.

1. ORGANIZATION OF LABORATORY INVESTI-GATIONS

Account is given in the present paper of the results of investigation of two levels of the Belgrade Large Verical Circle (Askania, N^o 80118), with which the inclination of the LVC vertical axis is being determined. The objective of the investigation performed was the determination of the level division values to be applied in the reduction of the astronomical observations carried out with this instrument. The level investigation started in 1963, as noted in Tables I and II. The lower level (L) on the instrument has been examined 63 times, while the number of investigations of the upper level (U) amounts to 48. The method employed at first was that of Vassiley, but alter on we passed to the Wanach method. The measurements have, overwhemingly, been executed in a special box (thus. in an insulated medium), whereby several investigators have taken part. A minor part of examinations has been performed in the Geodetic -Geophysical Laboratory of the Hungarian Academy of Sciences (Sopron, Hungary) with various level triers, under various conditions, including artificial heating. Yet, these additional examinations failed to affect, to any appreciable degree, the results originally derived at our observatory.

The examinations have been carried out at various temperatures: they ranged from -3° , 5 C up to $+27^\circ$, 0 C with the L level and from -3° , 6 C up to $+27^\circ$, 0 for the U level. The L level bubble lenghts have been varied from 16.2 to 30.0 divisions and those of the U level from 16.7 to 30.0 divisions. In effecting these investigations we benefited from earlier experiences of Teleki and Grujić (1982).

Two level triers have been used in these examinations: "Askania" (N^o 630348) as long as Wanach method was applied, and the level trier "Bamberg" (N^o 630348) since our switching to the Vassilev method. In the reduction of our measurements the values of the level trier divisions, as furnished by the expressions below, have been used, respectively:

 $p (Askania) = 0.99983 + 0.00013 (t_i - 13.8)$ $p (Bamberg) = 0.99302 + 0.00006 (t_i - 14.7)$

As evident, the level trier division values are subject to the temperature t_i effects. The level trier divided circle was moved by one division in the examinations under the Vanach method, while the motion from 2 to 3 divisions has been applied with the Vassilev method. The positions of the level bubble ends have been read up at 1.5 to 2 minutes intervals. The air temperature changes during any one of the sets of measurements did not exceed 0° 2 C.

2. ANALYSIS OF MEASUPEMENTS MADE IN THE PERIOD 1963 to 1981

The level division values obtained (Tables I and II) have been submited to analysis with respect to three factors: temperature, bubble length and time. The aim we thereby had in view was the establishing of the best possible relation for the calculation of the division values. Three forms of such relation were alternatively adopted:

$$\lambda_{i} = \lambda_{01} + \alpha_{1} (T_{i} - T_{o}) + \beta_{1} (t_{i} - t_{o}) + \gamma_{1} (l_{i} - l_{o})$$
(1)

$$\lambda_{i} = \lambda_{02} + \alpha_{2} (T_{i} - T_{o}) + \beta_{2} (t_{i} - t_{o}) + \gamma_{2}(l_{i} - l_{o}) + \delta (t_{i} - t_{o})^{2} + \xi (l_{i} - l_{o})^{2}$$
(2)

$$\lambda_{i} = \lambda_{03} \exp \left[\alpha_{3} \left(T_{i} - T_{o} \right) + \beta_{3} \left(t_{i} - t_{o} \right) + \gamma_{3} \left(l_{i} - l_{o} \right) \right]$$
(3)

N ^o	Date in fractions of year	Observers	Method	t	<i>l</i> m	Mean division value	Quality mark	Locality of measurement
1	1963.57	ММ	Va	25.°6C	20.7p	1.1810		Students' pavilion
2	.58	MM	Va	25.4	20.4	1.1669		Students' pavilion
3	. 64	SS	Va	17.6	20.0	1 1084		Main building
4	.64	SS	Va	17.8	26.0	1 1082		Main building
5	1964.07	MM	Va	-0.5	25.5	1.0319		Coodatia marilian
6	.08	SS	Va	-35	23.3	1.0319		Geodetic pavilion
7	1963.74	GT	Vn	- 3.3	21.1	1.0740	2	Geodetic pavilion
8	74	CA	Vii	10,7	20.0	1.10/3	3	Sopron
õ	74	GA	vn V	18.5	20.0	1.1288	3	"
10	• / 4	GI	vn	19.0	25.0	1.1317	1	"
10	•/4	GA	· Vn	19.0	25.0	1.1454	1	"
11	./3	GI	Vn	17.4	30.0	1.1207	1	
12	./5	GA	Vn	17.5	30.0	1.0953	1	**
13	.75	photograph,	Vn	15.0	20.0	1.0908	3	
14	.75	11	Vn	15.0	25.0	1.0760	3	"
15	.75	photograph.	Vn	15.0	30.0	1.0554	1	Sopron
16	1964.76	GT	Vn	18.0	25.0	1.1228	2	Sopron (with heating)
17	.76	GA	Vn	18.0	25.0	1.1214	1	
18	.76	GT	Vn	18.0	25.0	1,1141	1	"
19	.76	GA	Vn	18.0	25.0	1 1 2 1 2	1	Sonron (with heating
20	.79	MM	Vn	17.1	221	1 1090	2	Lovels' how
21	.79	SS	Vn	15.0	22.1	1 1 1 6 7	2	Levels box
רר	1965.95	мм	Vn	15.9	22.0	1,1107	2	"
23	95	85	Vii	15.1	23.1	1.1295	2	**
7.1	.75	33	VII	15.5	23.0	1.1882	4	"
-4	.90	55 MM	vn	15.7	23.1	1.0412	3	"
20	.96	MM	Vn	16.0	23.1	1.1475	3	"
20	.96	MM	Vn	15.1	24.0	1.1213	2	11
27	.96	SS	Vn	15.5	23.5	1.1029	4	
28	.99	MM	Vn	15.6	22.4	1,1181	2	77
29	.99	SS	Vn	15.9	22.3	1.1229	3	17
30	1966.01	MM	Vn	12.8	22.9	1.0798	3	
31	.01	SS	Vn	13.6	22.8	1.1295	3	
32	.11	MM	Vn	15.4	23.0	1.1915	3	
33	.11	SS	Vn	16.1	23.0	1.0289	ĩ	
34	.15	MM	Vn	16.9	21.2	1.1800	2	
35	.15	SS	Vn	17.1	21.2	0.9960	1	"
36	.82	SS	Vn	17.4	232	11537	1	
37	.82	MM	Vn	17.0	23.2	1 1 3 0 7	2	"
38	.83	SS	Vn	16.2	23.3	1.1.502	2	"
39	1967.89	MM	Vn	13.5	23.4	1.1410	2	11
40	22		Vii	13.5	23.0	1,1419	1	"
41	1068 78	MM	Vn	12.0	24.3	1.1651	1	**
41	1900.70	NL.VI	vn	12.9	22.5	1.1122	3	"
42	./0	BK	vn	13,1	22.4	1.1463	2	"
43	13/0.10	MM	Vn	4.6	21.6	1.0010	4	"
44	.16	MM	Vn	4.8	21.7	0.9820	2	"
45	.19	GT	Vn	2.0	23.2	0.9923	1	
46	1981.07	DB	Vn	2.5	18.6	0.9106	2	"
47	.09	MM	Vn	3.6	21.4	1.0217	1	
48	.09	DB	Vn	3.4	22.0	0.9750	2	"
49	.09	MM	Vn	2.8	22.0	0,9420	1	"
50	.09	MM	Vn	12,1	20.9	0.9807	1	"
51	.09	DB	Vn	12.3	20.9	0.9671	î	
52	.11	MM	Vn	10.1	20.3	0.9476		
53	.11	VT	Vn	10.8	20.2	0.9528	1	
54	.11	VT	Vn	12 4	17 /	0.9320	1	
55	.11	MM	Vn	12.4	170	0.7404	1	"
56	12	101	VII Ve	12./	17.4	0.9458	2	
57	-12		vn	11./	17.8	0.9644	2	"
59	.12	IVI.VI	Vn	14.4	16,2	0.9330	2	"
50	.13	V I	Vn	1.6	18.3	0,9493	2	"
39	.13	MM	Vn	2.2	18.2	0.9330	2	"
00	.13	VT	Vn	2,6	18.0	0.9167	3	"
61	.13	DB	Vn	2.7	18.2	0.9251	2	"
62	.15	VT	Vn	2.3	20.1	0.9191	2	"
53	1981 15	MM	Vn	37	19.9	0.0175		Louals' have

Table I. Results of the L level investigation in the period 1963-1981.

No	Date in fractions of year	Observers	Method	tį	<i>l</i> m	Mean division value	Quality mark	Locality of measurement
1	1963.67	ММ	Va	26°2 C	19.4p	1.1024		Students' pavilion
2	.67	MM	Va	20.0	25.1	1.1274		Students' pavilion
3	.73	SS	Va	17.8	20.0	1.0825		Main building
4	.73	SS	Va	17.8	26.6	1.0891		Main building
5	1964.04	SS	Va	-2.6	20.3	1.0280		Geodetic pavilion
6	.04	MM	Va	-3.6	25.4	1.0465		Geodetic pavilion
7	1963.75	GA	Vn	13.8	20.0	1.0862	3	Sopron
8	.75	GT	Vn	18.7	25.0	1.0856	1	
9	.75	GA	Vn	18.8	25.0	1.0880	1	"
10	.76	GA	Vn	17.8	30.0	1.0831	3	"
11	.76	GT	Vn	17.8	30.0	1.0807	1	"
12	.76.	GT	Vn	18.0	20.0	1.1189	3	**
13	.76	photograph.	Vn	18.0	20.0	1.0289	1	"
14	.76	"	Vn	18.0	25.0	1.0583	2	"
15	.76	photograph.	Vn	18.0	30.0	1.0172	1	Sopron
16	1964.81	MM	Vn	14.7	23.1	1.1200	2	Levels' box
17	.81	SS	Vn	15.0	23.1	1.1156	1	"
18	.81	MM	Vn	14.9	22.3	1.0855	1	"
19	.81	SS	Vn	15.4	22.2	1.0756	1	**
20	1966.13	MM	Vn	18.0	24.0	1.1216	2	
21	.13	SS	Vn	17.7	24.4	1.1202	1	"
22	.84	SS	Vn	14.0	23.0	1.0899	1	
23	.84	MM	Vn	14.0	23.1	1.1225	1	
24	1967.86	MM	Vn	14.2	24.1	1.1307	2	"
25	.86	SS	Vn	13.9	24.2	1.1266	2	"
26	1968.90	MM	Vn	15.0	22.3	1.1472	2	"
27	.91	BK	Vn	14.2	22.9	1.1232	- 2	
28	1976.16	MM	Vn	3.8	22.2	0.8329	2	"
29	.16	MM	Vn	4.1	22.4	0.9062	1	
30	.17	GT	Vn	2.1	21.9	0.8922	2	
31	1981.09	MM	Vn	3.0	21.2	1.0006	4	<i>"</i>
32	.09	DB	Vn	3.2	21.5	0.9725	1	"
33	.09	MM	Vn	3.2	21.3	0.9645	1	**
34	.09	MM	Vn	10.2	22.0	0.9905	1	
35	.09	DB	Vn	11.2	21.7	0,9941	1	19
36	.11	VT	Vn	11.5	20.3	0.9629	1	"
37	.11	MM	Vn	11.4	20.4	0.9773	2	"
38	.11	VT	Vn	11.5	17.0	0.9516	2	"
39	.11	MM	Vn	12.2	16.7	0.9591	2	
40	.12	DB	Vn	13.5	17.7	0.9604	2	**
41	.12	MM	Vn	14.0	17.2	0.9762	2	"
42	.13	VT	Vn	2.4	17.1	0.9545	3	"
43	.13	MM	Vn	2.7	17.0	0.9458	2	
44	.13	VT	Vn	1.6	17.5	0.9257	2	"
45	.13	DB	Vn	2.5	17.3	0.9364	1	
46	.15	DB	Vn	2.9	17.8	0.9199	2	"
47	.15	VT	Vn	2.8	20.1	0.9135	2	
48	1981.15	MM	Vn	3.0	20.1	0.9365	1	Levels box

Table II. Results of the U level investigation in the period 1963-1981. For notations see explanation in Table 1

Labels of the Tables I and II:

Observers: MM - M. Mijatov, SS - S. Sadžakov, GT - G. Teleki, GA - G. Alpar, BK - B. Kubičela, DB - Dj. Bozhichkovich, VT - V. Trajkovska. Method: Va - Vassilev, Vn - Wanach

Quality marks: 1 - very good, 2 - good, 3 - fair, 4 - bad (these marks are provided by the Wanach scale and relate solely to this method).

where:

- λ_i division value (in seconds of arc), resulting from the i-th measurement
- λ_{ok} most probable division value (in seconds of arc) at T_o , t_o and l_o defined by:

$$T_o = \frac{\Sigma T_i}{n}, \quad t_o = \frac{\Sigma t_i}{n}, \quad l_o = \frac{\Sigma l_i}{n};$$

k = 1, 2 or 3 are indices in expressions (1), (2) and (3) n - number of measurements

- T_i time of the i-th measurements (in fractions of year)
- ti temperature with the i-th measurement
- l_i level bubble length with the i-th measurement (in fractions of the level division)
- α_{k} time coefficient
- β_k temperature coefficient
- γ_k bubble length coefficient

 δ and ξ – coefficients with the second order terms.

No quadratic term in T appears in (2), for the preliininary graphic illustration of the division values as a function of time disclosed an umistakable linear dependence.

The solution of 63 equations relating to the level L and of 48 equations pertaining to the level U by the least square method furnished the most probable mean division values of both levels valid for $t' = +12^{\circ}0 \text{ C}$, $l'_{0} = 22.0$ divisions and $T'_{0} = 1970.0$ (these are rounded up figures of t_{0} , l_{0} and T_{0}), the coefficients as well as the determination errors. The results are summarized in Table III,

undergoes changes, a consequence, in all probability, of the non-adequate inlay of the ampulla in the level body (see, for instance, Tarczy-Hornoch's paper, 1959). This feature of our levels should, therefore, be pursued in the future also.

An special analysis has been performed of the (O-C) residuals of the division values as a function of temperature and the bubble length. Thus it was found that the temperature effects scattering with higher temperatures was conspicuously lesser than the one stated with the low temperature. This is, in our view, a result of decreasing, with higher temperatures, of both the surface tension and the viscosity (Sadžakov, Mijatov, 1968). The behaviour of the (O-C) values dependent on the bubble length, is typified by higher scattering with the growing bubble length. This might be an indication of the existence of some other effects, not accounted for in the present analysis.

Normal distribution test of the (O-C) deviations did not yield any reliable results, due to the low number of intervals and low frequences within these intervals.

Since no significant differences could be stated between the forms (1), (2) and (3), we adopted, for practical resons, the linear form for the calculation of the division values of both levels. Accordingly, we propose, for the effective use, the following expressions:

$$\lambda_{\rm L} = 1.0615 - 0.0083 (T - 1970.0) + + 0.0029 (t - 12.0) + 0.0007 (l - 22.0) (4)$$

$$\lambda_{\rm U} = 1.0408 - 0.0063 (\rm T - 1970.0) + 0.0037 (\rm t - 1200) - 0.0004 (\it l - 22.0) (5)$$

Table III. Results of analysis of the totality of level examinations in the period 1963–1981. λ_{ok} , α_k , β_k , γ_k , δ , ξ , k correspond to the expressions (1) – (3); r -- the correlation coefficient; ϵ_{reg} is the mean regression error; ϵ_{res} -- mean error of residuals

Level	k	λok	o _k	β _k	γk	δ	ξ	r	$\epsilon_{\rm reg}$	$\epsilon_{\rm res}$
L	1 2 3	1.0700 1.0580	-0.0083 -0.0068 -0.0080	0.0029 0.0036 0.0027	0.0007 0.0050 0.0008	0.00002	-0.0013	0.89 0.91 0.90	0.12 0.08 0.11	0.002 0.001 0.001
ť.	1 2 3	1.0408 1.0567 1.0378	0.0063 0.0063 0.0062	0.0037 0.0033 0.0037	-0.0004 0.0010 -0.0004	-0″0001	-0."0008	0.85 0.87 0.85	0.08 0.05 0.07	0.002 0.002 0.002

High correlation can be noted in all three cases. The errors, relating to both levels, are of the same order of magnitude in all three cases considered. The time coefficients α_k , by their assuming considerably values, as well as the "ageing" of the levels (at least in the period 1963 to 1981), produce the diminishing of the division values ($\alpha_k < 0$). The character of the level "ageing"

3. THE ANALYSIS OF MEASUREMENTS MADE IN 1981.

During 1981 the opportunity presented itself of carrying out a greater number of level examinations, following the conclusion of works on an absolute catalogue of declinations of bright stars in the zone $+65^{\circ}$ to $+90^{\circ}$

Level	k	λ _{ok}	β _k	γ_k	δ	Ę	r	$\epsilon_{\rm reg}$	eres
L	1 2 3	0.9850 0.9881 0.9852	$\begin{array}{c} 0.0025 \\ -0.0048 \\ 0.0026 \end{array}$	0.0094 0.0221 0.0098	-0.0007	0.0029	0.64 0.67 0.64	0.003 0.002 0.003	0.0005 0.0005 0.0006
U	1 2 3	0.9914 1.0142 0.9916	0″0027 0.0071 0.0029	0.0066 0.0404 0.0069	0.0006	00058	0.72 0.86 0.72	0.003 0.002 0.003	0.0003 0.0002 0.0004

Table IV. Results of analysis of the laboratory level examinations performed in 1981. Notations the same as in Table 3.

Table V. Results of analysis of the laboratory level examinations performed in the period 1963-1981, omitting the level bubble lengths above 24.0 divisions.

Notations as i	n Table 3.
----------------	------------

Level	k	λ_{ok}	с _к	β _k	γk	δ	ξ	r	€reg	e _{res}
L	1 2 3	1".0713 1.0647 1.0682	-0.0075 0.0070 0.0072	0.0029 0.0036 0.0027	0.0100 0,0135 0,0099	0."0001	0.0008	0.92 0.92 0.92	0.11 0.07 0.10	0.001 0.002 0.001
U	1 2 3	1''0470 1.0488 1.0433	-0"0052 0.0056 0.0051	0".0048 0.0043 0.0049	0.0051 0.0137 0.0046	-0.0001	0.0022	0.86 0.87 0.85	0.06 0.04 0.06	0.002 0.002 0.002

declination. We, therefore, analysed separately, 18 sets of measurements effected in 1981. The expressions used were of the form (1), (2) and (3), the condition being $\alpha_k = 0$. The results of these calculations are presented in Table IV.

The deviations (O-C) of these measurements are by a whole order of magnitude lesser than those resulting from the totality of measurements.

The differences between the mean division values obtained from the totality of measurements and the corresponding values provided in 1981, are given by both linear and quadratic forms:

For L level: - 0.016 and + 0.006 For U level: -0.021 and -0.028

We assumed the differences of results to be due to the fact that the examinations in 1981 were carried out with the bubble lenght ranging from 16 to 22 divisions, while those covering the whole of the period were executed with the bubble lengths between 16 to 30 divisions (mostly above 22 divisions).

4. PROCESSING OF MEASUREMENTS MADE IN 1963 TO 1981 WITH THE BUBBLE LENGTHS FROM 16 TO 24 DIVISIONS

In view of the above asumption those measurements were taken apart from the whole of the material, which were performed with the bubble lengths between 16 and 24 divisions, i.e. the bubble lengths used in almost all the astronomical observations with the LVC.

The same kind of analysis, as the one previously described, was accomplished here. too. The results obtained are listed in Table V. The linear dependence furnishes:

$$\lambda_{\rm L} = 1.0713 - 0.0075 (T - 1970.0) + + 0.0029 (t - 12.0) + 0.0100 (l - 22.0) (4')$$

$$\lambda_{\rm U} = 1!!0470 - 0.0052 (T - 1970.0) + + 0.0048 (t - 12.0) + 0.0051 (l - 22.0) (5')$$

On comparing the values of β and γ , contained in Table V, and those comprised by Table IV, it becomes evident that there exists a good accordance between them. The difference, referred to in Section 3 is a consequence of the considerable divergence of γ values in Tables III and V. It follows that the level division values are greatly affected by larger bubble lengths and this fact should be given full consideration in the future. Similarly, the finding, stated in Section (3), about the scattering (O-C) being larger with growing bubble lengths, must be taken into account.

There arose the question of whether to use, in the reductions of observations with LVC, the expressions (4) and (5), or else, (4') and (5'). However, we found that the accuracy of the declination determination remained

k"

practically the same irrespective of what group of equations was used. That is why we propose the use of the expressions (4) and (5), obtained from the totality of laboratory measurements, considering the fact that there have been, with some of the observations, bubble lengths above 24 divisions.

Care must be taken in the future observations that the bubble length is not above 24 divisions.

5. COMPARISON OF THE RESULTS AND CONCLU-SIONS

In the second stage of our study we used the LVC observational data for verifying the reality of the mean division values of both levels, obtained by the laboratory examinations. To this end 37 nights were picked up, with different temperatures and bubble lengths, the condition being, however, that no less than 10 stars have been observed. Mean inclination for each individual night has been applied, derived separately from readings of both U and L levels. As the number of the observed stars on individual nights was different, corresponding weights have been attached to each particular observation.

In the analysis of this material we proceeded from the formulae of Bozhichkovich (1978), wherein the dependencies on temperature t_i and the bubble length l_i are combined:

$$\frac{\mathbf{i}_{U}^{"}-\mathbf{i}_{L}^{"}}{\frac{\mathbf{i}_{U}-\mathbf{i}_{L}}{2}} = (\Delta\lambda_{L}-\Delta\lambda_{U}) + (\beta_{L}-\beta_{U})(\mathbf{t}_{i}-\mathbf{t}_{o}) + (\gamma_{L}-\gamma_{U})(l_{i}-l_{o})$$

$$(6)$$

$$\frac{i_U - i_L}{i_U + i_L} \cdot \mathbf{k}^{"} = (\lambda_{oL} - \lambda_{oU}) + (\beta_L - \beta_U) (t_i - t_o) + (\gamma_L - \gamma_U) (l_i - l_o)$$
(7)

where:

- i_U and i_L denote the measured inclinations by the upper and lower levels, expressed in divisions;
- i''_{U} and i''_{L} measured inclinations by the upper and lower levels, expressed in seconds of arc; $\Delta \lambda_{U}$ and $\Delta \lambda_{L}$ — corrections to the level divisions in seconds of arc; λ_{oU} and λ_{oL} — most probable mean division value of the upper and lower levels in seconds of arc; β_{U} and β_{L} — temperature coefficients

 $\gamma_{\rm U}$ and $\gamma_{\rm L}$ – bubble lengths coefficients;

- constant (in seconds of arc), obtained by the expressions (4) and (5) as the sum of the division values of the upper and lower levels, corresponding to the mean temperature $t_0 = +10.0C$ and the mean bubble length: $l_0 = 22.0$ divisions, reduced to the mean moment 1978.0.

In applying these realtions to the observational material we obtained by the method of least squares, weights being attached (number of stars), the following values:

Table VI. Results of analyses according to equations (6) and (7)

	Values by the equation (6)	Values by the equation (7)
$\lambda_{01} - \lambda_{011}$		0.0116
$\Delta \lambda_{\rm I} = \Delta \lambda_{\rm II}$	-0.1436	
$\beta_1 - \beta_1$	0.0008	0.0009
$\gamma_{1} - \gamma_{U}$	0.0113	0.0226
r	0.28	0.17
Ereg.	0.15	0.70
eres.	0.005	0.07

Under the second variant the quadratic terms, depending on temperature and the bubble length, with the coefficients $\delta_{\rm L} - \delta_{\rm U}$ and $\xi_{\rm L} - \xi_{\rm U}$, have been added in (6) and (7). The results are presented in Table VII.

Table VII. Results of analysis according to eqs. (6) and (7) extended by the second order terms

Values by the equation (6) (quadratic term included)	Values by the equation (7) (quadratic term included)
	0.0294
-0.1457	_
0.006	0.0066
0.0118	0.0206
-0.0001	-0.0000
0.0015	-0.0053
0.30	0.20
0.09	0.45
0.005	0.06
	Values by the equation (6) (quadratic term included)

In the reduction of our observations the following level division values have been used: $\lambda_L = 0.992$ and $\lambda_U = 0.876$, whose difference $\lambda_L - \lambda_U = 0.116$. Now, let us see what one is getting by performing the analysis with the eqs. (6) and (7). By introducing the relation

 $\begin{array}{l} \lambda_L + \Delta \lambda_L = \lambda_{o\,L} \\ \lambda_U + \Delta \lambda_U = \lambda_{o\,U} \end{array}$

for the same T, t and *l*, using thereby the data from Table VI, we have

$$\lambda_{\rm L} - \lambda_{\rm U} = (\lambda_{\rm o\,L} - \Delta\lambda_{\rm L}) - (\lambda_{\rm o\,U} - \Delta\lambda_{\rm U}) = (\lambda_{\rm o\,L} - \lambda_{\rm o\,U}) - (\Delta\lambda_{\rm L} - \Delta\lambda_{\rm U}) = 0.155$$

whereas from Table VII

$$\lambda_{\rm L} - \lambda_{\rm H} = 0.175$$

Thus, the algorithm based on (6) and (7), though approximate one, yields rather accordant results.

By reducing the values from Tables VI and VII to 1976.0 i.e. to the instant for which the values λ_L and λ_U are deduced, the difference $\lambda_L - \lambda_U$ amounts to 0.154 if (1) is used and to 0.156 if (2) is used. These values can be considered as being comparable with $\lambda_L - \lambda_U = 0.116$.

On the other hand, from the laboratory measurements (reduced to 1976.0) taken together, we obtain

$$\lambda_{0L} - \lambda_{0U} = 0.015$$
 for the form (1)

$$\lambda_{0L} - \lambda_{0L} = 0.016$$
 for the form (2)

i.e. the values which are in fair harmony with those in Tables VI and VII (0.012 and 0.029).

On inspecting other data too in Tables VI and VII one may well conclude that the observational data of the LVC confirm the reality of the mean level division values as obtained by the laboratory method.

We are induced to state on the present occasion too that no substantial difference whatever is found between the results furnished by (1) and (2). Therefore, the linear form (1) should be accepted in future work, a suggestion that was put foreward in Section 2.

The authors wish to thank Dr. Teleki for his help and useful advice in the course of preparation of this paper.

REFERENCES

Bozhichkovich, Dj.: 1981, Publ. Obs. Astron. Belgrade, 26, 185.

- Grujić, R., Teleki, G.: 1982, Hvar Obs. Bull., Suppl. 1 Sadžakov, S., Mijatov, M.: 1968, Publ. Astron. Obs. Belgrade, 14, 208.
- Tárczy--Hornoch, A.: 1959, MTA Müszaki Tud, Oszt. Közl. Budapest, 33, 287.

nal

es,

ing

٠x

g d t t is

INVESTIGATION OF THE DIVIDED CIRCLE OF THE BELGRADE LARGE VERTICAL CIRCLE

Dj. Bozhichkovich and M. Mijatov

(Received October 15, 1983.)

SUMMARY: Corrections for 1080 diameters at 10' spacing of the 2' divided circle of the Belgrade Large Vertical Circle are determined according to Nikolić's method. All the diameter corrections are within \pm 1".5 limits, the accuracy being \pm 0.11. The values of the corrections are tabulated and illustrated graphically.

1. INTRODUCTION

In the period 1976-1980 observations, by absolute method, have been carried out with the Large Vertical Circle (LVC) of the Belgrade Observatory. These observations are aimed at elaborating a catalogue of absolute declinations of 308 bright stars in the zone $+65^{\circ}$ to $+90^{\circ}$ declination (Teleki et al., 1981). Certain preparatory works were thereby necessitated, one of them being the circle investigation. The method used was that of Nikolić (1965). The method has been given preference for its efficiency. The investigation was executed in the period February 8 – March 12, 1980.

The first ever investigation of the LVC division errors has been performed in 1964 at 4^o according to both Nikolić's and Bruns' methods (Nikolić, 1968a), Fig. 2.

All the measurements comprised by the present investigation are made visually, five microscope pairs having been mounted for the purpose. Three of these microscope pairs are LVC's "own" ones and other two have been borowed from the neighbouring Large Meridian Circle (LMC). The LMC microscopes had to be fastened on the LVC by means of a special supporting construction, whereby the general stability of the measuring system was preserved. Let it be noted that only two microscope pairs, 90° apart, are used in the regular astronomical observations with the LVC.

2. METHOD APPLIED

In spite of its high efficiency the Nikolić method is little known; up to now it has nowhere, outside Yugoslavia, been actually applied. We shall, therefore, expose it in more details, in particular one of its versions which, even the author did not insist on although it appeared to us as most suitable. The implementation of the Nikolić's method involves k microscope pairs, whereby k = 3 is a minimum, k = 5 being the actual number of pairs used in our investigation. Higher accuracy is attained with microscope pairs distributed at different angles θ_i (Fig. 1.). For the programme to be fulfilled in respect to the desired number of determined corrections and their weight, it is necessary to have determined the quantity $W = 180^{\circ}/\text{mn}$, where m – the number of measuring series comprised by a programme and n – the number of readings of all microscopes at rotating the circle in one sense. As usual, the readings of diameters are executed at both direct and inverse circle displacements.

Fig. 1. Arrangement of microscope pairs in conformity with Nikolić's method.

The microscopes can be installed in such a way that the relation $Y_i/W = Q_i + L_i$ (i = 1,2,.., k-1), where Y_i – angles between the prime and the rest of microscope pairs (Fig. 1) complies with one of the following contingencies:

- a. Q_i integers, divisible by k, $L_i = 0$. Each of the required corrections is obtained k times in one programme.
- b, Q_i integers. The remainders L_i are evenly distributed over the interval W. The required corrections are determined but once in a given programme. (We were met by this case four times).
- c. Q_i integers. The remainders L_i are unevenly distributed over the interval W. The number of determinations of individual corrections is different.

Nikolić (1968a, 1968b), in his investigation of the LVC and LMC circles at 4° spacing, whereby the second circle was. supplementary, investigated at 0° .5 spacing, applied the version a. We, as above indicated, applied the version b. in our determination of the 10' corrections of LVC circle diameters. We opted for the version b, because it seems as most convenient for detailed investigation of circles whose microscopes are read visually. Repeating the entire programmes enables the desired accuracy to be attained with all the required diameter corrections. Care should thereby be taken that any subsequent programme is started from the prime diameter in the first series of the first programme, increased by one L₁.

The measuring procedure unrolls in the following way: A particular diameter is first proclaimed reference diameter and brought under the prime microscop -micrometer. All of the microscop-micrometers are read. Next. the circle is rotated by the angle $180^{\circ}/n$, the microscopes being read again. Upon completing the n-th microscope reading, the circle is rotated in the inverse sense and the same readings are performed once more. This accomplished, the measurements under one series are completed. By adding the value W to the position of the initial diameter, the position of the initial diameter for the second series of measurements is obtained ect.

The basic treatment of the measuring results proceeds as follows: First, the means are formed of the readings of the same diameter obtained at both direct and reverse circle rotation. Denote by the mean values obtained x_{ji} (j = 1, 2, ..., n — the ordinal number of measurement in the series, i = 1, 2, ..., k — the ordinal number of the microscope pair with which the particular diameter has been measured). Let x_{ji} be expressed by

$$x_{ji} = X_{ji} + F_{ji} \tag{1}$$

where X_{ji} is unknown, exact, value of the mean reading x_{ji} of the diameter and $F_{ji} = f_{ji} + \epsilon_{ji}$, the measuring error in x_{ji} consisting of the looked for error f_{ji} of the measured diameter and of ϵ_{ji} – measuring error in that diameter. The mean value of the readings by k microscope pairs is:

$$\frac{1}{k} \sum_{i} x_{ji} = \frac{1}{k} \sum_{i} X_{ji} + \frac{1}{k} \sum_{i} F_{ji}$$
(2)

Form the differences $B_{ii} = (2) - (1)$:

$$B_{ji} = \frac{1}{k} \sum_{i} X_{ji} - X_{ji} + \frac{1}{k} \sum_{i} F_{ji} - F_{ji}$$

or

$$B_{ji} = C_{ji} + \frac{1}{k} \sum_{i} F_{ji} - F_{ji}$$
 (3)

By summing (3) according to j and forming the means we have

$$B_{i} = C_{i} + \frac{1}{kn} \sum_{j} \sum_{i} F_{ji} - \frac{1}{n} \sum_{j} F_{ji}$$
(4)

where

$$C_i = \frac{1}{n} \sum_{j} C_{ji}$$

Having regard to the nature of the quantities concerned there will be, for the same i, $C_i = C_{ii}$.

Thus, the difference of the relations (3) and (4) gives:

$$E_{ji} = -F_{ji} + \frac{1}{k} \sum_{i} F_{ji} + \frac{1}{n} \sum_{j} F_{ji} - \frac{1}{kn} \sum_{j} \sum_{i} F_{ji}$$
(5)

In the b. version any one of m measuring series under some of p programmes will furnish nk values of E_{ji} . In other words, any of p programmes will supply knm=N values in the form E_{ji} , i.e. there will be one value E_{ji} for any one of the diameters investigated. Their mean value E for any of the investigated diameters, according to (5) will be:

$$E = -F + \frac{1}{kp} \Sigma F + \frac{1}{n} \Sigma F - \frac{1}{kpn} \Sigma F$$
(6)

For the sake of clarity we omitted subscripts from this relation (four subscripts with each F), as well as the

manyfold symbols Σ . Otherwise, close attention should be paid to these notations in the actual treating.

As evident, the quantities E with any of the of N investigated diameters consist of: -F - the required mean measured correction to the given diameter. The term $(1/pk)\Sigma F$ contains the measured errors of the non-uniformly distributed diameters of the investigated circle. The value of this term is determined by successive approximations (iterative procedure). All the values of this term lied within \pm 0."30, but treated as accidental quantities, they amounted on the average to \pm 0."11. The last term in (6) $(1/kpn)\Sigma F$ contains the measured errors of a large number of uniformly distributed diameters, its value being, accordingly, unconsequential and negiligible. The term $(1/n)\Sigma F$ contains mainly the errors of *n* uniformly distributed diameters. On account of the short period division errors, the value of this term. if the values of n are relatively small, while being small, is not necessarily negligible. However, this term cannot be determined from the above measurements alone and its values emerge, in some respect, as the systematic errors introduced by Nikolić's method as such. This neglecting should be taken care of when evaluating the accuracy degree of the errors obtained. With the more up to date circle division reading, as for instance the photographic and photoelectric reading, which afford measurements to proceed considerably faster, n can attain considerably greater values. By this very fact this error is becoming insignificant. With the measuring procedure suggested by Bozhichkovich (1981), which provides for the uniformly rotating circle and the photoelectrical registering of the division positions, the term under consideration would contain the errors of all the diameters, for all the diameters would have been read k times within one series. In that case the last two terms in (6), in addition to being trivial, would have been eliminated. All the necessary measurements would be executed by one or two series (depending on the accuracy aspired at) within about three hours.

As above indicated, the term $(l/pk)\Sigma F$ in (6) can be determined by successive approximations. In the first step we take, instead of the unknown values of F, the corresponding values E, thus

$$E_{1} = E + \frac{1}{pk} \Sigma E$$

$$E_{2} = E + \frac{1}{pk} \Sigma E_{1}$$

$$E_{i} = E + \frac{1}{pk} \Sigma E_{i-1}$$
(7)

The operation is repeated until the term $(l/pk)\Sigma E_i$ has become practically constant, i.e. until $E_i \approx E_{i-l}$. This is usually arrived at by the second or third approximation. In addition to the procedure just cited, of settling the question of the term $(l/pk)\Sigma F$, the following one has also been applied. The values of E (6), are miltiplied by k/k-1. Denoting by E₀ the result obtained, there will be E₀ = (k/k-l)E. Thus

$$E_{o} = -F + \frac{1}{p(k-1)}\Sigma F + \frac{1}{n}\Sigma F - \frac{1}{pn(k-1)}\Sigma F$$
(8)

The successive approximations proceed as above:

$$E_{1} = E_{0} + \frac{1}{p(k-1)} \Sigma E_{0}$$

$$E_{2} = E_{0} + \frac{1}{p(k-1)} \Sigma E_{1}$$

$$E_{i} = E_{0} + \frac{1}{p(k-1)} \Sigma E_{i-1}$$
(9)

This procedure seems to be more correct if one keeps in mind the way of calculating E, the expressions (1) through (6) as well as the quantities appearing in the terms (6). Moreover, it supplies the final results somewhat faster. Following the third approximation the differences between the results, yielded by the two procedures, were reduced to ± 0.015 , i.e. the final E were practically equal.

In consideration of all above stated, the accuracy of visual measurements inclusive, the quantities expressed by (7) or (9) can even with E_1 be taken as the true corrections to the given circle diameter.

How close is the approximation of errors, derived in the manner just indicated, can be estimated by using the expression, deducible from (9), considering all the quantities in it as being independent. Thus we have

$$\epsilon_{\rm E}^2 = (1 + \frac{1}{p(k-1)}) \epsilon_{\rm o}^2$$
 (10)

By identical procedure the error ϵ_{E_0} in (8) is also determined. It is thereby assumed that we have removed completely all errors in the nonuniformly distributed diameters, appearing in the term $(1/p(k-l))\Sigma F$, and that the measuring errors in them were the only remaining. Therefore

$$\epsilon_{E_0}^2 = \left(\frac{1}{p} + \frac{1}{p(k-1)} + \frac{1}{pn} + \frac{1}{pn(k-1)}\right) \epsilon_X^2 + \left(\frac{1}{n} + \frac{1}{pn(k-1)}\right) e^2$$
(11)

Here, by ϵ_x (previously by ϵ_{ji}) the measuring error of one diameter. The determination (evaluation) of ϵ_x is usually accomplished through measurements of the same diameters in both senses of circle motion within one series. The last term appears as a result of the neflectings, related to earlier, conditioned by the method applied. By *e* are denoted the true accidental errors in the circle lines positions, characteristic of workmanship quality of individual circles. Since we are dealing with the sums of errors of the uniformly distributed diameters, we can assume their systematic errors as mutually cancelled, except for the shortperiodic ones, whose effect should be taken into account at accuracy estimating. The errors *e* can otherwise be estimated by differences of corrections in neighbouring diameters.

3. CIRCLE INVESTIGATION

Correction determination of 1080 circle diameters (10' spacing) by Nikolić's method involved the mounting of k=5 visual micrometer pairs with the following angular spacing in reference to the prime microscope pair: $Y_1 = 17^{\circ}20^{\circ}$, $Y_2 = 36^{\circ}20^{\circ}$, $Y_3 = 85^{\circ}10^{\circ}$ and $Y_4 =$ 120°20'. The measurements implied p = 4 programmes each comprising m = 12 series. Accordingly, 48 series in all, were produced. Any individual series involved n = 18circle positions, at each 10° distance at the direct and as many at the retrograde circle rotating. The starting diameter was the one defined by the 130°0° division line, the instrument's tube occupying thereby a horizontal position. Since we had $W = 50^{\circ}$, the starting diameter in the second series was the one at 130°50° marking. The starting diameter in the remaing three programmes were those at 13°10'. 130°20' and 130°30'. Unfortunately, we were denied the possibility of producing the fifth programme, which should have started at 130°40' marking due to our obligation of returning two microscope pairs borrowed from the LMC.

A half of the measurements (two programmes) was carried out by Dj. Bozhichkovich and the other half was executed jointly by two observers: Dj. Bozhichkovich and M. Mijatov. In those instances where two observers were at work, the former observer read off the first five microscopes and the latter the reamaining opposite five. Accordingly, the measurement of one diameter is constituted by the mean of readings by both observers. The measurements, loudly pronounced, were recorded on a magnetoscope tape, to be later, usually the next day, replayed and transcribed in the observer's notebook.

The measurements were produced in the afternoon and evening hours in the closed pavilion, mostly by cloudy or reiny weather. Most often, two series of measurements daily were realized. The measurements of the first series were performed usually by one observer and those in the second series by both observers.

The average series of measurements took about 2h30m if executed by one observer and 1h45m if performed jointly by both observers It took about 102 hours in all to accomplish the entire examination. The air temperature inside pavilion ranged from 0.5°C to 7.0°C, the average being 3.6°C. The maximum temperature variation during a series amounted to 1°C, its average being 0.3°C. The temperature circumstances, prevailing at our examinations, may therefore be termed as rather stable. The temperature inside instrument was not measured. As a precaution measure, the circle illumination was turned on 15 minutes before starting the examinations. When two measuring series in the same evening were produced, the circle illumination between the first and the second series was not interferred with.

As only diameters at 10'spacing were measured, the interpolation had to be performed for the go-between diameterers with 2' spacing. In order to reduce the effect of the accidental errors in the directly investigated diameters, on those interpolated ones, one diameter is understood as a mean of three consequtive division lines. The division lines 8', 10' and 2' were set upon. In placing the desired diameter under the prime microscope pair. care has been taken to get the 10' line as close to the microscope index as possible, in order to achieve the readings on all the microscopes to be approximately equal. In view of low eccentricity (about 5'') of the LVC circle, this presented no difficulty. Hence, we even could dispense with the micrometer runs.

4. THE CORRECTIONS DEDUCED AND THEIR AC-CURACY

The forming of reading means and their cheking for gross errors was performed in the observer's notebooks The diameter readings were transferred on punched cards for the processing on the WANG 2200B computer of the Belgrade Observatory.

Following three successive approximations, corrections were derived of 1080 diameters. These corrections are presented in Table 1. These corrections appear with three decimal places as a result of our computer failing to round up the figures. The above corrections are also illustrated in Fig. 3. As evident, the LVC circle diameter corrections lie all within \pm 1".5 boundaries.

By means of the above corrections we computed:

$$\left(\frac{\Sigma E^2}{1079}\right)^{\frac{1}{2}} = \pm 0.50; \left(\frac{\Sigma (E_i - E_{i+1})^2}{1079}\right)^{\frac{1}{2}} = \pm 0.25;$$
$$\frac{\Sigma |E|}{1080} = 0.40; \quad \frac{\Sigma |E_i - E_{i+1}|}{1080} = 0.20$$

Table 1. Corrections for 1080 diameters at 10' spacing of the 2' Table 1 (continued) divided circle of the Belgrade LVC.

-			and the second sec							and the second se					
	00	-0.214	0,135	0,243	-0,"390	0.355	-0".206	6	40	-0.586	-0.297	-0.507	$-0''_{127}$	-0.445	-0.778
	1	0.384	0.444	0.343	0.213	0.021	0.293	6	5	-0.534	-0.083	-0.444	-0.884	-0.399	-0.475
	2	0.200	-0.135	-0.003	-0.342	-0.019	-0.061	6	6	-0.750	-0.593	-0.288	-0.638	-0.191	-0.592
	3	-0.092	0.011	-0.159	-0.228	-0.050	-0.230	6	7	-0.452	-0.632	-0.260	-0.136	0.049	-0.452
	4	-0.117	0.114	0.027	-0.276	-0.100	0.050	6	8	-0.346	-0.236	-0.285	-0.371	-0.145	-0.217
	5	-0.226	-0.439	-0.263	-0.147	-0.189	-0.206	6	9	-0.319	-0.288	-0.451	0.208	-0.162	-0.591
	6	-0.299	-0.546	-0.113	-0.315	-0.257	-0.712	7	0	-0.178	0.024	-0.194	-0.169	-0.257	-0.025
	7	-0.442	-0.684	-0.756	-0.476	-0.696	-0.394	7	1	-0.587	-0.275	-0.463	-0.378	-0.395	-0.447
	8	-0.814	-0.747	-0.794	-0.791	-0.636	-0.985	• 7	2	-0.281	-0.415	-0.003	-0.194	-0.279	0.004
	9	-1.019	-0.814	-0.538	-0.748	-0.998	-0.575	7	3	-0.084	-0.297	-0.096	-0.351	-0.461	-0.233
	10	-0.537	-0.822	-0.896	-0.671	-1.050	-0.838	7	4	-0.437	-0.191	-0.141	-0.249	-0.191	-0.343
	11	-0.856	-0.950	-0.859	-0.904	-1.003	0.717	7	5	-0.026	-0.050	-0.528	-0.305	-0.441	0.210
	12	-0.887	-0.821	-0.942	-1.017	-0.671	-0.675	7	6	-0.326	-0.269	-0.337	-0.037	-0.048	-0.148
	13	-0.940	-0.851	-1.225	-0.865	-0.937	-1.010	7	7	-0.058	-0.361	0.122	-0.146	-0.063	-0.065
	14	-0.915	-0.819	-0.642	-0.965	-0.444	-0.832	7	8	0.046	0.191	0.313	-0.038	0.120	-0.119
	15	-0.741	-0.411	-0.495	-0.599	-0.698	-0.181	7	9	0.153	-0.056	0.138	0.176	0.226	-0.141
	16	-0.325	-0.850	-0.750	-0.837	-0.903	-0.644	8	0	0.530	0.260	0.705	0.333	0.195	0.224
	17	-0.571	-0.448	-0.786	-0.806	1.067	-0.869	8	1	0,162	0.222	· 0.054	0,302	-0.004	0.100
	18	-0.504	-0.623	-0.402	-0.369	-0.538	-0.316	8	2	-0.044	0.003	0,002	-0.050	-0.049	0.157
	19	-0.005	-0.540	-0.375	-0.352	-0.248	-0.216	8	3	0.014	-0.068	-0.254	-0.160	0,207	-0.285
	20	-0.743	-0.735	-0.588	-0.169	0.157	0.098	8	4	0.004	-0.369	-0.496	-0.565	-0.626	-0.692
	21	0.224	-0.081	0.081	0.006	0.220	0.071	8	5	-0.327	0.517	-0.415	-0.446	-0.259	-0.301
	22	0.097	0.165	-0.195	-0.369	-0.175	-0.089	8	6	-0.577	-0.543	-0.341	-0.511	-0.083	-0.204
	23	0.090	0.076	-0.546	0.192	-0.280	-0.215	8	7	-0.518	-0.336	-0.103	-0.528	-0.417	0.006
	24	-0.111	-0.399	-0.082	-0.229	0.013	-0.073	8	8	-0.066	0.190	-0.406	-0.133	0.082	0.108
	25	-0.361	-0.588	-0.053	-0.476	-0.502	-0.941	8	9	0.192	-0.074	-0.266	-0.009	-0.310	-0.021
	26	-0.141	-0.069	-0.086	0=347	-0.353	-0.300	9	0	0.056	-0.429	-0.294	-0.097	-0.690	-0.369
	27	-0.231	0.154	-0.266	-0.552	-0.167	-0.226	9	1	-0.327	-0.438	-0.256	-0.397	-0.278	-0.517
	28	-0.405	-0.386	-0.335	-0.017	0.108	-0.112	9	2	-0.415	0.125	-0.008	0,266	-0.301	-0.066
	29	0.046	0.026	0.015	0.116	-0.204	-0.005	9	3	0.134	0.576	0.320	0.125	0.151	0.278
	30	-0.113	-0.350	-0.175	-0.442	-0.358	-0.792	9	4	0.497	0.759	0.406	0.430	0.389	0.798
	31	-0.526	0.032	-0.466	-0.383	-0.398	-0.408	9	5	0.524	0.665	0.352	0.541	0.802	0.518
	32	-0.167	-0.094	0.376	-0.202	0.125	0.029	9	6	0.289	0.030	-0.142	-0.024	-0.249	-0.154
	33	-0.083	0.074	0.346	-0.165	-0.113	-0.018	9	7	-0.147	-0.058	-0.028	0.196	0.086	-0.021
	34	-0.367	-0.367	-0.101	-0.293	-0.217	-0.555	9	8	0.017	0.263	0.322	-0.050	-0.105	0.165
	35	0.253	-0.187	-0.236	-0.171	-0.217	-0.428	9	9	0.053	0.243	0.125	-0.147	0.389	0.218
	36	-0.584	-0.847	-0.586	-0.999	-0.884	-0.959	10	0	0.202	-0.030	0.159	-0.145	-0.308	0.389
	37	-0.643	-0.639	-0.667	-0.576	-0.886	-0.666	10	1	0.076	0.003	0.018	-0.062	-0.214	-0.133
	38	-0.027	0.448	0.635	0.072	0.672	0.356	10	2	-0.554	-0.542	-0.354	-0.391	-0.477	-0.804
	39	0.016	0.207	0.034	0.356	-0.045	-0.033	10	3	-0.366	-0.629	-0.475	0.167	0.413	0.473
	40	0.047	0.078	-0.041	0.243	0.371	0.180	10	4	0.207	-0.320	-0.552	-0.639	-0.295	-0.015
	41	-0.129	0.008	-0.060	0.352	0.074	0.075	10	5	0.151	-0.189	-0.044	0.393	0.455	0.413
	42	0.190	-0.616	-0.104	-0.191	-0.187	-0.257	10	6	0.591	1.005	1.021	1.019	1.312	1.075
	43	-0.051	-0.352	-0.262	-0.374	-0.215	-0.455	10	17	0.962	0.840	1.185	1.261	1.084	0.752
	44	-0.482	-0.293	-0.45/	0.061	-0.444	-0.320	10	8	0.635	0.831	0.879	0.814	0.831	1.042
	45	-0.377	0.085	-0.213	-0.211	-0.105	-0.016	10	9	1.091	0.930	0.764	0.786	1.069	0.997
	46	-0.155	-0.573	-0.351	-0.546	-0.614	-0.019	11	0	0.633	0.538	0.532	0.645	0.695	0.840
	4/	-0.275	-0.140	-0.399	-0.379	-0.123	-0.405	11	1	0.546	0.625	0.703	0.841	0.505	0.432
	48	-0.275	-0.461	0.148	-0.127	-0.296	-0.303	11	2	0.584	0.847	1.153	1.177	0.943	0.882
	49	-0.039	-0.098	-0.265	-0.098	-0.078	-0.392	11	3	1.343	0.849	C.929	0.948	1.187	0.914
	50	-0.248	-0.569	-0.384	-0.156	-0.332	-0.313	11	4	0.886	0.993	0,991	1,138	0.855	1.175
	51	-0.390	-0.531	-0.528	-0.53/	-0.211	-0.279	11	5	1.103	1.049	1.2/0	1.106	0.8/1	0.858
	52	-0.234	-0.304	-0.324	-0.211	-0.307	-0.669	11	6	0.861	1.092	1.205	1.128	1.265	1.211
	53	-0.489	-0.413	-0.298	-0.296	-0.303	-0.289	11	1	1.213	0.876	0.945	0.932	1.102	1.239
	54	-0.170	-0.312	0.172	-0.135	-0.280	-0.181	11	ð	0.951	1.158	0.738	0.588	0.571	1.205
	55	-0.145	0.007	-0.216	-0.479	-0.176	-0.086	11	9	1.130	1.063	0.754	0.656	0.894	0.718
	50	-0.369	-0.931	-0.630	-0.492	-0.5/0	-0.544	12	0	0.631	0.614	0.849	0.632	1.123	0.861
	50	-0.388	-0.182	-0.389	-0.489	-0.490	-0.4/3	12	1	1.196	1.027	0.893	1.379	1.072	1.022
	50	1 441	-1.102	-0.880	-0.8/8	-1.384	-0.842	12	2	1.014	1.149	0.861	1.226	1.116	1.046
	59	-1.441	-1.090	-1.10/	-1.013	-0.911	-0.909	12	5	1.025	1.348	1.30/	1.263	1.022	1.454
	61	-0.742	-0.429	-0.003	0.570	-0.502	-0.6/1	12	4	1.186	0.472	0.605	0.684	0.446	0.830
	62	-0.041	-0.000	-0.304	0.199	-0.443	-0.741	12	5	0.170	0.453	0.630	0.492	0./12	0.631
	62	0.754	-0.410	0.424	0.100	0.700	-0.247	12	0	0.467	0.591	0.531	0.542	0.444	0.560
	05	-0.754	-0.430	-0.434	-0.//4	-0.709	-0./04	12	1	0.231	0.5//	0./30	0.35/	0.314	0.220

able I (continued

1280	0,489	0,135	-0.008	0.464	0.382	0.385
129	0.409	0.340	0.174	0.460	0.327	0.350
130	0.121	0.303	0.381	0.758	0.344	0,136
131	0.400	0.238	0.412	0.165	0.295	0.345
132	0.129	0.394	0.207	0.237	0.308	0.309
133	0.063	0.094	0.096	0.167	0.228	0.121
134	0.043	0.087	0.346	0.153	0.500	0.256
135	0.048	0.040	-0.043	0.197	-0.261	0.168
136	0.237	0.466	-0.146	0.328	0.363	0.456
137	0.072	0.181	0.193	0.513	0.595	0.466
138	0.319	0.076	0.241	0.465	0.244	-0.023
139	0.201	0.668	0.555	0.191	0.391	0.378
140	0.354	0.402	0.168	0.297	0.164	0.317
141	0.464	0.081	0.447	0.082	0.283	0.253
142	0.125	0.147	0.145	-0.162	-0.020	0.125
143	0.078	-0.318	0.115	-0.064	0.133	0.127
144	-0.179	0.344	0.034	0.058	0.046	-0.000
145	0.148	-0.180	-0.040	0.207	-0.282	-0.145
146	0.215	0.307	0.004	0.150	-0.120	0.243
147	-0.019	0.037	-0.025	0.221	0.119	0.183
148	0.094	0.336	0.439	0.474	0.261	-0.054
149	0.084	0.031	0.386	0.085	0.136	0.239
150	0.404	0.711	0.176	0.305	0.617	0.117
151	0.403	0.375	0.374	0.340	0.337	0.342
152	0.394	0.823	0.439	0.684	0.581	0.575
153	0.589	0.487	0.814	0.543	0.255	0.359
154	0.582	0.444	0.220	0.449	0.507	0.217
155	0.025	0.255	0.426	0.306	0.218	0.206
156	0.240	0.636	0.296	0.595	0.304	0.209
157	0.342	0.168	0.364	0.314	0.200	0.155
158	0.390	0.179	-0.045	0.295	0.376	0.323
159	0.255	0.021	0.391	0.138	0.346	0.545
160	0.124	0.572	0.267	0.354	0.398	0.385
161	0.153	0.321	-0.119	0.330	0.123	0.488
162	0.180	0.032	0.095	0.087	0.264	0.051
163	0.216	0.229	0.263	0.099	-0.057	0,176
164	0.315	0.222	0.142	-0.004	0.166	0.316
165	0.089	0.024	0.048	0.449	0.310	0.047
166	0.509	0.528	0.355	0.050	0.251	0.224
167	0.414	0.565	-0.074	0.281	-0.077	0.264
168	0.268	-0.218	-0.134	-0.351	-0.387	-0.505
169	- 0.342	-0.386	- 0.309	-0.258	-0.136	-0.330
170	-0.368	-0.293	-0.289	-0.687	-0.586	- 0.334
171	-0.543	-0.427	-0.266	- 0.598	0.010	-0.172
172	0.165	-0.279	- 0.246	-0.342	0.355	0.036
173	-0.259	-0.379	-0.434	-0.215	0.143	-0.406
174	-0.347	-0.064	0.111	0.519	0.131	0.149
175	0.136	0.071	0.263	0.038	0.164	0.078
176	0.312	0.572	0.372	0.236	0.346	0.292
177	0.517	0.085	0.225	0.014	0.246	0.286
178	-0.173	0.026	0.423	-0.032	-0.154	-0.102
179	0.470	-0.176	-0.029	-0.124	-0.679	- 0.159
	1115 PK	and the Market of the				

By making comparison of the old (Fig. 2) and the new (Fig. 3) circle corrections one realizes that our circle's division did not undergo any appreciable change in 16 years elapsed, even though some damaging is now noticeable, which previously was not present. No wonder then that the general features of the LVC circle corrections demonstrate close resemblance with those of the LMC corrections (Sadžakov, Šaletić, 1968; Trajkovs-

1.2

Fig. 3. Diameter corrections of the Belgrade LVC determined in 1980.

Fig. 4 Corrections to the mean readings of two perpendicular diameters.

ka, 1979). This may, in some way, be taken as providing confirmation of the corrections, brought out by this investigation, being real ones, as both circles have been manifactured at Askania at about the same time (early twenties).

The corrections to the mean readings of two diameters, lying at 90° to each other, are illustrated in Fig. 4. It can be seen that these mean corrections, denoted by \overline{E} , are all within the \pm 0."85 limits. We calculated, as before

$$\frac{\left(\sum_{i} \overline{E}^{2}\right)^{\frac{1}{2}}}{\frac{5}{540}} = \pm 0.27; \ \frac{\left(\sum_{i} (\overline{E}_{i} - \overline{E}_{i+1})^{2}\right)^{\frac{1}{2}}}{\frac{5}{540}} = \pm 0.17;$$
$$\frac{\sum_{i} |\overline{E}|}{\frac{5}{540}} = 0.21; \ \frac{\sum_{i} |\overline{E}_{i} - \overline{E}_{i+1}|}{\frac{5}{540}} = 0.14$$

From the above numerical values, as well as from the curve illustrating the mean corrections Fig. 4, one realizes that they are not large.

The determination of the mean square error of the corrections to 1080 diameters at 10' spacing, proceeds by inserting in the expressions (10) and (11), developed

for the accuracy estimate of the correction determination by Nikolić's method: the number of programmes (p=4), number of microscope pairs (k=5), and the number of circle positions for one of rotation senses (n=18).

In order to determine ϵ_x — mean square error of the mean value of two readings the same diameter, the readings made at both direct and reverse circle rotation were analysed. In this, the measurements of the same diameters in the framework of 36 series (12 series had to be left unused on account of an unexpected technical difficulty) were emploed. The results was $\epsilon_x = \pm 0^{\circ}$. 18.

Our measuring series lasted, on the average, four times $30^{\rm m}$ – the usually admitted duration of a series. Hence, we tried to bring out, if possible, the diameter changes depending on time. It was demonstrated by analysis that some changes of the kind were present in the course of practically all the series. Yet, this dependence turned out to be mostly weak, the correlation coefficients being usually bellow 0.5. This was also confirmed by the error $\epsilon_x = \pm 0$ ".155, deduced from the differences of reading the same diameter, relieved of the time dependent effects.

There were, in the course of these measurements, seven days in a row on which no interference whatever with the microscopes has taken place (e.g. illumination adjustment, lamp bulbs replacements, microscope drum displacings accidental knocks against some from among the microscope, forest"), except for the focusing. Over this period the values B_i in (4), characterizing the microscope positions relative to the fictitious mean one, do not practically display any variation. This, in turn, lends a kind of confirmation of high stability of the microscopes, having once been fastened in their places. Hence our inclination to regard the slight displacements of the microscopes during the measurements as being due to the observers' fatigue. One should keep in mind that the mean reading of any diameter is formed from the readings made at both direct and reverse circle rotation, entailing approximately the same mean time for all mean diameter readings. Consequently, the slight variations stated in the diameter readings are largely conpensated and do not practically affect the mean readings. All things considered, the mean square error (in the diameter double readings) we adopt, is $\epsilon_x = \pm 0$ ".15. It is obvious at once that it is practically equal to the conventional error of a single reading by visual microscopes. resulting from series four times as short (Zverev, 1954).

Owing to the neglectings, above indicated, entailed by the method as such, an error is comitted whose amount can be estimated in the following way. With regard to the uniform distribution of the diameters, their systematic error can be assumed as largely removed (save the short period ones). Consequently, the accidental diameter errors are the only ones left over. From the differences of the neighbouring corrections we find the accidental errors in our circle diameters $e = \pm 0$ ".18, e = $\pm 0^{\circ}.25/\sqrt{2}$. On inserting these values in the second term in (11), its value becomes $(\pm 0".04)^2$. However, as the possible existence of short period division errors are disregarded by this way of treating, we scrutinized the values of the sums $(1/15)\Sigma E$ and $(1/20)\Sigma E$. The deduced values have further been treated as random quantities. Their possible disregarding would produce errors \pm 0".06 and \pm 0".05, respectively. Even though these values have, in their turn, been obtained from corrections affected by errors, it still seems to us that the value $(\pm 0^{\circ}.06)^2$ of the second term in (11) is a fair representative of the error comitted by the said neglectings.

On inserting the above values in (10) and (11) we obtain $\epsilon_E = \pm 0$ ".11 for the mean square error of our circle division corrections.

The trustworthiness of the mean square error just stated can be judged from the measurings executed in the first series, repeated twice, of the first programme. The second measuring tour of the first series differed from the first tour in that each circle line was set on twice. The necessary time for such a measuring series to be performed by a single observer amounts to 4h30m, which is far to long. We, therefore, abstained from this sort of measurements. The results of this lengthy measurement series were processed but were omitted from the actual derivation of corrections. Since the same diameters were measured in both series, 90 values according to (5) were furnished by each one of the series. From the differences of the corresponding values we deduced $\epsilon_{\rm E_{11}} = \pm 0$ ".24. The fact being that the corrections are practically obtained as the mean value of four independent values (5) (one from each programme, for each diameter), we have $\epsilon_{\rm E} = \pm 0$ ".12, which agrees well with the adopted one.

The mean correction to two perpendicular diameters investigated were determined with the accuracy $\epsilon_{\rm E}$ = ± 0".09.

Considering that, at determining the zenith distance of the observed celestial object, two positions of the instrument and the circle (CE and CW) are made use of, the zenith distance can be assumed free from the systematic errors in the circle diameters involved, with an accuracy of \pm 0".06.

5. CONCLUSIONS

From what has above been brought foreward the following may be stated:

- 1. The Nikolić's method of circle investigation proved once again highly efficient. It can, therefore, be recommended for such investigation, in defiance of some minor deficiencies. This applies in particular to investigations involving automatic circle reading. If the version b, of the method is used, as we ourselves did, it is desirable to accomplish k = 3 programmes. where k — the number of microscope pairs. For higher accuracy it is necessary, before starting k new programmes, to have microscope pairs redistributed, ect.
- 2. The investigation of the Belgrade LVC circle diameters at 10' spacing has been inplemented with the mean error $\epsilon_E = \pm$ 0".11. All the corrections are found within \pm 1".5 limits, displaying a manifestly systematic character. There are no distinct jumpings from one division line to its next, so all the measurements can be assumed as having been executed without gross errors.
- 3. It follows from our investigations that LVC circle is of good quality, its main features having not undergone any noteworthy changes in 16 years elapsed since its first investigation.

ACKNOWLEDGMENTS

on s to

)m,

his

thy

ted

me

ues

the

ues the of ne, ees

ers = ±

ice the of, :he ith

he

ed be of to If es ۶s. er w d,

eıe re у zs e 1-

f e S

The authors would like to thank Lj.Nikolić, the author of the method of circle investigation we applied, and G. Teleki for their assistance in the course of preparations and execution of this work. We are equally grateful to V.Sekulović and Z.Knežević for help at computer processing.

REFERENCES

Bozhichkovich, Dj.: 1981, Publ. Astron. Obs. Sarajevo, 1, 93.

Nikolić, Lj.: 1965, Dissertation, Belgrade.

Nikolić, Lj.: 1968a, Publ. Astron, Obs. Belgrade, 14, 222.

Nikolić, Lj.: 1968b, Publ. Astron. Obs. Belgrade, 14, 145.

- Sadžakov, S., Šaletić, D.: 1968, Publ. Astron. Obs. Belgrade, 14, 159.
- Teleki, G., Mijatov, M., Bozhichkovich, Dj.: 1981, Trudy 21th Astrom. Konf. USSR, Tashkent, 154. Trajkovska, V.: 1979, Publ. Astron. Obs. Belgrade, 26, 193.

Zverev, M.S.: 1954, Uspehy Astron. Nauk, 6, 104.

INVESTIGATION OF WIND EFFECTS ON THE BELGRADE LATITUDE OBSERVATIONS

R. Grujić and G. Teleki

(Received October 26, 1982; revised April 29, 1983)

SUMMARY: It is demonstrated that the alterations (thermal insulation of the zenith telescope, rebuilding of the pavilion, improvements in the observational procedure and data processing) effected in the period 1968–1970 (Milovanović et al., 1981) resulted in a notable reduction of the wind effects on the Belgrade latitude observations and a general enhancement of the accuracy of observation. It is found that in the period 1976–1981 the systematic effects of winds from N–W quadrant are stronger than those produced by winds from S–E quadrant (most of our observations are made by S–E winds). The suitability to application of some expressions for the calculation of wind effects on latitude is considered.

1. INTRODUCTION

Wind effects or, more broadly, the air flow effects, on the latitude observations made with "Askania" zenith telescope, 110/1285 mm, at Belgrade Observatory, have repeatedly been studied (Ševarlić, 1961; Te¹eki, 1967; Grujić, 1975). That we, once more, return to this question, is not a result of our mere wish to routinely reiterate such kind of investigation. It is rather a consequence of two important novel facts connected with our latitude observations:

First, in the period 1968–1970 alterations (Milanović et al., 1981) have been effected, implying: thermal insulation of the zenith telescope, rebuilding of the pavilion. improvements in the observational procedure and data processing.

Second, from 1976 on, both the wind direction and velocity at 12 m altitude, are regularly measured at observing each single star pair by means of an anemometer. No such systematic measurements have been made before 1976. Instead, only mean characteristics of the wind during observation have been roughly estimated from an ordinary weather vane.

Milovanović et al. (1981) have demonstrated that in consequence of the above quoted alterations the effects of the external factors have successively been diminished, i.e. the accuracy of the latitude determination has grown considerably higher. It has been established, however, that the internal accuracy has increased perceptibly more than the external one.

In our considering the question of why this is so we made inquiry into the wind effects on observations carried out in the five years period 1976–1981, that is, the period following the installation of the anemometer. The

fact should particularly be kept in mind that there are in the ceiling only two narrow slits, through which the observations are made, and that the dew cap of the instrument all but reaches the ceiling. Accordingly, the instrument is insulated, in the course of observation, to the maximum possible degree, from the external influences, unlike its previous condition (i.e. before alterations implemented in 1968 to 1970), when it was practically in the open air during observation. We had, therefore, all reasons to expect substantially reduced wind effects on the observed latitude, and an improved accuracy of observation. This applies in particular to the internal accuracy. The present analysis has been performed in order to verify to what extent our expecations were justified.

2. BASIC FORMULA

Basic quantities operated with in our analysis are

$$\Delta \varphi = \Delta \varphi_{cal} - \Delta \varphi_{obs} \tag{1}$$

supplied by each one of the subgroups in our observing programme in the period 1976–1981. φ_{cal} denotes the calculated latitude values according to the pole coordinates as published by BIH and the mean Belgrade latitude +44°48' 10".354. φ_{obs} is the mean latitude value resulting from the observation of five star pairs – that many as each one of the subgroups is constituted of.

3. DEPENDENCE OF $\Delta \varphi$ ON THE WIND VELOCITY

The following simple relation between $\Delta \varphi$ and the wind velocity V(m/s) is assumed

$$\Delta \varphi = a + b \left(V - V_0 \right) \tag{2}$$

where a and b are unknown and V_o a constant (= mean value of the totality of quantities V).

In this way we obtain, with a small correlation coefficient r = 0.05,

$$\Delta \varphi = -0.0167 + 0.0041 (V - 2.1)$$

and

2.9

ith

nd in

1 a

iod

ose -E

ind

in bruru-

he es,

15

lly

all

on

b-

:11-

ler

d.

1)

ng

he

a-

de

11-

ny

Y

he

$$\Delta \varphi = -0.0253 + 0.0041 \text{ V}$$

The latter formula can be compared with the one derived by Ševarlić (1961) from the observations with the same instrument in the period 1949 to 1957:

 $\Delta \varphi = -0.014 + 0.008 \text{ V}$

From these data there follows — although not quite convincingly — that the systematic wind velocity effect on φ has been cut by two.

4. DEPENDENCE OF $\Delta \varphi$ ON THE WIND DIRECTION

The probability of $\Delta \varphi$ being dependent on the wind direction has been examined by means of χ^2 distribution. If the observational material is treated as a whole then a very low probability value is obtained. But some regularity in the systematic effects can be expected on considering the winds by separate quadrants, i.e. S-E quadrant winds (66% of all winds) and N-W quadrant (14%). The probability is somewhat larger with N-W winds than S-W winds.

The equations of conditions were of the form

$$\Delta \omega = c + d \left(A - A_{c} \right) \tag{3}$$

where c and d are unknowns, A stands for azimuth (counted from S through E), and A_o is a constant (= mean value of the totality of azimuths).

Thus was derived for the S-E quadrant, with the correlation coefficient r = 0.10,

 $\Delta \varphi = -0.0031 + 0.0004 (A - 460)$

The values c and d for each subgroup are listed in Table I.

One can notice a relatively high correlation with some of the subgroups and some kind of annual periodicity in the coefficient d.

Sevarlić (1961) found the following relation on the basis of observations carried out in the period 1949 to 1957:

 $\Delta \varphi = 0.011 + 0.031 \sin (A + 95.5) + 0.005 \sin (2A + 11.2)$

Let's disregard the third term. On comparing the mean effect of the term $0.031 \sin (A + 95.95)$ for the S-E quadrant (-0.0190) we find it to be about fifty times as large as the one relating to the period 1976-1981.

Table I. Values of the coefficients c and d in the expressions (3) for each subgroup separately and for the whole of the programme. By n is denoted the number of equations of conditions and by r the correlation coefficient.

Subgrou	ıp	с			d		n	r
Ia		0.088	2		0.000	3	11	0.12
Ib		92	3	+	1	0	14	0.54
IIa		14	7	+		0	13	0.01
IIb	+	96	6		1	4	18	0.57
IIIa	+	242	4	-	2	6	9	0.42
IIIb	+	139	0			6	13	0.21
IVa	+	142	4			4	8	0.16
IVb		29	8	+		8	8	0.32
Va	_	21	4	+	1	4	8	0,51
Vb	+	28	3	+		0	8	0.01
VIa		158	7	+		8	18	0.29
VIb	-	0,144	2	+	0.000	5	16	0.24
Whole	of	21.15			a - 1		1.00	
programi	me -	0.031	3	+	0.000	4	144	0.10

Due to the relatively low number of nights with N-W winds, the relevant coefficients c and d have not been calculated for each subgroup separately but for the programme as a whole only. For the quadrant concerned we found:

$$\Delta \varphi = -0.00134 - 0.007 (A - 2270)$$

the correlation coefficient being r = 0.22. This result is, accordingly more dependable than the one pertaining to the S-E winds.

From Ševarlić's expression there follows the value + 0.018 of the mean effect produced by N–W winds, thus again an appreciable higher amount than the one resulting from the observations in the period 1976 to 1981.

The conclusion can, therefore, be drawn – with a fair probability – that the wind effects, alike those depending on velocity and on direction, on φ , have considerably been reduced in consequence of alterations implemented during 1968 to 1970.

5. TOTAL DEPENDENCE OF $\Delta \varphi$ ON THE VELOCITY AND DIRECTION OF WINDS

We attempted also to provide an estimate of the sum effect of the direction and velocity of winds on φ , sup-

posing it to be adequately expressed in the form:

$$\Delta \varphi = e + f V \cos (A - A_0)$$
⁽⁴⁾

where e and f are unknown quantities. For the three variants considered we obtained:

a) From the entire observational material, with r = 0.06:

$$\Delta \varphi = -0.0154 + 0.0047 \text{ V} \cos(\text{A} + 240)$$

b) From the observational material acquired by N–W quadrant winds, with r = 0.29:

$$\Delta \varphi = -0.0133 + 0.0311 \text{ V} \cos(\text{A} - 29^{\circ})$$

c) From the observational material acquired by S-E quadrant winds, with r = 0.03:

$$\Delta \varphi = -0.0153 + 0.0032 \text{ V} \cos(\text{A} + 22^{\circ})$$

As evident, the only relation between $\Delta \varphi$ and the two wind parameters of any reliability can be established with the N–W quadrant winds.

These winds produce the strongest effect, about 10 times as large as the one exerted by the S-E quadrant winds.

The investigation by way of the expression (4) have not previously been done at our observatory. Teleki (1967) has analysed the z-term in the Belgrade observations, selecting those among them during which air flows, characteristic of Belgrade, have been blowing. He found that the strongest and most systematic effects are produced by SE air flows, whereas the effects, produced by NW air flows, are the most variable. Similar conclusion was reached by Grujić (1975).

However, the results of our present analysis present, as evident, a contrary picture. The question is now how to explain this. Whether by the contingency of the air flows indicated not being characteristic of all the winds of a given quadrant or by changes that have possibly taken place in the wind effects on the observed latitude. In principle, neither the first nor the second possibility is to be rejected, but the first contingency seems more real.

6. ACCURACY OF OBSERVATIONS

The star path across the field of view presents an importance source of information on the refractional anomalies and the observational errors. For this reason a special study in the matter has been performed. In Table II a presentation is given of the mean standard deviation σ calculated from the deflections of the star paths of different subgroups (note that the star is set upon four times during its transit across the field of view).

Table II. Mean standard deviation σ of the star path in different subgroups in 0.0001 of the micrometer revolution.

Subgroup	σ	Subgroup	σ
Ia	70	IVa	75
Ib	69	IVb	68
Ha	76	Va	71
IIb	66	Vb	67
IIIa	66	VIa	63
IIIb	69	VIb	65
		Whole of programme	68

No clear annual variation can be stated. On the other hand the fact is that σ is the smallest in the VI group, which is observed from 1 July to 15 October. This is the period in which we in Belgrade usually have the greatest number of observations.

1

1

1

2

p

ŝ

9

The correlation between the wind velocity and σ has also been studied. For this we used the linear relation of the form:

$$\sigma = \mathbf{g} + \mathbf{h} \left(\mathbf{V} - \mathbf{V}_{\mathbf{o}} \right) \tag{5}$$

As evident in Table III, no unequivocal relation exists between σ and V since the values of h differ from one subgroup to another. Concerning the whole of the programme, the relationship is rather uncertain. Otherwise, with the winds up to 2.1 m/sec, the effects are negligibly small.

Table III. Values of the coefficients g and h in the formula (5) separately for each subgroup, and for the group as a whole. The correlation coefficient is denoted by r.

Sugbroup		g	1	h	r
Ia	+0.	008 0	-0.0	00 50	0.43
Ib	+	7 2		16	0,19
Ila	+	8 2		17	0.20
IIb	+	68	+	7	0.07
IIIa	+	63	+	25	0.32
IIIb	+	74		22	0.29
IVa	+	70	+	25	0.15
IVb	+	8 2	_	57	0.42
Va	+	86		24	0.17
Vb	+	8 2	-	63	0.33
VIa	+	66		7	0,08
VIb	+	63	+	16	0.14
Whole of					
programme	+0.	007 2	-0.0	00 08	0.07

Another important question is: how much does σ affect the latitudes, derived respectively from a single pair and from a subgroup (=5 star pairs). The answer is: mean effect in the former case amounts to ± 0.096 , and in the latter it is ± 0.043 .

From Sevarlić's (1961) data one finds, for the period 1949 to 1957, the mean effect on φ produced by one single pair to be \pm 0."122, that is about 21% stronger than it is at present.

According to H ϕ g (1968), the average accuracy of observation of a single star with a good PZT, astrolabe or meridian instrument. is limited, in the first place, by the "image motion" effect, entailing mean error at the zenith

$$\sigma_{\rm T} = 0.33 \,({\rm T} + 0.65)^{-0.25} \tag{6}$$

This formula is valid for all integration times $T \ge 0.2$. In our case $T = 40^{\circ}$, therefore $\sigma_T = 0.131$. On the other hand, proceeding from our measurements of σ (= 0.0068 micrometer revolution on the average) we find for the zenith zone 0.137 (0.129 for the VIth group).

If account is taken of the fact that the value σ comprises also the effects of the anomalous refraction (among which "image motion" effect also), as well as the errors of setting (there were four settings on each star), and the effects resulting from the instrument's possible instability, then, on comparing σ and σ_T furnished by the formula (6),one must assess our observations as being of good quality. This, after all, has been demonstrated, particulary as far as the internal accuracy is concerned, in the paper of Milovanović et al (1981).

7. SUM EFFECT $\Delta \varphi$ OF THE WIND VELOCITY, HU-MIDITY AND AIR PRESSURE

In our searching for the most convenient mode of investigating the wind effects on the latitude we employed also the equation of condition of the form

$$\Delta \varphi = i + j (H - 74) + k (V - 2.1) + l (P - 741.6)$$
(7)

where:

H - relative humidityV - wind velocity in m/sec P - air pressure in mm Hg i,j,k.l - unknown quantities.

The results obtained are summarized in Table IV. These data do not allow any firm conclusion to be made concerning the general characteristics of the coefficients j,k and l, valid for all the subgroups and the programme as a whole. The coefficient i is the only one displaying some kind of regularity in its changes, so it will be the object of our attention in Section 9.

tion.						
Subgroup	i	j	k	!	n	r
Ia	- 941	18	93	49	21	0.41
lb	410	+ 11	77	+ 28	23	0.41
Ha	- 401	+ 34	+ 190	+ 6	18	0.32
Hb	+ 168	-13	+ 9	+ 9	25	0.24
IIIa	+ 594	10	+145	- 71	19	0.50
ШБ	+ 1122	10	39	- 28	19	0.28
IVa	+ 1126	+ 11	187	+ 82	15	0.49
IVb	+ 19	4	+ 221	+ 44	15	0.40
Va	+ 513	+ 16	498	-115	12	0.61
Vb	+ 108	+ 34	153	- 59	13	0.44
VIa	1325	+ 1	+ 41	- 16	26	0.12
VIb	1210	+ 14	+ 30	+ 14	24	0.23
Entire programme	167	+ 2	- 4	- 10	230	0.05

Table IV. Values of the coefficients i, j, k, and / in the formula (7)

for each subgroup and for the programme as a whole, the unit

being 0.0001 of the micrometer revulution. The correlation coef-

ficient is denoted by r. n is the number of equations of condi-

8. DIFFERENT COMPLEX INVESTIGATIONS

If the formula (7) is widened so as to include the term, depending on the "image motion", we obtain:

$$\Delta \varphi = \mathbf{i}' + \mathbf{j}' (H-74) + \mathbf{k}' (V-2.1) + \mathbf{l}' (P-741.0) + \mathbf{m} (\sigma - 0.0070)$$
(8)

On comparing results, furnished by (8) and presented in Table V, with those listed in Table 4, one realizes a remarkable improvement of the correlation coefficient r: the one relating to the subgroups is by about 20% better, and if the programme as a whole is considered, the increase is also visible: from 0.05 to 0.22.

Table V. Values of the coefficients i', j', k', l' and m in the formula (8), for each subgroup and the programme as a whole, the unit being 0.0001 of the micrometer revolution. The correlation coefficient is denoted by r and the number of the equations of condition by n.

Subgroup	i	j`	k'	1,	m	n	r
la	761	-19	175	42	15.2943	21	0.48
Ib	- 666	+ 16	101	+ 28	-16,5213	23	0.54
Ha	. 676	+ 43	+209	+ 43	23.8864	18	0.43
IIb	+ 139	10	+ 27	+ 20	11.6014	25	0.36
IIIa	+ 546	10	+ 169	72	8.9218	19	0.52
IIIb	+1116	- 4	72	23	15.5711	19	0.34
IVa	+1290	+ 11	187	+ 83	+ 0.1481	15	0.49
IVb	+ 70	. 3	+ 33	+28	- 31.3933	15	0.73
Va	+ 284	+18	465	96	2.1531	12	0.61
Vb	- 58	+ 33	-163	56	- 1.3878	13	0.44
VIa	-1359	- 2	+ 29	14	8.0309	26	0.15
VIb	-1203	+ 14	+ 30	+14	- 0.1921	24	0.23
Whole of							
programm	e 166	9	7	- 44	0.5770	230	0.22

ferent

 $\frac{\sigma}{75}$ $\frac{75}{58}$ $\frac{57}{53}$ $\frac{55}{58}$

he ote VI ober. have

σhas on of

(5) ation

from

of the otherts are

la (5)

3. The

١

es σ ngle r is: and On assuring ourselves of the preference to be accorded to the formula (8) over the formula (7), we attempted an analogous widening of the formula (4) by a term, depending on the ,,image motion". Accordingly

$$\Delta \varphi = e' + f' V \cos (A - A_o') + m' (\sigma - \sigma_o)$$
(9)

The following results have been obtained:

- For the whole of the observational material, with r = 0.05,

$$\Delta \varphi = -0.0139 + 0.0042 \text{ V} \cos (\text{A} + 23^{\circ}) - -0.0136 (\sigma - 0.0070)$$

- For the observations by N-W quadrant winds, with r = 0.29

 $\Delta \varphi = -0.0133 + 0.0282 \text{ V} \cos(\text{A} - 23^\circ) + 6.4553 (\sigma - 0.0071)$

- For the observations by S-E quadrant winds, with r = 0.11

 $\Delta \varphi = -0.00156 + 0.0042 \text{ V} \cos(\text{A} + 13^{\circ}) - 8.6935 (\sigma - 0.0069).$

Now, let's compare the above results with those furnished by the formula (4). All that can be said is that the formula (9) yields somewhat more reliable results with the S-E quadrant winds. The ratio of the magnitude of effects, produced by winds from both quadrants, remains practically the same.

9. CORRECTION TO THE MICROMETER REVOLU-TION VALUE

It has been remarked in Section 7, that i, the free term in (7), displays a certain regularity in its variation from one subgroup to another. The same can be said of i' in (8).

In our searching for the cause of this variation we found a relation, distinct by its high correlation r = 0.81, between *i*' and the mean values of differences of the micrometer readings (ΔM) of individual subgroups:

 $i' = -0.0046 + 0.0090 (\Delta M - \Delta M_0)$ (10)

 ΔM_o denotes the mean value of all ΔM . Evidently, the mean angular value of the micrometer revolution requires a correction of 0,0180. Accordingly, the values of φ from all the subgroups observed in 1978, were corrected by *i*' from (10). A better consistency of latitude values, furnished by individual subgroups, was thereby achi-

eved: the external error has been reduced from ± 0.117 down to ± 0.092 , that is by about 21%.

The correction to the micrometer revolution of 0.0180 may be considered as a real one. Dokić (1981) has derived the corrections to the micrometer revolution from the observations carried out in the period 1971 to 1974, of the scale pairs. He demonstrated the variability (between -0.0055 and +0.0187) of these corrections depending on observing programme and the system of catalogue used. If data under programme 1 (Washington stars) are used and processed within the AGK3 system, a correction of 0.0187 is obtained. It agrees well with the above cited value 0.0180. It should be noted that no technical interference with the micrometer whatever has been undertaken after the period 1971-1974.

10. CONCLUSIONS

The wind effects on the latitude observations present a very intricate phenomenon. These effects cannot, at least for the time being, be exactly predicted nor exactly calculated. Yet, some partial insight into this question can be acquired through analyses and by way of such simple formulae as presented in this paper. That is why they remain useful in spite of their shortcomings.

Our conclusions are as follows:

- (1) Our analysis clearly show that the alterations executed in the period 1968 to 1970, have resulted in an appreciable reduction of the wind effects on the Belgrade latitude values. The following facts go to support this assertion:
- (1a) The wind effects on φ are diminished: those depending on the wind velocity by about half, and those depending on the wind direction by about one order of magnitude (see: Sections 4 and 5). Although the values obtained are lacking full certainty, they nevertheles point to their being diminished.
- (1b) By the analysis of the deflections of the star apparent motion across the field of view from its mean path it could be established that their amounts in the period 1976 to 1981 are by about 21% lower than they were in the previous period (1949 to 1957). It can be demonstrated that our observations as being of good quality (Section 6).

However we were not able to firmly establish whether the internal accuracy has been risen more than the external one, as was stated by Milovanović et al. (1981).

(2) Systematic wind effects produced by N-W quadrant winds are stronger than those generated by S-E quadrant winds (most of our observations are made by S-E winds). The total wind effects on the latitude determination, in general, are small, being,

however, appreciable with some of the subgroups, i.e. within some of the observational periods, This is, in all probability, a consequence of different wind features (Sections 3, 4 and 5).

(3) Instead of studying the wind effects on latitude se-

parately by velocity (eq. 2) and by direction (eq. 3),

it is recomendable - as a more real approach - to

use the more comprehensive formula (4) or, still

better, the formula (9). The formula (8) is also sui-

table for use.

(4) The data on latitude, acquired in the period 1976 to 1981 call for a small correction to the mean value of the micrometer revolution (Section 9).

REFERENCES:

- Đokić, M.: 1981, Publ. Astron. Obs. Sarajevo, 1, 163.
- Grujić, R.: 1975, Publ. Obs. Astron., Belgrade, 126, 11.
- Høg, E.: 1968, Z. Astrophysik, 69, 313.
- Milovanović, V., Teleki, G., Grujić, R. 1981, Publ. 700. Obs. Sarajevo, 1, 131.
- Ševarlić, B.: 1961, Publ. Obs. Astron., Belgrade, 9, 79.

Teleki, G.: 1967, Publ. Obs. Astron., Relg. do, 13, 101.

on of 1981) Jution 971 to billity ctions em of ington tem, a th the nat no ver has

0.117

s preannot, d nor o this y way That mings.

execul in an on the go to

depenl those e order gh the ey ne-

appamean in the r than 57). It being

tablish more anović

V quated by ins are on the being,

31

UDC 522.9

And Superior And

ACCURACY OF TIME DETERMINATION WITH THE BELGRADE TRANSIT INSTRUMENT

S. ŠEGAN

Institute of Astronomy, Belgrade University

(Received June 10, 1983.)

SUMMARY: Variations of some basic parameters, connected with the time determination on the Belgrade transit instrument, are discussed. It is demonstrated that, under current conditions, the accuracy of the clock correction determination from he observation of a single star, amounts to \pm 05030. Highly correlated seasonal components in the inclination differences are brought out, depending on the order of observation (E–W effect), as well as the correlation of the Temperature differences of the east and west room walls with the seasons.

1. INTRODUCTION

The purpose of the present work is the accuracy estimation of the observational results, acquired with the transit instrument "Bamberg" (10/100 cm) of the Belgrade Observatory in the period 1969–79, as well as the singling out of some systematic errors, which are found discussed later.

2. ESTIMATE OF THE APRIORI MEAN ERROR OF THE CLOCK CORRECTION DETERMINATION

Provided the instrument line of sight is describing the meridian plane, there will be

$$t = s - \alpha = T + C - \alpha = 0$$
, i.e. $C = \alpha_{app} - T_p$

where α_{app} – the apparent right ascension, T_p – registered time of transit, C – the clock correction. However, the observations never being performed in the meridian plane, we have:

$$T'_{p} = T_{p} + \tau (A, \beta, c),$$

where τ – the angle defining the instrument position: A – the azimuth, β – the inclination, c – the collimation. Thus

$$C = \alpha_{app} - (T_p + \tau (A, \beta, c)).$$

In the well known Mayer formula the function τ is

$$\tau(\mathbf{A}, \boldsymbol{\beta}, \mathbf{c}) = \mathbf{M} \cdot \mathbf{A} + \mathbf{N} \cdot \boldsymbol{\beta} + \mathbf{c} \sec \delta,$$

where M, N and c are the azimuth, the inclination and the collimation coefficients, respectively. The collimation coefficient encloses also the terms, accounting for the contact widh and the diurnal aberation

$$R = (R_0/2) \sec \delta \mp \partial_a = (\text{const.} \mp 0.9021 \cos \varphi) \sec \delta$$

Accordinly, the clock correction is a function of several arguments, $C = C(\alpha, T', \beta, R, A, c)$. But the collimation proper is removed by the instrument being reversed in the course of observation. Consequently, the ac indental error in the clock correction resulting from the observation of a single star, can be expressed by

$$E^{2} = E^{2}(\alpha) + E^{2}(T) + E^{2}(\beta) + E^{2}(R) + E^{2}(LG) + E^{2}(MF)$$
(1)

where: $E(\alpha)$ – error in he right ascension of the observed star, E(T) – bisection and the registering error, $E(\beta)$ – the inclination error, E(R) – contact width and lost motion error, E(LG) – personal error, E(MF) – error produced by the meteorological factors.

The values of particular errors can be estimated in the following way:

- a) The expression $E(\alpha) = \pm 0^{\circ}002 \sec \delta$ (Podobed, 1968) is adopted as yielding the mean error of the right ascension of stars, brighter than 6^{m} .
- b) The bisection error, and error in the registered transit time, can be deduced from the contact reading

$$E^{2}(T) = (E^{2}(K))/20,$$

as 10 contact pairs are read. E(K) denotes the error of a single contact. More details are presented in Table I.

Table I. Mean square errors E(K) of the contanct width determination according to declination (Part A) and magnitude (Part B). The units are 09001. vs stands for visual and pho for photoelectric observations.

Part A									
δ		150	250	350	400	450	550	600	650
E (K, Belgrad,									
VS)		32	29	36		37	44		51
e (K, Pulkovo, pho)		27	28		29		34		
E (K, Sverdl.,			20					72	
VS)			38		44			13	
Part B									
m	2m5		3ṁ0		4 m 0		5 <u>m</u> 0		5 m 5
δ	3296		4592		2790		3695		4593
$E(K, m) \cos \delta$	30		33		29		59		32

On the other hand it is known that the registering accuracy of the transit time is inversely proportional to the telescope magnification U and the rate V of the star motion across the field of view (Afanas'eva, 1957b), that is

$$E^{2}(T) = b^{2} \sec^{2} \delta, \ b^{2} \sim (UV)^{-1},$$
(2)

Due to the defects in the registering system even small values of $b^2 \sec^2 \delta$ can produce appreciable E(T). We put therefore

$$E^{2}(T) = a^{2} + b^{2} \sec^{2} \delta.$$
 (3)

The accounting for the meteorological factors requires a widening of the formula (3) by the term $c^2 \sec^2 \delta tg^2 z$ (Dolgov, 1952a). However, we abstained from this additional term since the contact reading for 100 stars, distributed between +30° and +60° declination, yielded

$$c = 0.0014 \pm 0.0011$$

The coefficients a and b have been determined in the following way. Let T (0) be the mean transit time, resulting from the reading of 10 pairs of contact T(-10),...,T(-1),...,T(10). Then approximately

$$E(K) = (1/2) (T(-K) + T(K)) - T(0)$$
(4)

is the error of a single contact. Knowing these values, the coefficients a and b in (3) were determined by the method of least squares. From the contact readings for 266 stars, observed in 1979, we singled out the ones of 210 stars, located in the zone +10° to +70° declination. Thence we found:

 $a = 0.0227 \pm 0.0004$, $b = 0.0196 \pm 0.0001$

From 245 stars in the zone -10° to $+70^{\circ}$ declination we obtained

a = 0.060, b = 0.018.

The divergence of the two a values is an indication of the unsatisfactory condition of the registering system, i. e. the present one should be replaced by another, more up-to-date system.

From 100 stars in the zone $+30^{\circ}$ to $+60^{\circ}$ declination we had

$$a = 0.010$$
 $b = 0.0233$

Afanas'eva (1957c) obtained for the Pulkovo zenith zone $+40^{\circ}$ to $+74^{\circ}$ declination, with their photoelectrical transit instrument.

The difference of the Belgrade and the Pulkoovo γ values is, in all probability, due to the qualitative difference in the registering methods – the one is visual, the other is photoelectrical one. Hence, the observer's influence can be estimated at about 05010.

The error of the mean instant determination is $E(T(0)) = \pm 0$ %007. It has been determined from 6 to 10 contact pairs, symetrically distributed with respect to the instrument meridian. The error grows rapidly with the dimnishing if the number of contact used, an indication of the nonuniform distribution of the recorded contacts.

c) The inclination of the instrument horizontal axis is measured with a bubble level, thoroughly examined by the Vassilev method (Đurović, 1969). The level division values were found to vary with temperature in the following way

Temperature (in 1C ^o)	1	1 - 11	11-21	21 - 31
Level divisions (in 0.001)	70	71	72	73

Check examination by Wanach method, executed in the period 1964–78 at an average temperature of 14°C furnished 0^s072 for the level division value. It is assumed that this division value has not been changing with time.

The accuracy of the inclination determination has not been deduced from the observational data available. Instead, we adopted the mean value as given by Dolgov (1952b)

$$E(\beta) = \pm 0.008$$

as being representative of our instrument too.

tion ent of a tion well the

```
and
na-
for
```

```
εδ,
```

eral

```
the
tha
tal
rva-
```

```
(1)
ved
the
tion
ced
```

```
68)
ight
```

1 in

```
nsit
```

Previous examinations with the interferometer (Jovanović, 1973) have shown the pivots of the instrument horizontal axis as being of good quality. Therefore, only check examination with a suspension level according to a method proposed by Pavlov (1951) has been carried out. In each one of eight instrument positions the suspension level is read off and the inclination determined:

Instrument pos	sition	1	2	3	4	5	6	7	8
Circle		W	W	W	W	Е	E	E	E
Tube	•	N	S	S	Ν	S	Ν	Ν	S

The correction to the inclination, due to the pivot irregularities, is calculated by

$$\Delta\beta(z) = (1/4) (\beta(2) - \beta(3) - \beta(4) + \beta(6) - \beta(5) + +\beta(7) - \beta(8))$$

where $\beta(i), i = 1,8$ are inclinations, corresponding to he above set of instrument positions, and z - zenith distance. The results of these check examinations are presented in Table II.

Table II. Inclination diff. $\Delta\beta(z)$

Z	I measur- ment	II measur- ment	III measur- ment	Mean
00	-0\$002	-0\$006	-0\$009	-0§006
10	13	- 9	3	2
20	2	2	15	6
30	2	- 1	- 8	- 2
40	- 7	0	- 4	- 4
50	- 18	- 14	- 10	- 14

At $z = 50^{\circ}$ a change in the profile of the pivot working section can be assumed, but this should be verified.

d) Dolgov (1952c) has shown that the coarseness of the micrometer contact head attains about 0.1 mm. The error $E(R) = \pm 0$;003 sec δ appears with the given spring force, the contact with being 0;075.

The two months examinations of the contact width by the "ear" method furnished the following results:

- the contact width, resulting from he totality of measurements (15 series in all, comprising between 4 and 12 revolutions) R(0) = 0.593 ± 0.004 division. Since 1 division = 0\$069, we have R(0) = 0\$040.
- the error of the contact width determination

 $E^{o} = \pm 0$,003. This amount represents the estimate of the error E(R).

In addition, the contact width has been determined from the chronograph recordings of the transit of 554 stars. The results obtained are given in Table III.

Table III

1 - the number of stars observed, 2 - declination interval of the observed stars, 3 - contact widht obtained, 4 - retardation of chronograph pens.

1	2	3	4
544 442	- 5°, + 70° +10 + 70	$ \begin{array}{r} 0\$0390 \pm 0\$0002 \\ 402 & 2 \end{array} $	0\$0288 ± 0\$0002 258 2

No seasonal variation in the contact width has been disclosed.

On insering the results under a), b), c) and d) in the formula (1) and knowing the declination of the Belgrade zenith point to be+ 45° (thus N = 1.4), we obtain

$$E^2 - E^2 (LG) - E^2 (MF) = \pm 0$$
\$020.

According to Dolgov (1952d) we have

 $E(LG) = \pm 0.018$, $E(MF) = \pm 0.012$

Thus we derive

 $E = \pm 0.030$.

This values represents the limit of accuracy, attainable with the Belgrade transit instrument, provided the systematic effects have all been accounted for.

3. SYSTEMATIC DIFFERENCES IN THE HORIZON-TAL AXIS INCLINATIONS IN TERMS OF THE ORDER OF OBSERVATION

The mean value of $\Delta\beta = \beta(EW) - \beta(WE)$ derived for the period 1969-78 is

 $\Delta\beta = -0.00030 \pm 0.0004.$

The results according to years are given in Table IV. A sudden rise of the mean annual value $\Delta\beta$ from 1972 to 1973 and a drop in 1975, as well as its great changeability over the last years is manifest. It could be established by inspecting the observer's notbook, that up till the middle of 1973 the instrument and the bubble have had a protective aluminium covering, which thereafter has been removed. This may be taken as confirming an earlier finding of Brkić (1961) to the effect that the
mined of 554

of the tion of

0002 2

s been

in the Igrade

ttainaed the

IZON-

ed for

ble IV. from s great uld be hat up pubble thereirming uat the observer seated east of the instrument produces a different influence than he does when seated west of it, the difference in influences being of the order of 09001.

Table	IV.	Mean	annual	value

		· · · · · · · · · · · · · · · · · · ·
year	090001	Observer
1969	- 22	MJ, Dv
70	- 29	Mj, DV
71	- 25	MJ, DV
72	- 21	MJ, DV
73	- 34	MJ, DV
74	- 34	MJ, DV.
75	- 24	MJ, LD
76	- 37	MJ, LD
77	- 29	MJ, LD
1978	- 44	MJ, LD

MJ - M. Jovanović, DV - D. Vesić, LL - L. Đurović

The monthly means (column 2 in Table V) have, in further analysis, been approximated by the equations of condition of the form

 $\Delta\beta = \Delta\beta 0 + \Delta\beta_1 \cos(t + \psi_1) + \Delta\beta_2 \cos(2t + \psi_2),$

where $\Delta\beta_0$ – the free term, $\Delta\beta_1$, ψ_1 – amplitude and phase shift of the annual term, $\Delta\beta_2$, ψ_2 – amplitude and the phase shift of the semi-annual term, respectively; t – the time. The following values have been obtained from the total of the observational material

 $\Delta\beta_0 = -0.00030, \ \Delta\beta_1 = -0.00007, \ \Delta\beta_2 = -0.00004; \ \psi_1 = 21^{d}0, \ \psi_2 = -33^{d}7.$

The results by months are displayed in Table V and illustrated in Fig. 1.

Table V Monthly mean of $\Delta\!\beta$

Column 1 – month, 2 – monthly mean $\Delta\beta$, 3 – approximated values of $\Delta\beta_{\rm G} = \Delta\beta_0 + \Delta\beta_1 \cos(t + \psi_1)$, 4 – residuals R = $\Delta\beta$ – $-\Delta\beta_{\rm G}$, 5 – approximated residuals R_c = $\Delta\beta_2 \cos(2t + \psi_2)$, 6 – approximated $\Delta\beta_{\rm (C)} = \Delta\beta_0 + \Delta\beta_1 \cos(t + \psi_1) + \Delta\beta_2 \cos(2t + \psi_2)$, 7 – residuals $\Delta\beta - \Delta\beta({\rm C})$.

1		2		3		4		5		6		7
1	-0\$0	030	-0	0036	0.50	0006	-0	\$0004	-0	\$0040	05	0010
Ц	-	40	-	33		7	-	2		35		5
III	-	27		29		2		2	-	27		0
IV	-	24	-	26		2		4		21		3
V	-	15		23		8		2		22		7
VI	-	29		23		6		2		26		3
VII	-	30	—	25		5		4		29		1
VIII		29		28	<u></u>	1	_	2	—	29		0
IX	-	27	_	31		4		2	_	28		1
Х	-	29	-	34		5		4	-	30		1
XI	-	38		37		1		2		35		3
XII	-	43	-	37	_	6	-	2		40		3

Fig. 1. Curves: 1 – monthly means of the instrument temperature (Table 6); 2 – monthly means of the inclination differences $\Delta\beta$; 3 – values of $\Delta\beta_G$; 4 – values of $\Delta\beta(C)$.

The hypothesis $H_0: \rho_{23} = 0$ (also $\rho_{26} = 0$) has been tested against the alternative $\rho_{23} \neq 0$ (also $\rho_{26} \neq 0$), the level of significance being $\alpha = 0.05$. It could be shown that the zero hypothesis was to be rejected, as the correlation coefficient differed considerably from zero.

We see in Fig. 1 that there is a phase shift between the respective extrema of $\Delta\beta_G$ and the temperature of 32.6 days, which is in good accordance with value derived by Brkić (1961).

In our quest for he possible origin we stated similar seasonal fluctuations in the difference ΔT of temperature readings of the pair of termometers, the one being fixed on the east and the other on the west pavilion walls.

The approximations used: $\Delta T = \Delta T_0 + \Delta T_1 \sin (t + \psi_1)$, where $\Delta T_0 = 0.9409$; $\Delta T_1 = 0.9112$ and $\psi_1 = 35.95$; $\Delta T(C) = \Delta T_0 + \Delta T_1 \sin (t + \psi_1) + \Delta T_2 \cos (2t + \psi_2)$, where $\Delta T_2 = 0.9044$ and $\psi_2 = 5.9949$.

Table VI. Monthly means of the instrument temperatures in the period 1969–79.

Month	Temperature	Frequency
I	. 3950	7
11	6.43	6
ш	10.58	8
IV	13.62	7
v	17.55	7
VI	19.74	9
VII	20.25	9
VIII	20.00	8
IX	17.60	8
Х	12.69	7
XI	6.99	9
XII	3.33	9

The coefficient of correlation of the measured ΔT and the values $\Delta T(C)$ is 0.90. The same statistics as the one applied previously discloses that this correlation coefficient is differing considerably from zero.

Table VII. Monthly mean ΔT

Columns: 1 – Monthly mean values of ΔT ; 2 – Number of determinations; 3 – Approximation of ΔT ; 4 – Approximation of ΔT (C).

Month	1	2	3	4
1	09492	131	09495	09495
II	427	135	519	481
ш	475	190	511	476
IV	514	191	477	480
v	458	179	425	466
VI	400	238	366	408
VII	294	203	320	323
VIII	254	222	298	260
IX	338	247	308	266
x	308	283	345	338
XI	377	137	400	429
XII	486	96	457	486

The calculus of the correlation coefficient between $\Delta\beta(C)$ and $\Delta t(C)$ furnished $\rho = 0.73$.

Such a high degree of correlation is an indication that one of the primary causes, producing the differences $\Delta\beta$, is the presence of the temperature gradient and its seasonal fluctuations.

As the clock correction is affected by the presence of these differences and their fluctuations, it is necessary to perform adequate analysis of the matter - that is just what will be the subject of another work of ours.

4. CONCLUSIONS

The results, arrived at in Section 2, indicate that under the present conditions of observation with our transit instrument, it is possible to keep satisfactory accuracy standards. Nevertheless, the introduction of a more objective registering technics would be very useful.

Maximum of the inclination difference $\Delta\beta = \beta$ (EW) $-\beta$ (WE) amounts to about 0.003. There is a systematic difference between the sommer and winter values. The thermal insulation of the instrument and the bubble level by the aluminium sheets brings about a diminishing of $\Delta\beta$ values, yet their seasonal fluctuations remain unaffected. The seasonal variations in the inclination differences are distinctly correlated with the variations in $\Delta T = T(W) - T(E)$, disclosing the temperature variations as being their principal originator.

REFERENCES

- Afanase'va, P.M.: 1957a, Izv. Glav. Astronom. Obs. Pulkove, 21, 1, 41.
- Afanase'va, P.M.: 1957b, ibid., 42.
- Afanase'va, P.M.: 1957c, ibid. 41.
- Brkić, Z.: 1961, Publ. Obser. astron. Belgrade, 1.
- Dolgov, P.N.: 1952a, Opredelenie vremeni passazhnim ins trumentom u meridiane, Ed. GITTL Moscow, 377.
- Dologv, P.N.: 1952b, ibid., 378.
- Dolgov, P.N.: 1952c, ibid., 378.
- Dolgov, P.N.: 1952d, ibid., 382.
- Djurović, D.: 1969, Publ. Obs. Astron. Belgrade, 27, 52.
- Djurović, D.: 1976, ibid., 127, 1.
- Jovanović, M.: 1973, Peti kongres mat. fiz. i astr. Jugoslavije, Zbornik Radova, 1, 255.
- Podobed, V.V.: 1968, Fundamentalnaya astrometria, Ed. Nauka, Moscow, 435.
- Pavlov, N.N.: 1951, Izv. Glav. Astron. Obs. Pulkove, 18, 146.

EFFECTS OF EXTRAFOCAL OBSERVATION WITH THE SOLAR SPECTROGRAPH OF THE BELGRADE ASTRONOMICAL OBSERVATORY. II. CASES OF VARIOUS WAVELENGTHS AND SPACE-RESOLUTIONS

A. Kubičela, I. Vince

(Received November 3, 1983)

SUMMARY: According to an already published procedure, the space-averaging of the solar image within square regions from 3.8 to 0.5 side and for wavelenghts 630 nm, 500 nm and 400 nm have been calculated. For a selected sample of P and B_0 the effect has been found amounting up to 33 ms⁻¹.

1. INTRODUCTION

The influence of finite space-resolution within the solar image in the course of evaluation of photospheric line-of-sight velocities was treated in Paper I (Kubičela and Vince, 1983). The space-resolution of 3°,8, regularly used in the Belgrade research program, was considered and applied to the solar rotation line-of-sight velocity field observed around the wavelenght 630 nm.

The problem is now being somewhat generalized in order to comprise some other space-resolutions and wavelengths.

2. CALCULATIONS

Using the procedure described in Paper I, the differences ΔV^{I} (equation (4) of Paper I) between the space-averaged solar rotation line-of-sight velocity

within a set of square regions around a series of points at the solar disk and the corresponding non-averaged line-of-sight velocity at the same points have been calculated. Four geocentric angular sizes of the square sides of the integration areas are: $a_1 = 3.8$, $a_2 = 2.0$, $a_3 =$ 1.0, and $a_4 = 0.5$. The calculations have been also done for three different wavelength regions: $\lambda = 630$ nm, 500 nm and 400 nm, interpolating accordingly the value u_1 in the well-known limb-darkening law of the solar disk (Allen, 1977).

The results for a selected pair of heliographic parameters P = 0.90 and $B_0 = +3.95$ (e.g. begining of July) when difference ΔV^I reaches its extreme values, are shown in Table I. Here the first column contains the points of the solar disk regularly used in Belgrade observations indicating either the central meridian (CM) or the pairs of other, east-west around CM symmetrically situated points. The X- and Y-columns give the corresponding rectangular coordinates of the mentioned

Table I. Line-of-sight velocity differences ΔV^{I} for different wavelengths and space-resolutions (in ms⁻¹)

•								Δ	vI					
Points	Position a	t the disk		λ = 63	0 nm			λ = 5	00 nm			λ = 4	00 nm	
_	Х	Y	a _i =328	2:0	1:0	0:5	ai=3:8	2:0	1:0	0:5	a _i =3.'8	2:0	1:0	0:5
СМ	0.000	any	0	0	0	0	0	0	0	0	0	0	0	0
RE, RW	± 0.790	0.000	18	5	1	0	24	6	1	0	33	8	2	1
T, U	± 0.658	0.000	11	3	1	0	14	4	1	0	18	5	1	0
N, K	± 0.500	0.000	7	2	0	0	8	2	1	0	11	3	1	0
M, L	±0.250	0.000	3	1	0	0	4	1	0	0	4	1	0	0
G2, F2	±0.250	0.658 S	4	1	0	0	5	1	0	0	6	2	0	0
G1, F1	± 0.250	0.500 S	4	1	0 '	0	5	1	0	0	6	2	0 .	0
G, F	± 0.250	0.250 S	3	1	0	0	4	1	0	0	5	1	. 0	0
Q, P	± 0.250	0.250 N	3	1	0	0	4	1	0	0	5	1	0	0
Q1, P1	± 0.250	0.500 N	4	1	0	0	5	1	0	0	6	2	0	0
Q2, P2	± 0.250	0.658 N	5	1	0	0	6	2	0	0	8	2	1	0
H1, E1	± 0.500	0.500 S	9	3	1	0	11	3	1	0	15	4	1	0
H. E	± 0.500	0.250 S	8	2	1	0	9	2	1	0	12	3	1	0
R. 0	± 0.500	0.250 N	8	2	1	0	9	2	1	0	12	3	1	0
R1, 01	±0.500	0.500 N	10	3	1	0	12	3	1	Ő	15	4	1	Ō

e that h our actory n of a iseful. 3(EW) matic s. The ubble ishing emain iation ations rature

ve, 21,

s tru-

lavije, lauka,

6.

points in units of the radius of the solar disk -S and N meaning south and north respectively. The ΔV^{I} values, in ms⁻¹, are given in the remaining 12 columns grouped for three indicated wavelenghts and, within a group, for four a_i (i = 1, 2, ...4) space-resolutions (from 3.8 to 0.5).

The sign of ΔV^{I} is such that absolute value of the averaged line-of-sight velocity is always smaller than the non-averaged line-of-sight velocity at the centre of the integration area. To correct the observations for this effect, one has to increase the absolute value of the observed line-of-sight velocity.

3. CONCLUSION

From Table I one can see how the space-averaging effect in the field of solar rotation line-of-sight velocities increases while the integration area increases and the wavelength decreases. At one-ms⁻¹ level the

effect can be neglected for space-resolutions better than 0.5 and throughout quite a wide range of visual wavelenghts. For the space-resolutions of 2' to 4', sometimes used in contemporary photospheric velocity observations, it is not at all negligible and the adequate corrections, reaching up to 33 ms^{-1} have to be calculated and applied.

Table I shows only some high-value samples of space-averaging effect on solar rotation line-of-sight velocities. If desired, the other values for different combinations of P and B_0 as well as for other wavelengths and space – resolutions can be easily calculated.

REFERENCES

Allen, C.W.: 1977, Astrofizicheskie velichiny, Mir, Moskva, 242. Kubičela, A. and Vince, I.: 1983, Bull. Astron. Obs. Beograd, 133, 1.

PROGRESS REPORT ON THE ASTRONOMICAL REFRACTION

G.Teleki

(Received January 10, 1983)

SUMMARY: A presentation is given of works on astronomical refraction, published in the period 1979 to 1982. Particular emphasis is given to research currently of special interest to astrometry, as for instance that relating to three dimensional refraction, atmospheric turbulence etc.

1. INTRODUCTION

than visual o 4',

ocity Juate

be be

s of

sight

erent

vave-

ated.

,242.

grad,

In a previous paper of ours (Teleki, 1981) an overview was given of research into astronomical refraction and, partially in refraction in general, on the basis of papers published in the period 1976 to 1979. That review is now continued on the basis of papers (available to us) appearing in the period 1979 to 1982. Occasionally, some earlier papers will be mentioned but only where continuity and clarity of presentation makes it imperative.

The intensity of research in refraction is not declining – as many as 107 papers are on record in the last three years. Most of the papers were published in the USSR - in the period concerned about 60% of the world total. Ore cannot help noticing the impetus produced by meetings dedicated to astronomical refraction: the majority of the published papers have been presented at just these assemblies. The following meetings may be noted: on atmospheric optics at Tomsk (USSR, 1980), on atmospheric influences in astronomic observations within optical and radio waves lengths at Irkutsk (USSR, 1980) and on three-dimensional refraction at Dubrovnik (Yugoslavia, 1981). The sponsors of the Dubrovnik Meeting were jointly the Working Group on Astronomical Refraction of the IAU Commission 8 and the Special Study Group 1.42 ,, Propagation of the Electromagnetic Waves and the Atmospheric Refraction" of the International Association of Geodesy. Meetings dedicated to terrestrial refraction will not be referred to herein.

The papers dealt with in the present survey are divided into groups, but — as often happens —some researches are complex and do not ,,stand" such divisions. Nevertheless, all the works we took into consideration are mentioned at least once in some of the groups.

2. THREE – DIMENSIONAL REFRACTION

The basic questions concerning the three-dimensional components of astronomical refraction are outlined in our previous paper (Teleki, 1981). Relevant research is being continued.

Teleki and Saastamoinen (1982) submitted an account of this problem as it appears from the astrometric standpoint. Three difficulties associated with this matter are pointed out: the strictness of the law of refraction used, the application of the formulae according to which the refractive index is calculated, and the determination of the meteorological field elements along the path of the light ray. The third problem is the most important in practice. It is estimated that it is not necessary to take into account the three-dimensional influence on the pure (normal) refraction values up to 45° zenith distance. However, at larger zenith distances these influences must taken into account with regard to their astronomic significance. At 70° zenith distance the effect on the vertical component (in zenith distance) is of the order of 0.01, and at 80° of the order of 0.1. The influence on the horizontal component (in azimuth), is even larger, about 0.1. All of these values are variable and depend on the position of the observing station on the Earth's surface. The authors draw the conclusion that international refraction tables should be constructed from a global atmospheric model (and that these should serve as standard tables). Values from these tables are to be corrected, when necessary, for regional and local effects. It is suggested that the global atmospheric model proposed by Saastamoinen (1980), and briefly outlined in the paper, or alternatively, an ellipsoidal model more fitting to the Earth's figure be adopted.

Sergienko (1979a, 1979b) derived formulae for computing the astronomical refraction influences on zenith distance and azimuth using a three-dimenzional atmospheric model. As a result he obtained a nonlinear, dynamic system of second-order differential equations with two parameters:

$$\omega = \frac{1}{n} \frac{\partial n}{\partial x} \qquad \qquad \epsilon = \frac{1}{n} \frac{\partial n}{\partial y}$$

where: n = refractive index, x and y are rectangular coordinates (horizontal components of the local XYZ

rectangular coordinate system), and z = altitude. The solution of these equations is performed by using perturbation theory and by Bernoulli's method. The accuracy of the astronomical refraction values thus obtained is dependent on the accuracy of meteorological data and on the extent of the information available for the meteorological field. For these reasons the posible influence of four layers is considered by the author: that originating from the ground and boundary layer that in the free atmosphere up to 35 km and from the free atmosphere up to 75 km. Sergienko (1979c, 1981) analyses six atmospheric models, paralleling this work by systematicly organizing and acquiring (at his observatory) extensive meteorological data (Sergienko, 1980; Sergienko et al., 1980). The solution of the problem is, evidently, conceived on a broad basis, whereby the principal factors are accounted for. As a result, the accuracy of the astrometric results is enhanced by at least 1.5 to 2 times (Sergienko, 1981). The following are the conclusions reached by this author (1980): a) by taking into account ω and ϵ in calculating the refraction in the meridian plane the refraction is increased provided ω and ϵ have the same sign; b) the values ω and ϵ are directly correlated with the variation of the differences of the refraction given by the Pulkovo Tables and the one furnished by the formulae based on the threedimensional atmospheric model, and c) the pure refraction and that resulting from the three-dimensional atmospheric model, with $\omega = \epsilon \le 10^{-10}$, are coincident, within \pm 0.001, up to $z = 30^{\circ}$. Markov and Sergienko (1981) gave a method for the automation of the refraction formulae determinations based on a three-dimensional model of the atmosphere. These authors also found the solution for the linearization of Sergienko's nonlinear system using the series expansion by ω and ϵ (up to third order).

Hughes and DeLateur (1982) turned to experimental research regarding the possible instantaneous influence of the local atmosphere on astrometric data. According to them the variation of the amount of water vapour and of the isopycnic tilt in time and with the height are so significant (evidence thereof is presented by the authors) that a near real time determination of them is required for astrometric observations. A plan is therefore outlined, involving both water vapour profiling and temperature determination - (thus a three-dimensional approach in the study of the local atmosphere is used) – utilizing LIDAR (Light Detection and Ranging). It seems that water vapour profiling presents no problem and the authors are also confident regarding the feasibility of the determination of isopycnic tilts. The implementation of this plan at the US Naval Observatory, Washington, is expected in 1983–1984.

On the use of the LIDAR system see also the papers of Ivanenko and Maricheva (1980) as well as that of Reagen et al. (1980).

The effects of the atmospheric ellipticity on atmospheric refraction has been analysed by Kushtin (1980).

From a great number of observations at different azimuths and zenith distances Redichkin (1980) was able to infer that the observed refraction values at zenith distances over 70° deviate from the tabulated ones not only on account of the instrumental errors but also as a consequence of the real atmosphere deviating at the moment of observation from the spherical model underlying all the refraction tables. These deviations are generally positive for the eastern half of the sky and negative for its western half. In the case of the observational conditions in both halves of the sky being equal, the deviations are of the same order of magnitude, but with opposite signs. - Although the instruments used by Redichkin cannot be ranked among the highly precise ones, nor can his method of determining refraction directly from the astrometric observations be regarded as reliable one - more about it is the Section 3 - we consider these researches as useful on account of the conclusions just cited. This author's conclusions are attributable in the first place - making allowance for instrumental influences - to the local atmospheric characteristics because, all thing considered - with regard to what has been statedt above (Teleki, Saastamoinen, 1982) - the effects resulting from the global atmospheric model are not of the order of magnitude as quoted by Redichkin.

From their observations at larger zenith distances Korzhinskaya et al. (1981) inferred that the refraction reached larger amounts in the east half of the sky than in the west half. Otherwise, concerning the researches of these authors, the same remarks as those relating to the Redichkin's (1980) researches might be made.

We may, therefore, sum up by stating that astrometry needs answers to questions about possible threedimensional effects on astronomical refraction. These researches are progressing well and a better coordination of work being performed in this field seems therefore desirable.

3. THE PROBLEM OF REFRACTION DETERMINA-TION FROM THE ASTROMETRIC MEASURE-MENTS

The determination of the refraction, R, directly from astrometric measurements is going on. Dealing with the subjects are for instance: Arkhangelskij, 1979; Maslich et al., 1980: Redichkin, 1980; Kharin, 1980, 1982; Yatsenko, 1980; Krozhinskaya et al, 1981; Poma et al., 1982. Up to about 70° zenith distance the deviations ΔR of the derived values of R from the tabulated ones (or from the data resulting from the aerological measurements) lie within the limits of the

Authors	Zenith distances	ΔR	۴R	Notes
Vasilenko (1975)	800 880 890	+1".2 - 6".4 -7".7	3".0-3".6 4".0	With respect to the aerological measurements
Redichkin (1980)	730 - 880 >880	±2"- ±60" -121".4	3.0 - 9.0	ϵ_R for the zone 70° to 90°; ΔR most frequently it amounts to 1-10% and rarely 15-18% of R
Kharin (1980)	70 ° – 86°	2"- 3"	3"- 5"	$\epsilon_{\mathbf{R}}$ at the zone boundary
Korzhinskaya et al. (1981)	80° - 89° 70° - 83°	-20'' - + 17'' - 14'' - + 8''	-	Night measurements Daily measurements

Table I. The refraction determination data from the astrometric observations at larger zenith distances

observational and computing errors (Redichkin, 1980). At larger zenith distance ΔR is larger being, moreover, very changeable. This is evidenced by the errors ϵ_R of determination of R, as well as changes ΔR from one location to another. To illustrate this some examples are given in Table I.

These, together with similar data, are useful insofar as they can be applied (in the near future at least) to the reduction of astrometric observations. This is to say that they have to be correctly interpreted and their errors must be acceptable from the astrometric standpoint. The fundamental problem is to determine the causes producing the characteristic values in Table 1. In our view the following causes might be enumerated, whereby observations made at larger zenith distances are primarily kept in mind:

3.1. Deficiency of the current refraction theories (tables) and of their applications. Let us for a while put aside the theories, whose unreliability at larger zenith distances is well known, and consider their application. The essential question is what accuracy of meteorological data is needed for the determination of R. It is assumed (Teleki, 1974) that the error in R, due to insufficiently accurate temperature and pressure values (i.e. of the refractive index) is at least about ± 0.02 tg z; for $z = 80^{\circ}$ this gives ± 0 . 11, and at $z = 88^{\circ}$ we have ± 0.57 ; at z = 89° the value ± 1.16 is obtained. Similar results have been obtained by Nelyubin (1980) in his analysis of effects produced by errors in temperature of \pm 091C and errors in pressure of \pm 0.1 mb. These influences, if systematic, can even be larger (Teleki, 1974). If R is determined directly from the aerological measurements then, according to Vinnikova (1974), at z = = 88°, the error amounts to $3^{\prime\prime}$.9 (that is 0.36% of R). Therefore we may conclude that neither the existing refraction tables nor the aerological measurements are a strong basis for the calculation of ΔR for observations at larger zenith distances.

3.2. Instrumental errors, those depending on the atmospheric parameters in particular, are, on the whole, above 0.1 (Teleki, 1978). This applies to an even greater degree to large zenith distances (Kharin, 1980, 1982).

3.3. The lack of sufficient knowledge of the influence of the inhomogeneity of the meteorological field on the propagation of light rays. For the calculation of R, the current refraction tables use only temperature, pressure and water vapour, as the characteristics of the state of the atmosphere. But even about this matter there is disagreement, for no definitive stand has been taken as to exactly where the meteorological parameters are to be measured - inside or outside the pavilion, close to the instrument or at a distance from it. etc. Moreover, it is evident that the temperature, pressure and water vapour alone (wherever and however they happen to be determined) fall short of being sufficient in providing a complete characterization of the meteorological field. Thus, no atmospheric effect is calculable to the degree necessary in the reduction of astrometric observations. The question therefore arises what supplementary factors are to be taken into account. Several attempts in this respect have been made but they do not, at least for the time being, offer the possibility of being applied generally in astrometric practice. An example is presented by Vasilenko and Kharitonova (1977) the two having tried to apply V.I. Tatarsky's ideas about the statistical orthogonal expansion of the refractive index to the measurements of Vasilenko (1975); the calculated and observed values of R they obtained proved to be in good accord down to z =

= 88°, with the standard deviation not exceeding $\pm 9''$ (this value has been derived from the deviations of the individual differences from their mean). But no accordance is found at z = 89°. Alekseev and Kabanov (1980), in their description of the ground layer, made use of the Monin-Obukhov's theory. In this way they raised the accuracy of the calculation of R by 2 to 3 times. Nevertheless their work should be considered as experimental.

The remarks concerning the determinations of the diurnal refraction variations from the photographic observations of the Sun (Arkhangelskij, 1979; Poma et al., 1982) are quite in line with those made in paragraphs 3.1 through 3.3. Besides problems associated with the instrument and the plate reductions, pointed out by the authors themselves, consideration should be given to what is stated in paragraph 3.3. One of the possible causes of these problems has also been pointed out by Nefed'eva (1976).

In view of all the uncertainities inherent to the determination of R from astrometric measurements, we continue to regard this method as being of little merit (Teleki, 1979). This applies with all the greater force to larger zenith distances. Experience with terrestrial refraction (refraction values for $z \approx 90^{\circ}$) shows how justified this opinion is: satisfactory results have not been obtained although various meteorological factors have been allowed for. New methods are necessary for the solution of this problem, the so called dispersion methods in the first place (Tengström, 1982) along with radometric methods (Alekseev et al., 1980).

Sergienko (1980) reaches the conclusion that allowances for the refraction anomalies obtained by using current methods and experimental data, do not result in an improved accuracy of the astrometric results.

It is also interesting to mention Kharin's (1980, 1982) investigations. On the basis of his own observational data, collected with the Wanschaff Vertical Circle in Kiev, at large zenith distances up to 86° , he concluded that meridian observations at large zenith distances (between 75° and 85°) render it possible to demonstrate refraction anomalies, but they cannot be differentiated from instrumental errors.

One can put the question of the utility of determining R from the astrometric measurements. The answer, in terms of refraction, is that it has been demonstrated that the changes in R at larger zenith distances are large and variable with time and dependent on the observing location as well, and that the existing methods and their improved versions fail to represent these variations. It follows therefore that astrometric observations at very large zenith distances should be given up or that other methods should be developed, capable of minimizing the atmospheric influences or their more accurate determination (Tengström, Teleki, 1979). For more about the computation of the terrestrial refraction as well as the astronomical refraction at large zenith distances (near the horizon) see the paper of Nelyubina and Nelyubin (1980).

4. PURE REFRACTION, REFRACTION TABLES

Guseva et al. (1982) are preparing the Fifth Edition of the Pulkovo Refraction Tables. These refraction calculations are based on Guseva's (1982) method using the Soviet Reference Atmosphere GOST-73. The authors pay utmost attention to the determination of the chromatic refraction. The tables will be given in the traditional logarithmic form as well as in a simplified version of the algorithms and programs for refraction calculations at zenith distances from 0° to 80° .

The quality of Nefed'eva 's new refraction tables (1978, 1981) has been analysed by Yatsenko (1981), wherein he made use of the observations of selected stars with the Kazan Meridian Circle. The observations included stars from 0° to 85° zenith distances and were carried out at temperatures ranging from -25° to $+18^{\circ}$ C. He found the Nefed'eva's tables to be affected by the same errors as those inherent in the Pulkovo Tables in the zone 0° to 65° ¹ zenith distance. However, at zenith distances from 65° to 85° the new tables proved slightly superior to those of Pulkovo.

Using their own method, Fukaya and Yasuda (1982) made computations of the astronomical refraction from the aerological data (up to 30 mb), acquired near Tokyo and from the US Standard Atmosphere 1976 (above 30 mb up to height of 91 km). By comparing their results with the values given by Pulkovo Tables a constant difference (0.074 at $z = 45^{\circ}$) was identified for the dry air as well as a seasonal variation for the humid air (Pulkovo Tables present invariably lower values, as has earlier been indicated). The authors also make computations of the coeficient, c, of the Dale-Gladston equation for various cases and establish a variability that cannot be disregarded.

In a continuation of these explorations, Fukaya (1982) obtained (by way of numerical addition up to 91 km height) new values. There is a very good accordance between his values and those given by the Pulkovo Tables: the differences between them is very small and constant up to the zenith distance of 78° . He thereby used the averaged values of n $[(nr)^2 - (n_0r_0\sin z)^2]^{1/2}$ for the upper and lower boundaries of the relevant atmospheric layers.

Fukaya and Yoshizawa (1982) pointed out that the Pulkovo Tables (Forth Edition) are completely reproducible by employing their numerical calculation method of refraction for a given wave length region. The differences between the numerical values and those from the Pulkovo Tables are always less than 0.02 irrespective of the season for the zenith distances from 0° to 75°.

On the numerical computations of refraction see Fukaya's and Suzuki's (1981) paper.

Nefed'eva (1980) made investigations aimed at establishing which of the wave lengths were actually underlying the refraction tables. This is turn has its bearing upon the chromatic refraction computation. Thus it was found by her, among other things, that the Pulkovo Tables were in fact related to 5960 Å and not to 5753 Å as hitherto assumed. Many of the analysis have therefore to be revised (among others the one of Fukaya and Yasuda (1982) just referred to).

Kushtin (1980a) developed a new method of solution of the refraction integral and suggested the best possible way (1980b) of separating the systematic component in the refraction and its accidental part. A procedure for determining measuring errors is also laid out.

Sugawa (1980, 1981) presented a survey of the current researches into astronomical refraction.

• Dimopoulos (1982) considered in detail many questions of the astronomical refraction in general.

Kushtin (1980c) expounds various models for the determination of pure refraction and Mikkola (1981) discusses the effects of errors in the adopted temperature profile of the atmosphere on the astronomical refraction values.

5. ANOMALOUS REFRACTION

A survey is presented herein of the researches into anomalous refraction (= true minus pure refraction values) which cannot, or at least not strictly, be characterized as evolving from a three-dimensional conception.

5.1. Image motion

According to Brunner (1982) the final accuracy of a direction determination in astrometry and geodesy is a function of the instrumental parameters, the atmospheric turbulence intensity and the period of time included in the averaging. Let us have a closer look at the last two factors, to which relatively little attention is paid in astrometry. Why? Firstly, because they are regarded as necessary evils, conditioned by the choice of instrument, of the location where it is installed, atmospheric conditions prevailing there and the method of observation. Yet, it is well known how significantly astrometric observations are affected by them. According to Ivanov (1979) no less than 30% of the accidental observational errors of the Pulkovo Vertical Circle are due to the

atmospheric turbulence while the observational errors of the Pulkovo Transit Instrument are, almost entirely, produced by this effect. Høg (1968) inferes that the average accuracy of observations made with contemporary PZT's, astrolabes and meridian instruments is limited by image motion, which causes a mean error in the zenith zone of $0.33 (T + 0.65)^{-0.25}$ for all the integration intervals $T \ge 0.2$ seconds of time. This error increases approximately with the secans of zenith distance. According to Brunner (1982) typical amplitudes of the image motion for zenith distances 60° to 80° are: 1 to 5 microradians (one microradian ≈ 0.2) but under daily conditions taken separately values from 10 to 40 microradians are obtained. To diminish these influences the need is emphasized by Brunner of using a sufficiently long signal, by whose averaging the required accuracy can be brought about. The fundamental question thereby arises: what is the duration of that "sufficiently long" signal? Ivanov (1979) maintains that the optimum duration of the astrometric measurements is about 2 minutes and that a continuous measurements averaging is most advantageous. According to the same author the optimum objective diameter of the astrometric instruments is 20 cm (the image motion amplitude is known to depend on the objective diameter, but with the diameters exceeding 20 cm it only slightly decreases).

The researches in the turbulence carried out by Sugawa and Naito (1982) are more complex for they involve also the influence of changes taking place in the internal boundary layer, the advection of cold air masses as well as internal gravitational waves. They analysed, in fact, the probable changes in the atmospheric conditions (density) during the star transit across the field of view of the VZT, PZT and the astrolabe, as well as their influences on the latitude and time values. The respective refraction effect values obtained by them are as follows: 0.005 to 0.1 with the VZT, under 0.03 with the astrolabe and the values that are not less than 0.01 with the PZT. Thus the influences are of the order of 0.01, an amount which cannot be ignored in high precision observations.

Lindegren (1980) studied the influence of refraction anomalies on optical differential astrometry by means of a simple model of the large-scale wavefront distortion caused by atmospheric turbulence. He found that in narrow-field astrometry (determination of trigonometric parallaxes, measurements of double stars, etc.) the mean error of the measured angle θ (in radians) between two objects near zenith to be 1.^{*}3 θ -0.25 T^{-0.5}, where T \geq 300 θ is the integration time in seconds. By comparing these values with the internal errors of some differential astrometric measurements it appeared that the above formulae account for the greater part of the observed apparent fluctuations of the Sun's disk (the error of observation is 0.^{*}030 while the one yielded by the formulae is 0.^{*}022), as well as the errors in the measured angles between the stars whose mutual distance equals the Sun's diameter. This author derived a formula valid for the case of stellar position determination with respect to the centroids of several reference stars within a radius R (in radians): the mean error in each coordinate is $0.8 \text{ R}^{0.25}\text{ T}^{-0.5}$ (or 0.003 for R = 10' and T = 1^h). (It should be noted that differential astrometric observations, made at large zenith distances, can significantly be affected by the tilts of air layers of equal density; with a tilt of, say, 10', zenith distance of 80°, and zenith distances differing by $0^{\circ}.5$, under the medium atmospheric conditions, the anomalous refraction attains about 0.5 (Teleki, 1968)).

Makarov (1980) presents the possibility of modeling, on the basis of star observations, the atmospheric turbulence intensity as a function of altitude.

Information on the influence of the tropospheric refractive index fluctuations on the accuracy of the radioastronomical determination of coordinates of cosmic sources is found in the paper of Stockij (1980). The coordinate measurement accuracy has, in this author's view, attained such a level that taking into account of the tropospheric fluctuation appears necessary. The author states also that tropospheric influences can be reduced by the differential coordinate determination.

5.2. Chromatic refraction

At the Pulkovo Observatory a team of authors has completed some very important investigations of the chromatic refraction and its influence on astrometric measurements. But the greatest contribution made by this team of authors consists of their having developed a procedure to be applied in practice. In the paper of Bagil'dinskij et al. (1981) an analysis is found of the possible influences of the chromatic refraction on the results of observations with the Pulkovo Photographic Vertical Circle. In the paper by Bagil'dinskij et al. (1980) a general model of the chromatic refraction computation is presented, wherein account is taken of the true energy distribution in the extra-atmospheric stellar spectrum and its filtration due to the characteristics of atmosphere, the optics, optical receivers ect. Elaborated are the cases of the visual, photographic and photoelectrical mode of observation. Atmospheric turbulence is also taken into account. These investigations have again and again confirmed the need for rigorously taking into account the chromatic refraction in the determination of declination with astrometric instruments. It should be noted that these author's investigations are being continued.

About the wavelengths of which basic data are presented in the refraction tables see Nefed'eva (1980).

5.3. Dispersion method

Prilepin (1980) made an analysis of the determination of refraction by means of measuring the angular dispersions using two wavelengths, whereby the influence of atmospheric turbulence has also been taken into account.

Concerning the analysis of the dispersion method see Tengström (1982).

5.4. Origins of anomalies

Proceeding from his measurements of changes taking place in the temperature field surrounding the observation pavilion (see Paragraph 6 of the present paper), Sibilev (1981) derived anomalous refraction values under day time conditions. These effects reach the order of $0.^{2}$ 1 at 45° zenith distance but are very changeable depending on the wind direction.

By using aerological data Motrunich and Shvalagin (1980) inferred that there were three factors generating the anomalies: a) unsatisfactory accuracy of the reduction for temperature in the Pulkovo Tables, b) refraction constant not corresponding to the wavelenght 5753 Å, and c) temperature inversions, typical of the night time, are not sufficiently allowed for by the adopted atmospheric model. At small zenith distances the anomalies are mainly due to the first two factors but at $z > 85^{\circ}$ the temperature inversion influence is so strong as to make the former two effects almost negligible.

Yakovlev (1980) investigated the variations of the refraction as a function of the local climatic conditions, zenith distances and the height of particular air layers. It has been demonstrated by the author that the refraction variations as a function of height above 20 km are practically constant, being independent of the local climatic conditions. Below that height the influence of the air layers varies as a function of the zenith distance of the celestial body under observation.

The anomalous refraction associated with day-time observations with the Nikolaev (USSR) Transit Instrument was studied by Fedorov and Shul'ga (1980). They carried out measurements of the temperature field inside the pavilion. Thence they derived a formula for computing the refraction anomalies and finally fixed plans for their future investigations.

According to Goto (1979) the local atmospheric characteristics in Mizusawa are responsible for an anomalous refraction of up to 0."2 in the latitude observations with the VZT.

Tyuterev (1979) gave a general presentation of the problem of anomalous refraction determinations.

5.5. Radioastrometric, Doppler and satellite observations

Concerning radioastrometric observations attention is called to the paper of Mitnik and Mitnik (1980), Mitnik (1980), Kajdanovskij and Stockij (1980), Woyk (Chvojkova) (1982). As for the VLBI techniques the reader is referred to the papers of Zimovski (1980), Bougeret (1981) and Spoelstra (1982).

Refraction effects in Doppler observations are dealt with by Zhu (1979), Sato and Naito (1979) and Bulygina (1980).

The papers of Bartijchuk et al. (1980) and Rachel (1980) are concerned with artifical satellite observations.

5.6. Techniques

2-

ar

n-

to

bd

١g

a-

),

r

١f

e

n

g

i-

n

٠,

؛,

-

:S

0

)

3

t

ı

3

[

A survey of the current status and development of absolute refractometers as well as dispersiometers (relative refractometers) is presented by Potapov (1980). According to this author this equipment can be expected to attain a sensitivity of 10^{-10} of the refractive index. Information on the use of refractometers in astronomical observation is found in Semenov et al. (1980). These authors consider that the gas refractometer (low weight 2 to 2.5 kg measurement errors ± 1 to ± 1.2 units of N) is best suited to the task.

Ishii (1979) writes about the automatic determination of the meteorological elements needed in the derivation the astronomical refraction.

6. PREVENTION

Teleki (1982) set up criteria (16 in all) for astrometric site selection and, proceeding from them, was able to locate the most suitable places on the Earth's surface. In this analysis he took into consideration the following global influences: seismic, atmospheric (refraction, cloudness), strain, plate tectonics, gravimetric and tidal influences. Clearly, a knowledge of global influences alone is not sufficient for the assessment of how suitable for observations a particular place is, yet they provide initial information about potential sites.

The Repsold Meridian Circle (15/200 cm) is to be transfered from Moscow centre to the mountains, at an altitude of 2600 m. Shamaev (1981) depicts the astroclimatic conditions (number of hours suitable for astrometric observations, image quality, inversion layer thickness, atmospheric transparency, deep sky radiation, direction and speed of winds) prevailing at the locality of Maidanek (Central Asia, near to Kitab), where the instrument is to be erected. Besides astroclimatic parameters, additional criteria, adhered to in selecting this location, were: a) to be as distant as possible from the potential places where new construction (pavilions, residential buildings) is expected, b) the possibility of constructing both near and distant meridian marks, and c) the possibility of making observations at large zenith distances. In connection with b) it is stated that image motion was exceptionally small (for observations of distant objects, too) during all of the day and night, and that atmospheric transparency was also good. The decision was therefore taken ot erect laser meridian marks (Golovko et al., 1982). Unfortunately, it cannot be gathered from the paper how well some of the conditions stipulated for selecting the site of an astrometric instrument are satisfied. It is in any case hard to achieve high precision for observations at large zenith distances.

Khetselius and Tertitskij (1976) developed two methods by which it was possible to give a fairly good short-term forecast of the astroclimatic conditions at Maidanek. In these authors' view their experiences are applicable to other observatories.

Alekseev et al. (1980) suggest the use of the synoptic situation at the site of observations. For this it is necessary to classify temperature profiles according to the basic types of the synoptic processes, making allowance for their seasonal characteristics.

Kikuchi et al. (1981) found out (as some have already done earlier) that trees and buildings in the vicinity of the astrometric instruments provoke changes in the temperature field surrounding the instrument. The intensity of these changes declines with height, vanishing at about 6 m height. As a consequence of these temperature field deformations the refraction anomalies at Mizusawa are estimated at about 0.01.

Sibilev (1981) explored the temperature field inside and around a pavilion at Nikolaev (USSR) for day-time observing conditions. It could be stated that the temperature field undergoes substantial changes during the day. Under the influence of the winds these changes are intensified. The external air layers in the immediate vicinity of the pavilion keep, on the whole, their pattern, but with growing distances from it the discrepances become larger. Inside the pavilion the air layers are more "tranquil", independent of winds Attention is called by this author to the complexity and changeability of the temperature field and at the same time to the fact that the effects produced by this field are not negligible (see 5). Fairly frequently no possibility exists, according to this author (1980), of computing reliable values of the refraction anomalies under day-time conditions.

Shamaev (1980) investigated possible influences originating inside and outside the pavilion on astrometric results. He especially points to the great significance of the air flows inside the pavilion whose nature and characteristics are hard to establish. One study of Blank et al., (1980) relates to the correlation between the measured parameters of the temperature field inside the pavilion and the clock corrections obtained with two transit instruments at the Moscow Observatory. No unambiguous interrelationship is found and they arrive at the conclusion that the changes in the room refraction do not exercises a systematic influence on the determination of the clock correction. This, they hold, is a result of the adequate construction of the pavilion, and the rational method of data processing.

Concerning the atmospheric influences on the instrument interesting investigations are carried out by Blank (1980). He found that aluminium sheets are good insulators of the transit instrument tube and that, if temperature gradients still appeared in the instrument, they must be due to the warmth radiated by the observer.

Significant refraction disturbances (of order of 0."1) due to the temperature gradients inside the double tube of the Pulkovo Horizontal Meridian Circle, were stated by Kiryan et al. (1980). These disturbances can be minimized through ventillation between the outer and inner tubes.

This report of the chairman of the Working Group on Astronomical Refraction of IAU Commission 8 has in part been presented at the Commission 8 session in Patras, Greece, in August 1982.

The author wishes to express his thanks to Dr. L. Mitić and Dr. J.A. Hughes for their helpful suggestions and advices.

REFERENCES

Abbrevations: IRKUTSK = "Vliyanie atmosfery na astronomicheskie nablyudeniya v opticheskom i radiodiapazonah" Ed. DF VNIIFTRI, Irkutsk and Pulkovo Observatory, 1980

> TOMSK = "Soveshchanye po atmosfernoj optike", Chast 2, Tomsk, 1980

> KIEV = "Astronomicheskie issledovaniya", Ed. Naukova dumka, Kiev, 1981

DUBROVNIK = Proceedings of the Sixth European Regional Meeting in Astronomy "Sun and Planetary System", Ed. D. Reidel Publ. Comp., Dordrecht, Holland, 1982.

Alekseev, A.V., Gaykovich, K.P., Naumov, A.P., 1980: IRKUTSK, 19.

Alekseev, A.V., Kabanov, M.V., 1980: IRKUTSK, 47.

Alekseev, A.V., Belan, B.D., Nelyubin, N.F., 1980: TOMSK, 206.

Arkhangelskij, A.V., 1979: Geod., Kart. Aerofotos., L'vov, 29, 3.

Bagil'dinskij, B.K., Zhilinskij, E.G., Shkutov, V.D.: 1980, IR-KUTSK, 52. Bagil'dinskij, B.K., Zhilinskij, E.G., Pulyaev, S.P., 1981: KIEV, 111.

- Blank, G.M., 1980: IRKUTSK, 72.
- Blank, G.M., Grigor'ev, V.S., Molchanova, V.L., Fedoseev, E.N. 1980: IRKUTSK, 32.
- Bougeret, J.L., 1981: Astron Astroph., 96, 259.
- Bratijchuk, M.V., Kirichenko, A.G., Motrunich, I.J., Shvalagin, I.V., 1980: IRKUTSK, 26.
- Brunner, F.K., 1982: DUBROVNIK, 505.
- Bulygina, QM., 1980: IRKUTSK, 55.
- Dimopoulos, T., 1982: Untersuchungen über die Genauigkeit der Ermittlung der astronomischen Refraktion, Ed. Geodätisches Institut, Stuttgart, 1.
- Fedorov, P.N., Shul'ga, A.V., 1980: IRKUTSK, 70.
- Fukaya, R., 1982: private communication.
- Fukaya, R., Suzuki, S., 1981: Tokyo Astr. Cbs. Rep., 19, 466.
- Fukaya, R., Yoshizawa, M., 1982: Numerical Calculation of the Atm.Refr. at a Given Wavelength Region, IAU Comm. 8, Patras.
- Fukaya, R., Yasuda, H., 1982: DUBROVNIK, 475.
- Golovko, B.A., Tauber, V.G., Shamaev, V.G., 1982: Astrometriya i Astrofizika, Kiev, 46, 103.
- Goto, T., 1979: Proc. ILO Mizusawa, 18, 1.
- Guseva, I.S., 1982: Calculations of the Astron. Refr. for Different aerological Data, IAU Commission 8, Patras.
- Guseva, I.S., E.G. Zhilinski, G.S. Kosin, 1982: The Fifth Edition of the Pulkovo Refr. Tables, IAU Commission 8, Patras.
- Høg. E., 1968: Z.Astrophysik, 69, 313.
- Hughes, J.A., DeLateur, S., 1982: DUBROVNIK, 463.
- Ishii, H., 1979: Tokyo Astr. Obs.Rep., 18, 567.
- Ivanenko, B.P., Marichev, N.N., 1980: IRKUTSK, 65.
- Ivanov, V.I., 1979: Proc. IAU Symp. 89, Uppsala, 67.
- Kaydanovkij, M.N., Stockij, A.A., 1980: IRKUTSK, 25.
- Kharin, A.S., 1980: IRKUTSK, 50.
- Kharin, A.S., 1982: On the Refraction Anomalies from the Meridian Observations, IAU Commission 8, Patras.
- Khetselius, V.G., Tertitskij, M.I., 1976: Pis'ma v.Astr.Zhurnal, Moscow, 2, 315.
- Kikuchi, N., Goto, T., Onodera, E., 1981: Proc. ILO Mizusawa, 20, 111.
- Kiryan, T.R., Pinigin, G.I., Timashkova, G.M., 1980: IRKUTSK, 43.
- Korzhinskaya, S.V., Tyuterev, G.S., Kantorov, A.F., Sharkovkij, N.A., 1981: KIEV, 103.
- Kushtin, I.F., 1980a: TOMSK, 158.
- Kushtin, I.F., 1980b: TOMSK, 147.
- Kushtin, I.F., 1980c: IRKUTSK, 22.
- Kushtin, I.F., 1980d: Geod. Fotogr., Rostov n/D, 3.
- Lindegren, L., 1980: Astron. Astroph., 89, 41.
- Makarov, A.A., 1980: IRKUTSK, 62
- Markov, Yu. V., Sergienko, V.I., 1981: Astrometriya i Astrofizika, Kiev, 45, 82.
- Maslich, D.I., Volzhanin, S.D., 1980: TOMSK, 147.
- Maslich, D.I. et al., 1980: TOMSK, 182.
- Mikkola, S., 1981: Univr. Obs. Informo, Turku, 47,
- Mitnik, L.M., 1980:IRKUTSK, 61
- Mitnik, L.M., Mitnik, M.L., 1980: IRKUTSK, 60.
- Motrunich, I.I., Shavalagin, I.V., 1980: IRKUTSK, 29.
- Nefed'eva, A.I., 1976: Izv.Astron. Obs. Engelgardt, Kazan, 41-42, 141.
- Nefed'eva, A.I., 1978: Izv. Astron. Obs. Engelgardt, Kazan, 45,3
- Nefed'eva, A.I., 1980: Astr. Zhurn., Moscow, 57, 878.
 - Nefed'eva, A.I., 1981: Zadachi sovr. astrometrii v.sozdanii inerc. sistemy Koordinat, Ed. Fan. Tashkent, 387.
 - Nelyubin, N.F., 1980: IRKUTSK, 7.
 - Nelyubina, V.P., Nelyubin, N.F., 1980: Astrometrija i Astrofizika, Kiev, 41, 82.

PROGRESS REPORT ON THE ASTRONOMICAL REFRACTION

	Poma, A., Proverbio, E., Mancuso, S., 1982: DUBROVNIK, 477.
1	Potapov, A.A., 1980: IRKUTSK, 10.
1	Prilepin, M.T., 1980: IRKUTSK, 2.
1	Rajchl. R., 1978: Geophys.sb., 24, 49.
1	Reagen, J.A., Byrne, D.M., King, M.D., Spinhirne, J.D., Herman,
	B.M., 1980: J.Geophys. Res., 85, 1591.
1	Redichkin, N.N., 1980: IRKUTSK, 37.
1	Sustamoinen, J., 1980: Report of a Study on the Latitudinal
	Distribution of Meridian Tilts in the Atmosphere, Wor-
	king Group on Astron. Refraction of IAU Commission 8.
1	Sato, K., Aihara, M., 1979: Publ. ILO Mizusawa, 13, 19,
	Semenov, Yu.I., Patkin, G.P., Boboev, Yu.A., Shtarov, G.B.,
	Gudkov, O.I. 1980: IRKUTSK, 13.
1	Sergienko, V.I., 1979a: Astr. Zhurnal, Moscow, 56, 672.
1	Sergienko, V.I., 1979b: Proc. IAU Symp. 89, Uppsala, 35.
	Sergienko, V.I., 1979c: Vrashch. i pril. deform. Zemli, 11, 83.
	Service VI 1090, IDVITEV 2

- Sergienko, V.I., 1980: IRKUTSK, 3.
- Sergienko, V.I., 1981: Zadachi sovr. astrometrii v sozdanii inerc. sistemy koordinat, Ed.Fan, Tashkent, 397.
- Sergienko, V.I., Kudeeva, V.S., Pavlov, B.A., Molochkov, A. Yu., Modestova, G.I., Gurevich, S.I., Radchuk, A.G., 1980: IRKUTSK, 67.
- Shamaev, V.G., 1980: IRKUTSK, 35.
- Shamaev, V.G., 1981: KIEV, 117.
- Sibilev, V.P., 1980: IRKUTSK, 51.
- Sibilev, V.P., 1981: KIEV, 107.

- Spoelstra, T.A.Th., 1982: DUBROVNIK, 493.
- Stockij, A.A., 1980: IRKUTSK, 16.
- Sugawa, C., 1980: Proc. ILO Mizusawa, 19, 1.
- Sugawa, C., 1981: Proc. ILO Mizusawa, 20, 1.
- Sugawa, C., Naito, I., 1982: DUBROVNIK, 471.
- Teleki, G., 1968: Acta Geodaet., Geophys. et Montainist., Budapest, 3, 237.
- Teleki, G., 1974: Publ. Obs. Astron. Belgrade, 18, 221.
- Teleki, G., 1978: Bull. Obs. Astron. Belgrade, 129, 5.
- Teleki, G., 1979: Proc. IAU Symp. 89, Uppsala, 1.
- Teleki, G., 1981: Bull. Obs. Astron. Belgrade, 131, 3.
- Teleki, G., Saastamoinen, J., 1982: DUBROVNIK, 455.
- Tengstrom, E., 1982: DUBROVNIK, 511.
- Tengstrom, E., Teleki, G. (editors), 1979: Proc. IAU Symp. 89, Uppsala, 383.
- Tyuterev, G.S., 1979: Astr. i god., Tomsk, 7, 3.
- Vasilenko, N.A., 1975: Astrometriya i Astrofizika, Kiev, 25, 98.
- Vasilenko, N.A., Kharitonova, T.H., 1977: Astrometriya i Astrofizika, Kiev, 31, 38.
- Vinnikova, E.B., 1974: Astrometriya i Astrofizika, Kiev, 21, 43.
- Woyk (Chvojkova), E., 1982: DUBROVNIK, 497.
- Zhu, G.I., 1979: Ann.Shangai Obs. Acad. Sinica, 1, 101.
- Zimovski, V.P., 1980: IRKUTSK, 46.
- Yakovlev, V.A., 1980: IRKUTSK, 40.
- Yatsenko, A.Yu., 1981: KIEV, 100.

I: KIEV,

ev, E.N.,

hvalagin,

gkeit der

Geodät-

19,466.

on of the

Comm. 8,

!: Astro-

or Diffe-

1 Edition 3, Patras.

rom the s. Zhurnal, lizusawa, .KUTSK, arkovkij,

, Kazan, azan, *45,* 3. mii inerc.

Astrofizi-

PRELIMINARY ANALYSIS OF THE BELGRADE TRANSIT INSTRUMENT OBSERVATIONAL DATA ACQUIRED IN 1969–1979

S. Šegan

Institute of Astronomy, Belgrade University

(Received June 10, 1983.)

SUMMARY: The results of individual observers on the Belgrade Transit Instrument shown to be accordant among themselves. By increasing the number of the star group observed, a rise in accuracy of 0.5002 per star is achieved. Systematic change of quasi-absolute azimuth has been revealed by which, most likely, systematic change the mean north and south azimuths is produced. The difference DC (E-W) = C(EW) -(WE) is found lower than previously. Both the magnitude and the sign of this difference are equivalent to those of the difference $\Delta\beta$ (EW) in inclination, associated with he order observation. For control and better accuracy another, somewhat modified, program should be observed in parallel with the current one.

1. INTRODUCTION

The observations with the Belgrade Transit Instrument "Bamberg", No. 63131, 10/100 cm. in the period 1969–1979 have been accomplished by the following observers:

D. Vesić	(DV)
L. Đurović	(LD)
M. Lončarević	(ML)
D. Mandić	(DM)
M. Jovanović	(MJ)

A unique list of 297 stars, with magnitudes down to $7\mathfrak{m}8$, has been observed all through the period above indicated. The stars have been divided into 27 groups of 11 stars each. Each group enclosed also a star observable at the lower transit. Out of the stars observed at the lower transit there were 18 which were observed at the upper transit as well. Originally, the programme has been composed and adapted so as to allow the processing according to the Nemiro method. However, it is merely in 1969 that some observations of the meridian marks have been carried out. 204 stars are from FK4 list. 47 stars do not belong to the CTS (Catalogue of Time Service of the USSR).

The apparent places of stars on our programme have been computed at the computing centres of the Pulkovo Observatory and the Time Service of the USSR on the CTS system. It proved in the process that some of the apparent places of stars for 1970 and 1971 were in empty a few miliseconds. In addition, the observations from July and August in 1972, 1973 and 1974 have be omitted from the analysis as stars from other programmes have instead been observed over those periods.

By the end of 1971 a synchronous motor for drivi the travelling wire of the impersonal micrometer w mounted on the instrument. However, the motor prov defective in the maintenance of bisection at lower tra sits. We kept it on the instrument until the middle 1973.

In 1978 there were prolonged interruptions in the observations, causing the number of the recorded transists in that year to be lowest.

In consideration of all the above facts, the who period of time determination with the Belgrade Tran Instrument was divided into three parts, termed cycle

I cycle	1969-1971
II cycle	1972-1975
III cycle	1976-1979

The analysis of the observational results has be brought into effect according to these cycles. C 522.9

ent are

groups

of the

ange of

W) - C

ference

order of gramme

on the of the n error is from e been prograids. driving ter was proved er tranddle of

in the d tran-

whole Transit cycles:

- Poma, A., Proverbio, E., Mancuso, S., 1982: DUBROVNIK, 477. Potapov, A.A., 1980: IRKUTSK, 10.
- Prilepin, M.T., 1980: IRKUTSK, 2.
- Rajchl, R., 1978: Geophys.sb., 24, 49.
- Reagen, J.A., Byrne, D.M., King, M.D., Spinhirne, J.D., Herman, B.M., 1980: J.Geophys. Res., 85, 1591.
- Redichkin, N.N., 1980: IRKUTSK, 37.
- Saastamoinen, J., 1980: Report of a Study on the Latitudinal Distribution of Meridian Tilts in the Atmosphere, Working Group on Astron. Refraction of IAU Commission 8.
- Sato, K., Aihara, M., 1979: Publ. ILO Mizusawa, 13, 19.
- Semenov, Yu.I., Patkin, G.P., Boboev, Yu.A., Shtarov, G.B., Gudkov, O.I. 1980: IRKUTSK, 13.
- Sergienko, V.I., 1979a: Astr. Zhurnal, Moscow, 56, 672.
- Sergienko, V.I., 1979b: Proc. IAU Symp. 89, Uppsala, 35.
- Sergienko, V.I., 1979c: Vrashch. i pril. deform. Zemli, 11, 83.
- Sergienko, V.I., 1980: IRKUTSK, 3.
- Sergienko, V.I., 1981: Zadachi sovr. astrometrii v sozdanii inerc. sistemy koordinat, Ed.Fan, Tashkent, 397.
- Sergienko, V.I., Kudeeva, V.S., Pavlov, B.A., Molochkov, A. Yu., Modestova, G.I., Gurevich, S.I., Radchuk, A.G., 1980: IRKUTSK, 67.
- Shamaev, V.G., 1980: IRKUTSK, 35.
- Shamaev, V.G., 1981: KIEV, 117.
- Sibilev, V.P., 1980: IRKUTSK, 51.
- Sibilev, V.P., 1981: KIEV, 107.

- Spoelstra, T.A.Th., 1982: DUBROVNIK, 493. Stockij, A.A., 1980: IRKUTSK, 16.
- Stockij, A.A., 1900. IKKCTOK, IV.
- Sugawa, C., 1980: Proc. ILO Mizusawa, *19*, 1. Sugawa, C., 1981: Proc. ILO Mizusawa, *20*, 1.
- Sugawa, C., Naito, I., 1982: DUBROVNIK, 471.
- Teleki, G., 1968: Acta Geodaet., Geophys. et Montainist., Budapest, 3, 237.
- Teleki, G., 1974: Publ. Cbs. Astron. Belgrade, 18, 221.
- Teleki, G., 1978: Bull. Obs. Astron. Belgrade, 129, 5.
- Teleki, G., 1979: Proc. IAU Symp. 89, Uppsala, 1.
- Teleki, G., 1981: Bull. Obs. Astron. Belgrade, 131, 3.
- Teleki, G., Saastamoinen, J., 1982: DUBROVNIK, 455.
- Tengstrom, E., 1982: DUBROVNIK, 511.
- Tengstrom, E., Teleki, G. (editors), 1979: Proc. IAU Symp. 89, Uppsala, 383.
- Tyuterev, G.S., 1979: Astr. i god., Tomsk, 7, 3.
- Vasilenko, N.A., 1975: Astrometriya i Astrofizika, Kiev, 25, 98.
- Vasilenko, N.A., Kharitonova, T.H., 1977: Astrometriya i Astrofizika, Kiev, 31, 38.
- Vinnikova, E.B., 1974: Astrometriya i Astrofizika, Kiev, 21, 43.
- Woyk (Chvojkova), E., 1982: DUBROVNIK, 497.
- Zhu, G.I., 1979: Ann.Shangai Obs. Acad. Sinica, 1, 101.
- Zimovski, V.P., 1980: IRKUTSK, 46.
- Yakovlev, V.A., 1980: IRKUTSK, 40.
- Yatsenko, A.Yu., 1981: KIEV, 100.

as been

UDC 522.

PRELIMINARY ANALYSIS OF THE BELGRADE TRANSIT INSTRUMENT OBSERVATIONAL DATA ACQUIRED IN 1969–1979

S. Šegan

Institute of Astronomy, Belgrade University

(Received June 10, 1983.)

SUMMARY: The results of individual observers on the Belgrade Transit Instrument at shown to be accordant among themselves. By increasing the number of the star group observed, a rise in accuracy of 0.5002 per star is achieved. Systematic change of the quasi-absolute azimuth has been revealed by which, most likely, systematic change of the mean north and south azimuths is produced. The difference DC (E-W) = C(EW) - (WE) is found lower than previously. Both the magnitude and the sign of this different are equivalent to those of the difference $\Delta\beta$ (EW) in inclination, associated with he order observation. For control and better accuracy another, somewhat modified, programm should be observed in parallel with the current one.

1. INTRODUCTION

The observations with the Belgrade Transit Instrument "Bamberg", No. 63131, 10/100 cm. in the period 1969–1979 have been accomplished by the following observers:

D. Vesić	(DV)
L. Đurović	(LD)
M. Lončarević	(ML)
D. Mandić	(DM)
M. Jovanović	(MJ)

A unique list of 297 stars, with magnitudes down to 7m8, has been observed all through the period above indicated. The stars have been divided into 27 groups of 11 stars each. Each group enclosed also a star observable at the lower transit. Out of the stars observed at the lower transit there were 18 which were observed at the upper transit as well. Originally, the programme has been composed and adapted so as to allow the processing according to the Nemiro method. However, it is merely in 1969 that some observations of the meridian marks have been carried out. 204 stars are from FK4 list. 47 stars do not belong to the CTS (Catalogue of Time Service of the USSR).

The apparent places of stars on our programme have been computed at the computing centres of the Pulkovo Observatory and the Time Service of the USSR on the CTS system. It proved in the process that some of the apparent places of stars for 1970 and 1971 were in error by a few miliseconds. In addition, the observations from July and August in 1972, 1973 and 1974 have been omitted from the analysis as stars from other programmes have instead been observed over those periods.

By the end of 1971 a synchronous motor for driving the travelling wire of the impersonal micrometer wa mounted on the instrument. However, the motor proved defective in the maintenance of bisection at lower transits. We kept it on the instrument until the middle of 1973.

In 1978 there were prolonged interruptions in the observations, causing the number of the recorded transists in that year to be lowest.

In consideration of all the above facts, the whole period of time determination with the Belgrade Transit Instrument was divided into three parts, termed cycles:

I cycle	1969-1971
II cycle	1972-1975
III cycle	1976-1979

The analysis of the observational results has been brought into effect according to these cycles.

UDC 522.9

trument are

star groups ange of the ic change of :C(EW) - Cis difference the order of programme

SSR on the

ome of the

'ere in error

ations from

have been her prograperiods. t for driving

ometer was otor proved lower tranmiddle of

cions in the orded tran-

the whole ade Transit ned cycles:

2. PERSONAL ERRORS

According to the Mayer formula we have

$$U = C + MA, \tag{1}$$

where C - clock correction, A - azimuth and M - azimuth coefficient.

The azimuth A has been calculated by combining the mean north (marked by n) and mean south (marked by s) fictitious stars

$$A = (U_{s} - U_{n})/(M_{s} - M_{n}),$$
$$U_{s} = \frac{1}{N_{s}} \Sigma U_{k}, \qquad \delta_{k} < 44^{\circ} \cdot 8$$
$$U_{n} = \frac{1}{N_{n}} \Sigma U_{k}, \qquad \delta_{k} > 44^{\circ} \cdot 8,$$

where N_s and N_n denote the number of the south and north stars, respectively.

The correction to some particular star group has been determined after introducing weights $F_k = \cos^2 \delta_k$. Thus, the correction to a particular star:

 $C_k = U_k - M_k A$, and the one pertaining to a star group

 $C = \Sigma P_k C_k / \Sigma P_k$, the stars observed at the lower transits having been omitted from the discussion.

Table I. Mean values of ΔC_k

Having estimated the number of gross errors at about 2% of the total, we adopted criterion $\Delta C_k = |C_k - C| < 2.5 E_1$ for the deducation of the exact number of such errors comitted by any observer. E₁ denotes the error in he clock correction, resulting from the observation of a single star, $E_1 = \pm 0$ \$030, thus $C_k \le 0$ \$075 sec δ_k . In addition, mean values ΔC_k according to declination zones for every observer has also been calculated. The results are presented in Table 1.

Columns 0° through 65° – mean values of ΔC_k according to individual observers and the declination zones; E_1 – the error of a single clock correction; E_0 – mean value error of a star group; F – the average number of a star's transits, GE – the average number of gross errors.

The means in the colums 0° through 65° have the following mena errors:

00	-3.2 ±	0.6
15	2.4	0.8
25	4.3	1.1
35	-2.7	1.5
45	4.6	0.8
55	0.9	0.8
65	-2.6	0.7

The mean values of individual observers (in 09001) are

MJ	0.5 ±	: 0.7	
DV	0.3	0.7	
LD	1.0	2.0	The general mean value
ML	-1.0	2.0	
DM	3.0	3.0	C = 0.025.

zones obs.	00	150	250	350	450	550	650	El	Eo	F	GE
MJ 69	3	3	10	-10	1	2	5	31	10	5	2.3 %
70	-3	2	6	- 2	4	0	-2	32	10	5.5	0.8
71	-5	2	7	5	4	2	-5	33	10	5	2.9
72	-2	-7	4	-13	10	-5	-4	34	11	2.8	0.9
73	-2	-1	3	- 8	4	3	4	34	11	2.9	5.2
74	-2	6	8	2	3	1	-3	34	11	2.9	4.8
75	- 4	2	9	0	6	-1	4	34	11	8	3.8
76-79	7	4	6	2	10	4	7	35	11	14.8	1.0
DV 69	0	0	-2	7	1	2	-2	19	6	2	2.1
70	-3	5	-4	- 6	6	0	$^{-2}$	25	8	2.6	1.0
71	-5	4	6	- 2	6	-1	0	25	8	4	3.0
72	-4	6	3	- 6	9	7	-4	30	10	4	6.1
73	-1	5	-2	1	2	5	-3	31	10	3.9	7.7
74	1	0	-2	-11	0	0	-3	29	9	3.7	2.9
LD											
75-79	-6	2	7	- 2	9	3	6	36	11	8.9	1.3
ML 69	-1	1	2	- 7	0	4	4	20	6	1.9	0.5
DM 69	-7	8	11	. 4	4	-1	3	30	10	2	0.7

ts has been

49

We see that the mean values according to declination zones are above the determination errors and that the results of individual observers differ little among them selves. The general mean value for all the observers taken together is practicurally null.

3. AZIMUTH DETERMINATION

The azimuth A and the clock correction C values, determined, under the condition that the aquations (1) are equal weight, that only accidental errors are present and that $\Sigma M_k = 0$, attain their heighest weight.

The observing programmes of the time services are conformed to the basic demand: the achievement of the highest possible accuracy in the determination of C this is the reason why currently circumzenithal stars are mostly observed. From (1) we have

$$A = (U_k - C_k)/M_k$$
⁽²⁾

Suppose the time of the star transit over meridian and its right ascension were both unaffected by any error. Let the azimuth A be determined by combining a group of N_z stars (N_z being of the order of 5 to 10 stars) for which $\Sigma M_k = 0$, and some star (*) distant from the zenith. The most probable error of the azimuth is given by

$$E^{2} = (E_{*}^{2} - (1/N_{z})^{2} \Sigma E_{k}^{2})/M^{2}$$
(3)

The accidental errors, reduced to he equator must be equal. Therefore, for the zenith zone we obtain

$$E_k^2 = E_0^2 \sec^2 \varphi$$
;

by substituting in (3) we get

$$E(A) = \sqrt{(\sec^2 \delta - (1/N_z)^2 \sec^2 \varphi)/M}$$
(4)

wherein $E_0 = \pm 0$ so 25 is most frequently used.

A similar result has been arrived at by V.E. Brandt (1969) at developing the formula for the azimuth weights according to the classical formula:

$$P(A) = N_s N_n \cos^2 \varphi \sin^2 (\delta_n - \delta_s) / (N_s \cos^2 \delta_s - N_n \cos^2 \delta_n)$$
(5)

If $N_n = N_z = 5$ (or 10), $N_s = 1$, there will be P(A, 5) = 0.050 (or P(A, 10) = 0.045), whereas with $N_s = N_n =$ 5, using the classical procedure we get—for the Belgrade latitude – P(A) = 0.030.

We performed the calculation of the azimuth by combining the mean fictitious zenith star with evry equator or north star. If these individual equator or north stars are substituted by mean south and mean north stars, respectivaly, we obtain the results presented in Table II

Table II. Standard deviation (s.d.) of az.muth

Columns: 1. declination zone and its denomination; 2. corresponding mean declination; 3. secant; 4. squared secant; 5. standard deviation D_s of the azimuth, determined from the combination (z-s); 6. standard deviation (s.d.) D_n of the azimuth, determined from the combination (z-n).

1.		2.	3.	4.	5.
- 70 + 350 + 35, + 55 + 55, + 70	(equatorial) (zenithal) (north)	1406 46.7 61.8	1.04 1.46 2.11	1.07 2.10 4.47	$D_s = 0.043$ $D_n = 0.075$

From the observational material we deduced the following results, displayed in Table III

Table III. Yearly mean of the s.d.

Columns: D_n – yearly means of the s.d. (z-n); D_s – yearly means of the s.d. (z-s); D'_n – s.d. (z-n) after smoothing; D'_s – s.d. (z-s) after smoothing of the clock corrections (Šegan, 1982)

Year	Ds	D _n	D's	D'n
1969	0 ^s 051	0 ^s 061	08034	05048
70	40	55	37	51
71	65	94	38	50
72	42	54	36	49
73	70	83	38	50
74	46	60	34	46
75	52	67	40	57
76	51	68	42	63
77	55	69	44	62
78	49	77	40	61
1979	0.050	0.070	0.042	0.065

The general means of D'_s and D'_n are 0.039 and 0.056, respectively. The ratio D_s/D_n (Table II) has the value 0.7. The ratio of the mean values of D'_s and D'_n (Table III) is 0.6. It is probable that a minor change in the observing programme would result in these ratios becoming equal, i.e. the azimuth would assume a greater weight. Let us revert to the formulae (4) and (5). For the Belgrade zenith $\delta(Z) \sim 45^{\circ}$ and $\delta_k \sim 60^{\circ}$, $M_* = M_s$, there will be (with eight zenith stars)

$$E_{45}(A) = E_0 \sqrt{0.75}/0.65,$$

$$E_{60}(A) = E_0 \sqrt{0.50}/1.3,$$

$$P(A | 45) = 0.8 \quad P(A | 60) = 1.85$$

P denoting approximate weights.

PRELIMINARY ANALYSIS OF THE BELGRADE TRANSIT INSTRUMENT OBSERVATIONAL DATA ACQUIRED IN 1969–1979

At the Belgrade observatory, the azimuth and the clock corrections are derived from the observations of series consiting of 11 stars, whereby the number of the zenith stars does not surpass 5. The foregoing result suggests the need of modifying the observational programme in the sense of increasing the number of zenith stars and preserving the number of the south and north stars. This applies to the Belgrade Observatory. As to the Observatories located more to the north, additional systematic errors could be introduced by their north stars are affected by significant errors. In that event the advantages gained even be ruined.

In Table IV are given the mean square errors of the azimuth $E_z(A)$, $E_n(A)$ and the clock correction $E_z(C)$, $E_n(C)$ and E'_z and E'_n . E(C) pertain to the unsmoothed and E'(C) to the smoothed clock corrections.

Table IV. Mean square errors

h

h n

S-

n-

ni-

h,

3

5

0-

rlv

(2)

nd

he

)'n

in

ios

ter

For

Ms,

cycle	E _Z (A)	E _n (A)	$E_{Z}(C)$	E _n (C)	$E'_{Z}(C)$	E'n(C)
1	05057	0 <u></u> \$028	0\$043	0 <u>\$</u> 039	0 <u></u> 9038	05034
II	58	26	42	38	38	34
III	59	28	47	42	43	38

The results in he two first cycles can be regarded as accordant, whereas a decrease in accuracy is evident in the later observations.

4. CLOCK CORRECTION DETERMINATION

The first step of the treatment involved only those of the observational nights, where two or more groups have been observed. The treatment consisted in the following: the instrument azimuths and the clock corrections were computed for each of the observing nights and for each of the ,,conditional observing nights". The conditional observing night is one during which two star groups have been observed.

This parallel calculus proved justified as thereby a more accurate azimuth variation in the course of observation, and the mean error of the clock correction, derived by combining two adjacent groups, turned by 0§002 (in modulus) less than the one obtained by the procedure first referred to, has been achieved. By linking two observing nights, on which less than two complete star groups have been observed, the erros regained their previous amounts, but the number of the observational units, conforming to the principles imposed by the treatment, was increased. However, the observing nights with less than 10 star transits were thereby rejected.

The azimuth, associated with each single star for which

 $|\delta_k - \varphi| < 10^{\rm o},$ was computed according to the formula

$$A'_{k} = (U_{k} - U_{z})/(M_{k} - M_{z}),$$
 (6)

where U_z and M_z are mean values of the Mayer coefficients for the zenith stars. By means of these azimuths, mean "north" and "south" azimuths, corresponding to each one of subsequent groups, were deduced and their difference determined by

$$DA_{j} = A_{s} - A_{n} = (1/P_{s}) \Sigma P_{k}A'_{k} - (1/P_{n}) \Sigma P_{k}A'_{k},$$
(7)

 $P_k = (M_k - M_z)^2 \cos^2 \delta_k$

where j denotes the ordering number of the night concerned and P_k is the azimuth weight.

The differences DA_j , being on the whole produced by the $\Delta \alpha(\delta)$ errors, their mean values cannot substantially diverge from one year to another. Since there were no manifest seasonal variations in DA_j in the course of the subcycles (one subcycle = 1 year), the variation in DA_j was controlled from one year to the next through he intermediary of the respective mean values. The results are presented in Table 5.

Table 5.

Year		DA	DA ₂	
1969	0\$001	± 0\$004	-0\$020	±0\$004
70	-17	5	- 21	2
71	-16	6	- 19	3
72	17	6	- 19	3
73	-20	9	- 16	3
74	- 2	8	- 14	3
75	-27	7	- 21	3
76	-29	7	- 23	3
77	-39	8	- 22	3
78	-40	9	- 27	3
1979	-46	9	- 19	3

Fig. 1. Yearly mean of DA_j before (1) & after (2) smoothing

51

The corrections have been deduced by combining the mean north star on the particular night with each one of the stars observed at lower transit. The residual corrections to the quasi-absolute azimuth resulting from the corrections to the azimuth associated with the stars observed at both upper and lower transits, were the measure of the determination accuracy. The results are given in Table VI.

Table VI. Corrections to the quasi-absolute azimuth

Columns: 2 - correction to the quasi-absolute azimuth; 3 - weight unit error; 4 - correction to the absolute azimuth CA(A), after applying the corrections DA(A); 5 - weight unit error of CA; 6 - the number of stars for which the corrections DA(A) and CA(A) are determined.

Ýear	2	3		4	5	6
1969	0\$011	±0\$027	-0 <u></u>	004	±0\$010	184
70	12	22		4	10	125
71	8	25	-	4	10	101
72		_		- 1		-
73		-				-
74	15	24	-	5	11	29
75	- 2	14	_	5	11	85
76	- 19	25		2	12	84
77	- 15	20	-	2	12	102
78	- 17	18	-	2	12	53
79	- 16	26	-	2	12	66

The assumption of the correction to the quasi-absolute azimuth having changed its sign during 1975 was confirmed by the values listed in Table VI. The origin of this phenomenon might constitute the subject of a separate work. Here we confine ourselves to the analysis of repercussions produced by this result. First, a new distribution of the observational material proved possible – instead of three, only two observational cycles have further been examined:

1th cycle – 1969–74 2nd cycle – 1975–79

Moreover, in view of the identity of signs of the quasiabsolute azimuth and the difference $DA - DA_2$ in the interval 1972-73, the value DA(A) = 0%012 was adopted as the mean correction to the absolute azimuth for that period.

To achieve a reduction of the effects on the clock correction, resulting from the errors in azimuth determination, the azimuth applied in the further treatment was calculated by

$A''_k = A'_k + DA_i$	for	$\delta_k > + 5498$	
$A''_k = A'_k$	for	$\delta_k < +3498$	(8)

where A_k is given by (6) and by (7).

For every night on which $N_n + N_s = 10$ the azimu variation in time has been calculated according t_0 method of least squares by the equations of condition the form

$$A''_k = A_0 + \Delta A T, T = \alpha_k - \alpha_0, \alpha_0 = (\alpha_M + \alpha_1)$$

where M is the number of stars in the group, α is right ascension and A₀ and Δ A unknowns.

Where, on the contrary, $N_n + N_s < 10$, the values have been calculated as the mean weighted va of A_k^x . Thus were obtained the corrected azimuths

$$A_k^c = A_0 + (\alpha_k - \alpha_0) \Delta A$$

by means of which the clock corrections at every s transit was calculated:

$$C_k^* = U_k - M_k A_c^k \tag{(1)}$$

With regard to the previous results pertaining to inclination differences in terms of the order of observon, two groups of the clock corrections C'_k can assumed. For this reason we calculated annual me and a general mean value of the difference of corrections C'(EW) - C'(WE), proceeding thereby fr the mean value DC_i of the night:

$$DC_i = (C'(EW) - C'(WE))_i$$

The results are listed in Table VI.

Table VII. Annual means of the DCi

1	2	3
1969	-0\$0010	213
70	- 39	147
71	- 20	151
72	- 13	113
73	- 36	75
74	- 9	105
75	- 41	122
76	- 19	101
77	- 70	111
78	- 66	65
1979	-0.0021	86

Columns: 1 - the year; $2 - \text{mean values of DC}_j$; 3 - the num ber of the "conditional nights".

The value relating to the entire period is consider ly lower than is ussualy found in the literature (Brk 1961) for the same kind of instrument. It diff considerably from the one, found by Brkić for t instrument (Brkić, 1961), although under different conditions of observation. This value is somewhat lower than the one obtained by Durović (1976) for the period 1966-69. Djurović's (1976) conclusion of the difference $\Delta\beta = \beta$ (EW) $-\beta$ (WE) as being the prime generator of the difference DC_j might well be accepted. However, failing appropriate analysis of the changes, produced by the thermic insulation of the instrument and the conditions of observation, it is not possible to supply a more concrete answer as to the origin of these differences.

5. CONCLUSIONS

We have seen in Section 2 how little the results of the individual observers differed among themeselves. Thus, the observational material can, as far as the clock correction determination is concerned, be regarded as being homogenous. Concerning the azimuth determination, several ways of composing the observational programe are offered, as there are several ways of azimuth determination from the existing observational material. A systematic shift in the quasi-absolute azimuth has been found which, most probably, gives rise to the systematic variation DA of the difference of the mean south and the mean azimuths. The difference C(EW) - C(WE) is less than one, found by Brkić (1961) and Durović (1976). The magnitude and the sign of this difference in the period under treatment are equivalent to the magnitude and the sign of the inclination difference, itself a function of the order of observation $\Delta\beta = \beta(EW) - \beta(WE)$.

Inasmuch as the difference C(EW) - C(WE) is a result of the inclination difference $\Delta\beta = \beta(EW) - \beta(WE)$, any seasonal component in the inclination variation must be expected to produce analogous component in the clock correction. More precisely, a fluctuation in he clock correction of 1 to 2 milliseconds can be expected in the equator zone, which is multiplied, for the rest of the zones, by the factor N - the inclination coefficient in the Mayer formula.

REFERENCES

Brkić, Z.: 1961, Publ. Obs. Astron. Belgrade, 1 Đurović, D.: 1969, Bull. Obs. Astron. Belgrade, 27, 52 Đurović, D.: 1976, ibid., 127, 1 Šegan, S.: 1982, Publ. dept. Astron. Belgrade, 12

imuth

to the

ion of

 $(t_1)/2,$

is the

le Ao

value

y star

(9)

to the

ervati-

n be

means of the from

LES ORBITES DE QUATRE ETOILES DOUBLES VISUELLES /ADS 2111=BU 83, ADS2609 AB = BU 787AB, ADS3058 = HU 302, GLE 1/

V. Erceg

/Reçu le 28. 12. 1982/

RESUME: on donne les éléments des orbites, les masses, les magnitudes obsolues et les parallaxes dynamiques orbitales de quatre étoiles doubles visuelles, les éléments étant determinés en utilisant la méthode de Thiele-Innes, Van den Bos.

ORBITE DE ADS 2111=BU 83

Pos. (1950): 02h43^m5; - 05^o 10'

Mgn.: 8.0 – 10.6; Type sp. F2

Tableau I. Les éléments orbitaux, les quantités astrophysiques et les constantes

Tableau II. Les éphémérides

t 1983.0	θ	ρ
1983.0	2505	
	3373	0.67
1984.0	34.4	0.67
1985.0	33.4	0.67
1986.0	32.3	0.67
1987.0	31.3	0.67
1988.0	30.2	0.67
1989.0	29.2	0.68
1990.0	28.2	0.68
1991.0	27.1	0.68
	1983.0 1985.0 1986.0 1987.0 1988.0 1989.0 1990.0 1991.0	1984.0 33.4 1985.0 33.4 1985.0 33.4 1986.0 32.3 1987.0 31.3 1988.0 30.2 1989.0 29.2 1990.0 28.2 1991.0 27.1

Tableau III. Les observations et les résidus

No	t	θ	ρ	Obs.	n	Références	(О <i>-</i> С) _θ	(O-C) _p
1.	1876.03	121.3	1.40	D	4	Mis.Microm.V.1, Rome, 1883.	0.1	+0".41
2.	1877.81	125.5	1.01	HWE	1	Pub.Cincinati Obs. N.4, 1878.	+4.9	+ 2
3.	1877.95	120.5	1.00	STN	1	Pub.Cincinati Obs.N.4, 1878.	0.0	+ 1
4.	1886.84	116.4	0.88	LV	3	Univ.Minesota press, 1930.	+0.4	- 7
5.	1886.87	116.0	0.95	MLF	2	Pub.Mc.Cormick Obs. V.1. Pt.4, 1889.	0.0	0
6.	1888.87	109.2	0.99	LV	2	Univ.Minesota press, 1930.	-5.8	+ 5
7.	1891.77	111.7	0.90	BU	3	Pub.Lick Obs.V.2, 1894	-1.7	- 3
8.	1896.06	106.6	0.84	SP	6	Misure Stelle Doppie		
						Milan 1909.	-4.4	- 7
9.	1898.79	104.3	1.00	Α	3	Pub.Lick Obs.V.12,1914.	-5.2	+ 10
10.	1901.83	103.3	0.92	BRY	1	Greenwich Obs. 1901.	4.4	+ 3
11.	1901.979	101.7	1.03	DOO	3	Pub.Univ.Pennsylvania, V.2.Pt.3.	-5.9	+ 14
12.	1905.08	105.9	0.96	Α	3	Pub.Lick V. 12, 1914	+0.2	+ 9
13.	1907.97	101.5	1.04	WZ	1	Ann Strasbourg Obs.V.4, Pt.2,1912.	-2.4	+ 18
14.	1908.85	104.9	0.97	NEF	2	Astron.Nachr.V.182,253,1909	+1.6	+ 11
15.	1914.99	99.2	1.00	JON	1	Greenwich Cat. Double Stars, 1921.	0.0	+ 17
16.	1916.87	99.4	0.81	LV	1	Univ.Minnesota Press, 1930.	+2.2	- 1
17.	1917.874	101.7	0.72	COU	1	Pub.Washburn Obs.V.10.Pt.4.	+4.5	- 10
18.	1918.05	101.0	0.74	LV	2	Univ.Minnesota Press 1930.	+3.9	- 7
19.	1919.06	95.7	0.90	LV	2	Univ.Minnesota Press, 1930.	-0.7	+ 9
20.	1925.669	95.2	0.79	VBS	2	Pub. Yerkes Obs. 5, Pt.1, 1927.	+3.8	+ 1
21.	1931.62	82.8	0.71	VOU ·	4	Ann. Bosscha Obs. Lembang, 6, Pt.1.	-3.9	- 5

LES ORBITES DE QUATRE EFOILES DOUBLES VISUELLES (ADS 2111, ADS 2609 AB, ADS 3058, GLE 1)

Table III (Continued)

No.	t	θ	ρ	Obs.	n	Références	(0−C) _θ	(O-C) _p
22.	1935.73	80.1	0.76	В	4	Union Obs. Circ.N.100,481.	-3 ° 1	+ 2
23.	1937.47	78.8	0.76	FIN	4	Union Obs. Circ.N.112,104.	+2.9	+ 2
24.	1939.11	75.8	0.62	BAZ	1	J.Obs. 37, 073.	-4.5	- 11
25.	1942.65	83.8	0.81	VOU	3	Manuscript, See J.Obs. 38, 109.	+6.7	+ 9
26.	1948.99	73.7	0.66	В	3	Union Obs.Circ.N.111,13.	+2.6	- 4
27.	.1953.02	74.7	1.02	VBS	2	Pub.Yerkes Obs. 9, Pt.2.	+7.6	+ 33
28.	1953.92	70.4	0.71	COU	2	J. Obs. 37, 37.	+4.2	+ 2
29.	1957.73	62.6	0.60	В	3	Astrophys. J.Supp. 4, N.36, 45.	+0.3	- 8
30.	1959.94	58.9	0.57	В	4	Union Obs. Circ. N. 119, 321	1.1	- 10
31.	1960.74	57.7	0.69	WOR	4	Astron. J. 68, 114.	-1.5	+ 2
32.	1962.00	52.4	0.75	В	4	Astron. J. 68, 582.	-5.5	+ 8
33.	1962.52	55.2	0.64	В	6	Astron. J. 68, 582.	-2.1	- 3
34.	1962.98	52.0	0.60	COU	3	J. Obs. 46, 155.	-4.8	- 7
35.	1964.03	48.9	0.66	COU	3	J. Obs. 47, 229.	-6.8	- 1
36.	1968.01	50.9	0.68	KNP	1	Republic Obs.Circ. N. 128, 177.	-0.6	+ 2
37.	1969.67	56.2	0.67	VBS	4	Astrophys.J.Supp. 28, 413, 1975.	+6.5	+ 1
38.	1975.86	43.1	0.69	HEI	3	Astrophys.J.Supp. 37, 343, 1978.	0.0	+ 3
39.	1977.91	38.8	0.65	HEI	3	Unpublished	-2.1	- 1
40.	1980.109	35.8	0.72	WOR	4	Unpublished	-2.8	+0.06

ORBITE DE ADS 2609AB = BU 787AB Pros. (1950): 03h30^m8;+48^o27' Mgn.: 7.2-11.2; Type sp. AO

Tableau IV. Les élén	nents orbitaux, les q	uantités ast	Tableau V. Les éphémérides			
				t	θ	ρ
$\begin{array}{l} P = 400.22 \mbox{ ans } \\ n = 0^{8}8995 \\ T = 1831.93 \\ e = 0.54 \\ a = 2^{18}61 \\ i = 31^{9}4 \\ \Omega = 147^{9}3 \\ \omega = 331^{9}9 \\ T_{\Omega, \mbox{ CS}} = 1840.03; 17 \end{array}$	A = -1".5000 B = +2".3333 F = -2".3000 G = -1".0833 C = F0".7021 H = ± 1".3125 12.66	$\pi_{dyn.orb.}$ MA MB MA MB a	= 0.046 = 5.5 = 9.5 = $0.99 \odot$ = $0.53 \odot$ = 62.5 U.A.	1983.0 1984.0 1985.0 1986.0 1987.0 1988.0 1989.0 1990.0 1991.0	287*5 287.8 288.2 288.5 288.9 289.2 289.5 289.9 290.2	3'.92 3.94 3.95 3.96 3.97 3.98 3.99 4.00 4.01

Tableau VI. Les observations et les résidus

No	t	θ	ρ	Obs.	n	Références	(O−C) _θ	(0-C) _p
1.	1881.69	228.5	2.05	BU	3	Pub. Washburn Obs. 7, 1882.	+2.3	-0.05
2.	1885.96	227.3	2.35	STH	1	Pulkovo Publ. Ser. 2, 12, 1901.	-3.8	+ 16
3.	1888.588	233.1	2.02	COM	5	Pub. Washburn Obs. 6, Pt.2.	-0.8	- 23
4.	1898.704	245.6	2.39	HU	1	Lick Obs. Bul. 2, 115, 1903.	+2.0	- 8
5.	1899.13	243.3	2.40	BU	1	Publ.Yerkes Obs. 1.	-0.6	- 8
6.	1899.983	241.0	2.64	DOO	3	Pub. Univ. Pennsylvania 1, Pt.3.	-3.7	+ 14
7.	1925.17	256.2	2.54	FOX	1	Ann. Dearborn Obs. 6, 1.	-6.1	- 48
8.	1927.14	268.2	2.52	GCB	2	Paris Obs. Cat. 1934.	+4.8	- 54
9.	1933.17	267.1	3.23	GCB	1	Paris Obs. Cat. 1934.	+0.4	+ 6
10.	1939.30	272.4	3.14	VBS	4	Pub. Yerkes Obs. 8, 159.	+2.6	- 15
11.	1958.08	281.6	3.81	В	1	Pub. Yerkes Obs. 9, Pt.1.	+3.4	+0.21

ORBITE DE ADS 3058 = HU 302 Pos. (1950): 04h10^m2; + 22°50' Mgn.: 10.2 - 10.2; Type sp. KO

Tableau VIII. Les éphémérides

Tableau VII. Les éléménts orbitaux, les quantités astrophysiques et les constantes

				<u>t</u>	θ	ρ
P = 290.42 ans $n = 1^{\circ}2396$ T = 1728.64 e = 0.28 a = 0.253 $i = 54^{\circ}.0$ $\Omega = 23^{\circ}.2$ $\omega = 106^{\circ}.6$	A = -0.1230 B = +0.1030 F = -0.2068 G = -0.1350 $C = \pm 0.1360$ $H = \pm 0.0584$	$m_{\rm dyn.orb}$ MA MB MA MB a	= 0.004 = 3.3 = 3.3 = 1.41 $^{\circ}$ = 1.41 $^{\circ}$ = 61.9 U.A.	t 1982.0 1983.0 1984.0 1985.0 1986.0 1987.0 1988.0 1989.0 1989.0 1990.0	θ 43°.1 44.3 45.5 46.8 48.1 49.5 50.9 52.4 53.9	ρ 0.20 0.19 0.19 0.19 0.18 0.18 0.18 0.17 0.17
$T_{\Omega,\mho} = 1959.11; 2055.1$	6			1991.0	55.5	0.16

Tableau IX. Les observations et les résidus

No	t	0	ρ	Obs.	n	Références	(0−C) _θ	(O-C) _p
1.	1901.72	164.1*	0".25	HU	2	Lick Obs. Bul. 1, 82, 1901.	-1°.3	-0.01
2.	1922.219	178.0*	0.25	VBS	5	Pub.Yerkes Obs. 5, Pt.1, 1927.	-1.7	+ 1
3.	1922.67	0.0	0.28	Α	2	Lick Obs. Bul. 11, 58, 1923.	0.0	- 2
4.	1944.78	15.2	0.24	VOU	4	Manuscript, See J. Obs. 38, 109.	+1.4	+ 3
5.	1944.84	13.1	0.27	VBS	1	Pub. Yerkes Obs. 8, 159.	-0.7	0
6.	1946.81	21.0	0.25	VBS	1	Pub. Yerkes Obs. 8, 159.	+5.9	. – 2
7.	1951.80	19.7	0.22	VBS	3	Pub. Yerkes Obs. 9, Pt. 2.	+1.4	- 4
8.	1959.07	24.1	0.28	COU	3	J. Obs. 42, 17.	+0.9	+ 3
9.	1962.96	27.2	0.25	В	4	Astron. J. 68, 582.	+1.3	0
10.	1967.12	25.5	0.25	COU	3	J. Obs. 51, 337.	-3.6	+ 1
11.	1971.95	33.1	0.24	HEI	4	Astrophys. J. Supp. 29, 315, 1975.	0.0	+ 1
12.	1975.07	218.4*	0.23	MUL	3	Astron Astrophys. Supp. 33, 275, 1978	+2.5	+ 1
13.	1978.85	32.6	0.17	HEI	2	Astrophys. J. Supp. 44, 111, 1980.	-7.0	-0.04

* Quadrant changé

ORBITE DE GLE 1=IDS 04148S6072 Mgn. 6.9-7.4; Type sp.AO

Tableau X. Les élén	nénts orbitaux, les q	ophysiques	Tableau XI. Les éphémérides			
et les constantes			t	θ	ρ	
P = 370.22 ans				1983.0	96.2	0.40
n = 0.9724				1984.0	98.8	0.40
T = 1619.98	A = -0.2380	$\pi_{\rm dyn}$ orb	= 0.010	1985.0	101.3	0.40
e = 0.28	B = +0.5460	M _A	= 2.0	1986.0	103.7	0.41
a = 0.815	F = -0.7700	MR	= 2.5	1987.0	106.2	0.41
$i = 48^{\circ}.7$	G = -0.0750	MA	= 1.80 ·	1988.0	108.5	0.42
$\Omega = 168^{\circ}.7$	$C = \mp 0''.5562$	MB	= 1.62 •	1989.0	110.8	0.42
$\omega = 294.7$	$H = \pm 0''.2559$	a	=77.6 U.A.	1990.0	113.1	0.43
				1991.0	115.3	0.43
$T_{\Omega, U} = 2030.10; 19$	04.69.			1992.0	117.5	0.44

LES ORBITES DE QUATRE EFOILES DOUBLES VISUELLES (ADS 2111, ADS 2609 AB, ADS 3058, GLE 1)

						and the second sec		
No	t	θ	ρ	Obs.	n	Références	$(O - C)_{\theta}$	$(O - C)_{\rho}$
1.	1894.8	300°	0	1	2	MN R.Astron.Soc. 55, 312.544.	-43.°	0''1
2.	1897.07	342.4	1.34	SLR	3	Astron. Nachr. 186, 065.	- 2.1	+0.47
3.	1897.3	339.0	0.95	1	1	• •	- 5.6	+0.08
4.	1913.94	353.9	0.84	Vou	4	Ann. Bosscha Obs. Lemb. 1, Pt.3, C1.	- 0.2	+0.03
5.	1914.02	351.4	0.76	VBS	2	Union Obs. Circ. N.24, 185.	- 2.8	0.05
6.	1924.96	3.8	0.88	VOU	4	Ann. Bosscha Obs. Lemb. 1, Pt. 2, B 1.	+ 2.3	+0.13
7.	1928.73	4.4	0.83	BRU	4	Ann. Bosscha Obs. 1. Pt. 4, 1928.	0	+0.11
8.	1928.92	2.3	0.68	В	4	Union Obs. Circ. N.80, 59.	- 2.2	0.04
9.	1934.50	10.1	0.53	В	4	Union Obs. Circ. N.94, 149.	+ 0.9	0.15
10.	1937.74	15.1	0.50	TAN	1	Union Obs. Circ. N.106, 193,	+ 3.0	-0.16
11.	1938.94	16.8	0.59	В	4	Union Obs. Circ, N.107, 259.	+ 3.5	0.06
12.	1942.69	20.1	0.77	VOU	3	J. Obs. 38, 109.	+ 3.0	+0.15
13.	1943,24	34.0	0.7	HIR	1	MN R. Astron. Soc. 106, 154.	+16.0	+0.1
14.	1943.28	20.7	0.56	В	4	Union Obs. Circ. N.108, 312,	+ 2.9	0.05
15.	1944.33	19.7	0.7	HIR	1	MN R. Astron. Soc. 106, 154.	+ 0.7	+0.1
16.	1945.05	21.6	0.7	HIR	3	MN R. Astron. Soc. 110, 455.	+ 1.8	+0.1
17.	1946.49	25.7	0.50	В	2	Union Obs. Circ. N.111, 013.	+ 4.2	0.08
18.	1946.89	19.5	0.66	GTB	1	Mem. Commonw. Obs. MT Stromlo.	- 2.4	+0.08
19.	1951.50	30.7	0.47	В	6	Union Obs. Circ. N.115, 266,	+ 2.8	0.07
20,	1959.47	42.5	0.38	В	2	Union Obs. Circ. N.119, 321.	+ 1.9	0.10
21.	1965.00	50.5	0,44	KNP	2	Republic Obs. Circ. N. 124, 074.	0.9	0.00
22	1965.28	52.0	0.42	В	4	Republic Obs. Circ. N. 126, 127.	0	0.02
23.	1967.55	59.0	0.41	KNP	2	Republic Obs. Circ. N. 128, 177.	+ 20	-0.01
24.	1975-20	76.8	0.40	WOR	3	Pub. US Naval Obs. 24, Pt. 6, 1978.	- 0.4	0.00
25.	1976.114	75.3	0.33	WOR	1	Pub. US Naval Obs. 24, Pt. 6, 1978.	. 79	-0.07

Tableau XII. Les observations et les résidus

BIBLIOGRAPHIE:

Van, den Bos, W.H.: 1926, Orbital elements of Binary stars; Union Observatory Circular N.68.
Parenago, P. P.: 1954, Kurs zvezdnoj astronomiji, Moskva.

-0.04

57

UDC 521.3

ORBITS OF TWO VISUAL BINARIES

D.J.Zulević

(Received 15 October 1983)

III.

SUMMARY: Orbits and dynamical parallaxes are presented for the binaries ADS 4, 9747. Calculated positions are compared with observations and ephemerides are given for each system.

Orbits for two visual binaries have been computed using the methods of Thiele-Innes. Dynamical parallaxes were computed by the method of Baize and Romani

ADS 4 = IDS 23575S0863 = A 428, 9.5 - 9.5, GO

A = +0.2450B = +0.1166

F = +0.0883

G = -0.1866

C = 0".0000

 $H = \mp 0".1739$

 $T(\Omega) = 1972.68$

Table I. Elements of the orbital motical and astrophysical quantities

 $M_{\rm A} = 2.5$ $M_{\rm B} = 2.5$

 $\pi_{dyn}^{m} = 0.004$ $\Sigma m_{AB}^{m} = 3.7 \circ$

a = 67.5 U.A.

Table III. Ephemerides

	r	T	ρ	Р	Т
0.26	8.6	1990.0	0.27	14.6	1984.0
0.26	7.6	1991.0	0.27	13.6	1985.0
0.26	6.6	1992.0	0.27	12.6	1986.0
0.26	5.6	1993.0	0.27	11.6	1987.0
0.26	4.5	1994.0	0.26	10.6	1988.0
0.26	3.5	1995.0	0.26	9.6	1989.0
	8.6 7.6 6.6 5.6 4.5 3.5	1990.0 1991.0 1992.0 1993.0 1994.0 1995.0	0 [°] .27 0.27 0.27 0.27 0.26 0.26	14°.6 13.6 12.6 11.6 10.6 9.6	1984.0 1985.0 1986.0 1987.0 1988.0 1989.0

(1946) with magnitudes and spectral types taken from

the Lick Index Catalogue of Visual Double Stars, 1961.0

(1963). The relevant information is given in Tables I, II,

Table II. Observations and residuals

P = 288.00

n = 1°.2500

a = 0".27

i = 139.9 Ω = 25.0

 $\omega = 0.0$

T = 1972.68e = 0.00

Т	Р	ρ	Magn.	n	Obs.	(O-C)p	(0-C)p	(0-C) ₄
1902.74	111:1	0:22	8.8-8.8	3	Α	-0.8	-0".00	+0:01
1903.72	112.7	0.20		2	Α	+2.4	+0.01	-0.01
1915.67	91.6	0.25		2	Α	+0.3	+0.00	+0.04
1921.62	84.6	0.24		2	Α	+2.1	+0.01	+0.02
1925.79	74.7	0.22		2	Α	-1.9	-0.01	-0.01
1929.64	72.2	0.23		4	V	+0.7	+0.00	-0.00
1932.58	72.1	0.24		4	V	+4.4	+0.02	+0.00
1932.88	60.4	0.25		2	Α	-6.9	-0.03	+0.01
1934.20	64.5	0.26		4	Bos	-1.2	-0.00	+0.02
1935.54	64.0	0.23		4	V	-0.0	-0.00	-0.01
1938.54	61.6	0.27		4	V	+1.1	+0.00	+0.03
1939.66	57.5	0.22		4	Sim	-1.6	-0.01	-0.03
1944.56	48.6	0.22		3	V	-5.0	-0.02	-0.03
1946.38	47.3	0.20		4	Bos	-4.3	-0.02	-0.05
1948.05	42.4	0.26		6	VBS	7.4	-0.03	+0.00
1958.59	31.6	0.27		3	Bos	-7.4	-0.03	+0.00
1959.72	32.7	0.30	9.3-9.6	2	Bos	-5.2	-0.02	+0.03
1961.62	25.4	0.26	9.4-9.6	4	Bos	-10.7	-0.05	-0.01
1961.82	32.5	0.29		3	Wor	-3.4	-0.02	+0.02
1966.88	37.4	0.26		2	Kni	+6.4	+0.03	-0.01
1967.98	30.3	0.31		3	Wor	+0.4	+0.00	+0.04
1972.68	25.9	0.32		3	Wor	+0.4	+0.00	+0.05
1975.73	24.6	0.26		1	Wor	+2.1	+0.01	-0.01
1975.732	2 24.2	0.26		4	Wor	+1.7	+0.01	-0.01

REFERENCES

Aitken, R.G.: 1923, New General Catalogue of Double Stars,
Washington 2.
Abascal, V.: 1957, Vrania, 42, No. 245, 65.
Aitken, R.G.: 1937, Lick Obs., Bull. No 491, California.
Van Biestroeck, G.: 1954, Publ. Yerkes Obs. 8, Pt 6.
Van den Bos, HW.: 1960, Publ. Yerkes Obs., 9, Pt 1.
Van den Bos, H.W.: 1960, Union Obs. Cir. No 119.
Van den Bos, H.W.: 1961, Lick Obs., Bull. No. 572, California,
Knipe, G.F.G.: 1969, Astron. Astrophys. 1, No 2.
Worley, C.E.: 1967, Publ. U.S.Naval Obs. 18, Pt 6,
Worley, C.E.: 1978, Publ. U.S. Naval Obs., 24, Pt 6.
• Construction in the formation of a solution of a solution of the solution

ADS 9747 = IDS 15369N0047 = A 2176, 8.2-8.2, Ao

Table I. Elements of the orbital motion and astrophyscal quantities

P = 110.40	A = +0.2200	$M_{\Delta} = 2.1$
n = 3 ° .2609	B = +0.0743	$M_{B} = 2.1$
T = 1907.20	F = -0.0417	$\pi_{\rm dyn} = 0.006$
e = 0.00	G = + 0.1233	$\Sigma m_{AB} = 4.6 \circ$
$a = 0''_{23}$	$C = 0''_{0000}$	a = 38.3 U.A.
i = 56°.1	$H = \pm 0.1935$	
$\Omega = 19.0$	$T(\Omega) = 1907.20$	
$\omega = 0.0$		

ORBITS OF TWO VISUAL BINARIES

Table II. Observations and residuals

Table	Ш.	Ephe	merides

Т	P	ρ	Magn.	n	Obs	(O-C) _p	(0-C) _p	$(O-C)_{\rho}$
1910.43	25.7	0.22	8.2-8.2	n	A	+ 1.1	+ 0"00	-0.01
1918.50	35.6*	0.19	8.2 - 8.2	2	A	-5.9	0.02	-0.01
1923 41	51.2*	0.19		2	A	4.0	-0.01	+0.02
1925 58	60.7*	0.17		3	A	-2.1	-0.00	+0.01
1933.48		0.15		1	VBs	(101.0)		+0.02
1933.57		-		3	Α	(101.5)		(0.13)
1934.49				1	Α	(106.9)	-	(0.13)
1936.1	<u>.</u>			1	Vou	(116.2)	_	(0.13)
1936.6	201.1	0.13	8.1 - 8.1	4	Bos	+82.0	+0.19	-0.01
1937.4	-		8.2-8.2	1	Vou	(123.6)		(0.13)
1938.3	132.0	0.16	8.0 - 8.1	5	Bos	+3.5	+0.01	+ 0.02
1940.42	163.1	0.19		1	VBs	+23.9	+0.06	+0.05
1941.42	154.6	0.18		2	VBs	+10.7	+0.03	+ 0.03
1944.30	158.2	0.19		2	VBs	+2.6	+0.01	+0.03
1945.33	163.0	0.21		3	VBs	+3.7	+0.01	+0.04
1945.43	149.4	0.20	8.2-8.5	1	Bos	10.2	-0.03	+ 0.03
1949.54	172.2	0.23		1	VBs	+0.3	0.00	+ 0.04
1950.32	163.3	0.15		1	VBs	-10.7	-0.04	-0.05
1951.07	168.4	0.14		1	VBs	-7.4	-0.03	-0.06
1953.35	179,5	0.14		3	VBs	-1.6	-0.00	-0.07
1953.57	185,8	0.18	$\Delta m = 0.0$	3	lin	+4.3	+0.02	-0.03
1957.34	186.2	0.21	8.2-8.2	4	Bos	-3.0	+0.01	-0.02
1958.60	195.1	0.21	8.3-8.3	3	VBs	+3.5	-0.01	-0.02
1959.38	192.6	0.23		3	Cou	-0.5	-0.00	0.00
1960.49	196.2	0.24		4	Baz	+1.0	0.00	+0.01
1960.50	191.4	0.24		2	VBS	-3.8	-0.02	+0.01
1961.49	196.3	0.23		1	Cou	-0.7	0.00	-0.00
1961.49	3202.2	0.24		3	VBs	+ 5.2	+0.02	+ 0.01
1961.52	196.4	0.22	8.0-8.2	3	Bos	- 0.7	0.00	-0.01
1961.58	195.2	0.24		2	Cou	- 2.0	-0.01	+0.01
1961.65	200.6	0.24		5	VBs	+ 3.3	+0.01	+ 0.01
1962.20	200.7	0.19	8.0-8.2	4	Bos	+ 2.2	+0.01	-0.04
1963.38	202.1	0.17	$\Delta m = 0.0$	4	Wor	+ 1.6	+0.01	-0.06
1964.45	201.0	0.23	8.2-8.2	3	Cou	- 1.4	-0.00	0.00
1966.41	202.8	0.24	8.28.4	3	Cou	- 3.3	0.01	+0.01
1967.50	211.8	0.23	8.0-8.0	3	Mrl	+ 3.6	+0.01	0.00
1969.89	213.8	0.19	$\Delta m = 0.0$	14	Wor	+ 0.8	0.00	-0.03
19/0.33	233.4	0.24	Am = 0.0	2	VBS	+19.5	+0.07	+ 0.02
19/3.52	218.1	0.18	$\Delta m = 0.0$	3	HLN	- 2.9	-0.01	-0.02
19/4.49	230.9	0.17	$\Delta m = 0.0$	4	wor	+ 1.5	+0.03	-0.03
19//.44	230.0	0.14		3	nz	+ 4.5	+0.01	-0.04

*Quadrant reversed.

Т	Р	ρ	Т	Р	ρ
1984.0	256.3	0.15	1990.0	288.6	0.13
1985.0	261.1	0.14	1991.0	294.5	0.13
1986.0	266.2	0.14	1992.0	300.2	0.13
1987.0	271.5	0.13	1993.0	305.8	0.13
1988.0	277.1	0.13	1994.0	311.1	0.14
1989.0	282.8	0.13	1995.0	316.2	0.14

REFERENCES

Aitken, R.G.: 1910, Lick Obs. Bull. 6, 62. Aitken, R.G.: 1929, Lick Obs. Bull. 14, 62. Van Biesbroeck, G.: 1954, Publ.Yerkes Obs. 8, 159. Aitken, R.G.: 1937, Lick Obs. Bull. 18, 109. Voute, J.G.E.G.: 1947, Ann. Bosscha Obs. Lembang 6, Pt 4, D1 Van den Bos, W.H.: 1937, Union Obs. Circ. 4, 362. Van den Bos, W.H.: 1950, Union Obs.Circ. 5, 371. Van Biesbroeck, G.: 1960, Publ. Yerkes Obs. 9, Pt 2. Finsen, W.S.: 1954, Union Obs. Circ. 6, 240. Van den Bos, W.H.: 1958, Astron. J. 63, 63. Couteau, P.: 1960, J. Obs. 43, 1. Couteau, P.: 1962, J.Obs. 45, 225. Baize, P.: 1964, J.Obs. 47, 1. Van Biesbroeck, G.: Comm. Lunar Plan. Lab. 3, No 51. Van den Bos, W.H.: 1962, Astron. J. 67, 141. Worley, C.E.: 1967, Publ. U.S. Naval Obs. 18, Pt 6. Couteau, P.: 1967, J. Obs. 50, 41 Muller, P.: 1968, J.Obs. 51, 349. Worley, C.E.: 1972, Publ. U.S. Naval Obs. 22, Pt 4. Von Biesbroeck, G.: 1975, Astrophys. J.Suppl. 28, 413. Holden, F.: 1974, Publ.Astron. Soc. Pacific 86, 902. Worley, C.E.: 1978, Publ. U.S. Naval Obs. 24, Pt 6. Heintz, W.D.: 1978, Astrophys. J.Suppl. 37, 343.

Acknowledgment

I am very grateful to Dr. C.W. Worley from the U.S. Naval Observatory for his aid in providing a complete list of the measurement for this pair.

UDC 523.84

MICROMETER MEASURES OF DOUBLE STARS

(Series 37)

G.M.Popović

(Received 1 July 1983)

SUMMARY: Reported are 208 measurements of 97 double and multiple stars.

Thise is the 37th series of the Belgrade measurements of double and multiple stars, carried out with Zeiss refractor 65/1055 cm. The measurements in the present series are a continuation of my own measurements published unter Series 35 (G.M. Popović, 1983). The mean values of the epoch of observation, position angle and separation are weighted values, the weight being expressed by the sum of the image quality estimate and the quality of measurement estimate, 1 denoting the poor and 3 the best respective quality (two addends in the third column of Table 1). The mean values of the estimated magnitudes or of the magnitude difference are alsow weighted values, the weight being identical to the image quality estimate (the first addend in the column 6 of Table 1). The residues 0 – C in orbital pairs have been calculated according to the ephemeris of P.Muller and P.Couteau (1979).

My measurements of the pair J 124 AB = ADS 13012 AB = 0 Aquilae seem to indicate the path of this pair to be curved. If so, then the components of the pair are physically related. On the other hand, rectilinear trajectory can be assumed as well, if larger residues in the measured separation are taken as real. The latter contingency would be consistent with the proper motion of the A component as given by R.Aitken (1932) and W.J.Luyten (1961). The C component in this pair does not show any position changes with respect to A. Accordingly, its proper motion is the same as the one of A, which is not found registered in W.J. Luyten's Catalogue.

Table I

ADS α,δ m	Disc. 1900–2000 Mult.	Epoch 1900+	θ	ρ	m	Weight	Notes
$627 = \beta 8 00400-4 8.5-9.0$	865 55N4251-84 AB	82.893 82.920 82.906	195 . 9 195.5 195.7	1"09 1.23 1.16	8.5-8.7 dm = 0.5 dm = 0.4	1 + 2 1 + 2 2n	Unchanged in angle in 102 years.
638 = β 8 00408-4 11.0-11.	666 63N4253–86 .0 AB	82.893 82.920 82.906	77.4 71.4 74.4	1.33 1.48 1.40	9.3-9.6 dm = 0.0 dm = 0.2	1 + 1 1 + 1 2n	Unchanged in 102 years.
765 = Es 00498-5 10.9-11.	1298 55N453870 .1	82.898	141.8	1.77	dm = 0.1	1 + 2	The angle increased by 14° since 1922.
888 = Σ 0 00597-6 9.3-10.0	86 548S0561-29) AB	82.898	141.3	15.30	-	1 + 1	Optical.
$1081 = \Sigma$ 01147-1 6.4-7.4	113 98S0061–29 AxBC	82.926	15.0	1.61	dm = 0.7	1+2	The angle increased by 390 since 1836.
$1254 = \Sigma$ 01308-3 7.7-7.7	138 60N0708-39 AB	82.926	50.7	1"64	dm = 0.0	1 + 2	The angle has increased by 30° since 1830.

C 523.84

e stars.

o the

ADS of this e pair linear les in latter otion) and does o A. ne of 'ten's

MICROMETER MEASUREMENTS OF DOUBLE STARS

ADS α,δ m	Disc. 1900–2000 Mults.	Epoch 1900+	θ	ρ	m	Weight	Notes
$1507 = \Sigma$ 01480-5 4,8-4.8	180 35N1848-78 AB	83.926	360.5	7″.87	dm = 0.0	1 + 2	Unchanged in angle in 152 years.
2257 = 2 02535-5 5.2-5.5	333 92N2056-80 AB	82.011	205.6	1.24	dm = 0.2	1 + 2	The angle has increased by 17° since 1830
2518 = H 03184-2 8.4-9.1	u 1058 50N3952-73	82.896 82.902 82.898	112.0 112.0 112.0	0.80 0.90 0.83	8.5-9.0 dm = 0.5 dm = 0.5	3 + 2 1 + 1 2n	Unchanged.
- GP 03291-3 8.0-8.8	83 54N3508-28 (8n)	82.735	263.8	0.78	8.0-8.7	1 + 1	GP 83 = COU 1080 = BD + 34 9685 (8 ^m 0)
2897 = H 03520-5 8.3-10.3	lo 505 83N3228-46	83.093	198.2	1.75	-	1 + 1	Very slow angular motion, but there is a marked increase in distance.
3029 = H 040330 6.9-12.6	lo 327 996N3123-39 5 AB	82.039	287.9	15.52	m _B = 13.0	1 + 1	Optical.
3390 = Σ 04355-4 8.6-8.6	2 577 23N3719-30	83.093	20.1	1.09	dm = 0.1	1 + 2	Hock, 1966: + 098 - 0'01
3712 = 2 05025 - (9.8 - 9.8	2 643 079N0816-24	82.902	300.3	2.84	dm = 0.0	1 + 1	Unchanged.
3940 = 2 05157 - 2 9.4 - 10.	2 687 223N3342-48 2 AB	83.068 83.093 83.080	69.2 68.9 69.0	18.0 17.4 17.7	8.0 <i>-</i> 9.0 8.0-9.0	1 + 1 1 + 1 2n	Unchanged.
9.4-10.4	4 ACD	83.068 83.093 83.083	154.6 154.4 154.5	49.1 48.8 48.9	m _{CD} = 9.0 m _{CD} = 9.0	1 + 1 1 + 2 2n	
10.4 -11	2 CD	83.093	257.3	0.89	dm = 0.5	1 + 1	
4115 = 2 05254- 4.5-6.0	Σ 728 307N0552-56	83.068 83.093 83.156 83.113	46.9 44.7 48.2 46.8	0.90 0.93 0.90 0.91	dm = 1.0 dm = 1.5 dm = 1.2 dm = 1.2	1 + 1 1 + 1 1 + 2 3n	Siegrist, 1950: + 3°,2, -0°,04
4203 = 7 05300- 9.0-9.0	A 1562 373N4335-39	82.129	354.3	0.46	8.5-8.8	2 + 2	Change guestionable!
4577 = (05537- 7.6-9.1	02 125 598N2228-28	83.183	2.2	1.32	7.5-9.0	2 + 2	Very slow angular motion.
4648 = . 05580- 10.1-10	J 17 652N4303-02 0.4	82.896	154.3	2.77	9.5-9.7	3 + 3	Unchanged.
4696 =0 06007- 7.2-8.6	DΣ 130 078N4241-40	82.896	198.9	0.51	8.08.3	3 + 2	Very slow angular motion.

G.M. POPOVIĆ

Table I (Continued)

ADS α,δ m	Disc. 1900-2000 Mults.	Epoch 1900+	θ	ρ	m	Weight	Notes
5244 = A 06307-36 9.7-9.9	2119 57N2144-39 AB	82.118	83.9	0".40	dm = 0.0	2 + 1	To the system belong component C: $\theta_{AB-C} = 47^{\circ}, \rho \sim 20$ "
5290 = H	Σ_	83.068	279 3	0.88	_	1+1	
06337-39	22N0944-39	83.156	283.0	0.72	dm = 0.0	3 + 2	
8.6-8.6		83.169	281.1	0.67	dm = 0.1	1+1	
		83.183	277.3	0.71	dm = 0.0	1+1	
		83.147	280.9	0.74	dm = 0.0	4n	Unchanged.
5559 = Σ	982	82.022	148.2	7.01	_	1 + 1	
06490-54	46N1318-10	82.107	146.8	7.07	5.0-9.0	3 + 2	
4.8-7.1	AB	82.083	147.2	7.05	5.0-9.0	2n	Hopmann, 1949: 0°1, + 0''02
5812 = 02	2 165	82.099	10.1	12.21	_	2 + 2	
07026-08	33N1566-57	82.102	10.5	11.87	_	1+1	
5.6-11.3	AB	82.100	10.2	12.10	-	2n	Optical.
5958 = 02	: 170	83.156	82.4	0.88	dm = 0.2	2 + 2	
07122-12	72N0929-19	83.183	81.8	0.85	8.0-8.3	2 + 1	
7.6-7.9		83.238	82.7	0.91	dm = 0.2	1 + 2	
		83.189	82.3	0.88	dm = 0.2	3n	Popović, $1982: -192, -000$
6038 = 5	1081	83 068	234.2	1 66	75-90	2 + 2	
07182-24	41N2139-28	83 1 53	234 0	1.66	dm = 1.0	2 + 2	
8.5-9.2	AB	83.111	234.1	1.66	dm = 1.2	2n	The angle has increased by 18° since 1828.
6135 = Σ	1102	83.068	46.0	7.62	8.5-10.0	1 + 2	Unchanged in 154 years.
07248-30	05N1363-51	83.077	46.6	7.52	7.5-10.0	1 + 2	and a second secon
8.5-10.0	AB	83.072	46.3	7.57	8.0-10.0	2n	
10.0-13.9	BC BC	83.068	1.0	30.09	$m_{\rm C} = 12.0$	1 + 2	
8.5	AD	83.068	131.2	~100	8.5-8.5	1 + 1	
		83.077	131.5	-	-	1+1	The second se
		83.072	131.4	~100	8.5-8.5	2/1n	components C and D.
- GP 10: 07259-32 9.8-10.0	5 25N3555 –42 (3n)	83.153	51.0	0.79	dm = 0.2	2 + 1	GP 105 = BD + $36^{\circ}1643$, (9 ^m 2)
6479 = A 07513-59 9.6-10.2	2883 90N1675-59	82.118	14.0	1.65	dm = 0.3	1 + 1	The distance has increased by 0".7 since 1914.
6613 = Hu 08026-09 9.8-10.0	1 849 92N3732-15	83.183	283.3	1.23	9.0-9.1	2 + 1	Unchanged.
$6638 = \Sigma$ 08053 - 10 9.0 - 10.7	1194 05N0173-55	83.156	322.2	2.88	9.5-11.0	1 + 1	Unchanged.
6663 = Σ	1202	82.118	308.0	2.34	8.0-10.0	2 + 1	
08081-13	35N1069-51	82.184	309.4	2.14	8.0-10.0	1 + 2	
7.4-9.5		82.189	310.1	2.27		1+2	
		82.206	310.7	2.00	8.0 - 10.0	1 + 1	
		82.171	309.4	2.20	8.0-10.0	4n	The angle has decreased by 27° since 1829.
_ CP 11	1	82 099	493	0.92	dm = 0.2	2 + 2	$GP 111 = BD + 3601771 (9^{m_1})$
08084-14 9.9-10.1	49N3553-35 (3n)	02.077	19.5	5.72	um 0.2	2 • 2	

.

MICROMETER MEASUREMENTS OF DOUBLE STARS

ADS Disc. α, δ 1900-2000 m Mults.	Epoch 1900+	θ	ρ	m	Weight	Notes
6671 = β 1244	83.153	17.0	0.91	8.0-9.0	2 + 2	
08086-138N0177-59	83.156	16.3	0.95	dm = 0.7	1 + 2	
8.3-8.5	83.154	16.7	0.93	dm = 0.9	2n	The angle has decreased by 33° since 1891.
- GP 97	82.099	277.6	0.90	dm = 0.2	2 + 2	
08372-435N3363-41	82.129	280.2	0.79	10.0 - 10.2	2+2	
10.0-10.4 (2n)	82.114	278.9	0.84	dm = 0.2	2n	$GP 97 = BD + 34^{\circ}1888 (9!.5)$
7067 = Σ 1280	82.184	127.0	1.24	dm = 0.3	1+1	
08460-557N7071-48	82.190	127.2	1.34	dm = 0.2	2 + 1	
9.3–9.4 AB	83.183	128.2	1.22	dm = 0.2	1 + 1	
	82.472	127.4	1.28	dm = 0.2	3n	Heintz, 1973: + 0°1, + 0''10
7352 = Σ 1348	83.153	317.1	1.90	dm = 0.1	2 + 2	
09192-244N0647-21	83.156	318.2	1.96	dm = 0.1	1 + 1	
7.5-7.6	83.227	318.8	1.93	dm = 0.0	1 + 1	The angle has decreased by 16 since 1831.
	83.172	317.8	1.92	dm = 0.1	3n	
7398 = A 1985 09236-300N4242-16 8.6-8.6	83.156	27.9	1.36	dm = 0.0	3 + 2	Retrograde motion, while the distance increased.
- GP 56 09266-327N3464-39 11.0-11.4 (2n)	82.129	216.0	4.91	10.0-10.5	2 + 1	Unchanged in 11 years.
7613 = 0∑ 210 09563-626N4651-22 8.6-9.4	83.301	259.5	1.26	8.0-9.5	1 + 2	No certain change.
- GP 116 10057-120N4252-25 9.4-9.6 (2n)	82.100	248.6	0.43	dm = 0.3	3 + 3	GP 116 = BD + 43°1996 (9 $^{\text{m}}$ 2)
CP 117	82 000	262 7	0.63	dm = 3.0	2+1	
10123-185N4376-46	83 183	259.2	0.53	8.0-9.7	2 + 1	
·8.0-9.2 (5n)	83.141	261.0	0.58	dm = 2.4	2n	GP 117 = BD + 44°1972 $(7^{\text{m}}_{\cdot}7)$
7700 - 011 220	02 1 52	80.0	0.5	1	2 . 2	
792 = 05 220 10239-292N1040-10 7.8-9.7	83.153	89.9	0.5	am = 2.0	2 + 2	Orbital motion. Distance closing in.
- GP 73 10511-560N3351-18 9.7-9.7 (3n)	82.099	204.8	0.77	dm = 0.0	3 + 2	GP 73 = BD + 34°2186 (9.4)
8238 = Σ 1558	83.169	172.0	1.01	dm = 0.2	1 + 1	
11315-367N2161-28	83.266	163.1	1.36	9.0-9.5	1 + 2	
10.2–10.7 AB	83.301	163.8	1.20	dm = 0.5	1 + 1	
	83.248	165.8	1.21	dm = 0.4	3n	Slow direct motion.
8241 = A 1996	83.169	190.2	1.94	9.0-9.0	2+1	
11318-372N4073-40	83.266	189.8	1.84	dm = -0.1	1+2	
9.8-9.8	83.301	188.1	1.89	9.3-9.2	2 + 1	Slow direct motion.
	83.245	189.4	1.89	dm =0.1	3n	
8355 = 0 \(\Sigma\) 241	82.100	141.7	1.64	6.5-9.0	3.+ 2	
11511-56N3560-27	82.184	142.6	1.25	-	1 + 1	
6.8-8.7 AB	82.190	141.1	1.39	dm = 1.0	1+1	
	82.263	142.3	1.48	8.0-10.0	1+1	
	82.340	143.8	1.27	-	1+2	Orbital motion. The angle has increased by
	82.200	142.3	1.45	am = 1.5	on	25° SHICE 1049.

G.M. POPOVIĆ

ADS Disc. α, δ 19002000 m Mults.	Epoch 1900+	θ	ρ	m	Weight	Notes
8553 = 5 1643	83 315	1 1°4	2"04		1 + 1	an a
12222 - 272N2735 - 02	83 345	14 7	2.04	90-95	1+2	My measures does not fit into the enhemeris
9.2-9.5	83.333	13.4	2.21	9.0-9.5	2n	of Hopmann's orbit, computed in 1959.
8775 = β 930 13014-059N4548-16 5.7-12.0	83.266	123.6	2.10	-	1 + 1	Slow direct motion.
8887 = Ho 260	83.318	71.6	1.04	dm = 0.5	2 + 2	
13189-236N2945-14	83.320	72.8	1.04	dm = 0.3	$\frac{1}{2} + \frac{1}{1}$	
9.6-9.8	83.319	72.1	1.04	dm = 0.4	2n	Ambruster, $1978: -1.8, -0.05$
8974 = 5 1768	82 340	102.7	1 38	_	1 + 1	
13330-375N3648-17	82.414	102.0	1.62	dm = 1.5	1+2	
5.1-7.0 AB	82,416	102.3	1.65	dm = 1.5	1+2	
	82.422	101.1	1.61	dm = 3.0	1+1	
	82.455	99.7	1.51	dm = 1.5	1+1	
	82.410	101.7	1.57	dm = 1.9	5n	Wierzbinski, 1955: - 1%, - 0.26
9167 = Σ 1820	82.373	109.6	2.29	8.2-8.5	1 + 2	
14097-131N5548-20	82.376	110.7	2.36	8.4-8.6	2 + 2	
8.8-9.1	82.375	110.2	2.33	8.3-8.6	2n	The angle has decreased by 63° since 1831.
9174 = 2 1816	82.373	86.6	0.72	8.4-8.5	1 + 2	
14095-139N2934-06	82.376	85.8	0.77	7.0-7.1	1 + 2	
7.57.6	82.414	87.3	0.77	8.0-8.1	1 + 2	
	82.388	86.6	0.75	7.8-7.9	3n	
	83.318	85.6	0.71	dm = 0.2	2 + 2	
	83.320	87.2	0.69	dm = 0.2	2 + 2	
	83.413	87.0	0.77	dm = 0.1	2 + 2	
	83.419	85.8	0.70	dm = 0.1	1 + 1	
	83.360	86.5	0.72	dm = 0.2	4n	Orbital motion.
9229 = ∑ 1834 14166-203N4858-31 7.9-8.0	83.413	103.3	1.35	dm = 0.0	2 + 2	Van den Bos, 1936: – 0%, + 0%9
9249 = A 149	82.373	128.2	0.61	9.0-9.1	1 + 2	
14196-233N4763-36	82.414	130.8	0.71	9.7-9.9	2 + 2	
9.8–10.0 AB	82.417	123.8	0.60	9.8-10.0	2 + 1	
Ϋ́.	82.403	127.9	0.65	9.6-9.8	3n	The angle has decreased by 26° since 1901.
$m_0 = 13.0$ ABxC	82.373	12.5	20.3	m = 14.0	1 + 2	
	82.414	12.7	20.7	$m_0 = 13.5$	2+2	
	82.417	11.3	21.6	$m_{c} = 14.0$	2 + 1	•
	82.403	12.1	21.0	$m_{c} = 13.8$	3n	C is optical.
9350 = A 1871	83,318	305.7	1.71	dm = 0.0	2 + 2	ж.
14381-414N5150-24	83.320	306.4	1.84	dm = 0.0	2 + 2	
8.0-8.0	83.413	308.5	1.75	dm = 0.0	2 + 2	The angle has decreased by 24° since 1829.
	83.350	306.9	1.77	dm = 0.0	3n	
9425 = 0Σ 288 14487–534N1567–43 6.9–7.6	83.416	174.3	1.39	8.09.0	1 + 2	Heintz, 1950: + 4%, + 0.21
9497 = β 119 15002-055S0638-61 8.0-8.5 AB	82.422	278.5	1.96	dm = 0.7	1 + 1	The angle has decreased by 35° since 1875.

MICROMETER MEASUREMENTS OF DOUBLE STARS

ADS α,δ m	Disc. 1900–2000 Mults.	Epoch 1900+	θ	ρ	m	Weight	Notes
9599 = Ho 15169 - 20 9.9 - 9.9	o 62 07N3521-00	82.422	279.5	1".31	-	1 + 1	No certain change.
9626 = ∑ 15207 - 24 7.2 - 7.8	1938 45N3742 - 21 BC	83.471	16.1	2.12	8.5-9.2	3 + 2	Baize, 1951: + 191, - 0.07
9639 = 02	296	82.373	279.5	1.81	7.0-8.5	1 + 2	
15230-26	55N4421-00	82.376	279.0	1.78	dm = 1.2	1 + 2	
7.6-9.2	AB	82.414	283.3	1.84	7.5 - 8.5	3+2	The angle has decreased by 470 since 1945
		02.392	201.1	1.02	am - 1.5	3n	The angle has decreased by 47° since 1845.
7.4-12.5	AC	82.373	313.5	75.9	$m_{c} = 13.5$	1 + 2	
		82.376	313.4	-	$m_c = 14.0$	1 + 2	
		82.414	313.9	76.0	$m_c = 13.5$	3 + 2	The distance has increased by 11" since 1911.
		82.392	313.6	76.0	m _c = 13.6	3/2n	The pair probably optical.
9880 = 02	303	82.422	169.7	1.40	dm = 0.1	1 + 1	
1556260	09N1333-15	82.441	172.4	1.39	dm = 0.4	1 + 1	
7.5-8.0		82.652	166.2	1.25	dm = 0.2	2 + 2	The angle has increased by 58° since 1846.
		82,542	168.6	1.32	dm = 0.2	3n	An optical pair.
- GP 1		83.413	179.8	2.65	10.0-13.0	2 + 2	
16235-2	71N3432-18	83.471	182.7	2.05	11.0 - 12.0	3 + 2	
10.1-12.0	0(9n) AB	83.445	181.4	2.32	10.6-12.4	2n	$GP 1 = BD + 34^{\circ}2788 \ (9^{m}5)$
10070 = 2	£ 2049	82.376	196.2	1.00	8.0- 8.5	1 + 1	
16238-2	80N2572-59	82.414	199.0	1.21	6.5 - 7.5	2 + 2	
7.1-8.1		82.417	196.9	1.16	dm = 0.7	1 + 2	
		82.407	197.7	1.15	dm = 0.8	3n	The angle has decreased by 17° since 1829.
10036 = V	'Bs	82.417	35.0	0.82	9.0-10.0	2 + 2	
16198-2	26N3335-21	82.652	37.5	0.90	8.5 - 9.5	2 + 2	
9.6-9.7-	9.9 ABC	82.534	36.2	0.86	8.8- 9.8	2n	The angle has decreased by 21° since 1879.
10312 =	± 2114	82.422	187.6	1.38	dm = 1.0	1+1	
16572-6	19N083627	82.652	188.0	1.27	6.8- 7.5	2 + 2	
6.5-7.7		82.682	187.4	1.26	dm = 1.0	1 + 1	
		82.602	187.8	1.30	dm = 0.8	3n	The angle has increased by 52° since 1830.
- GP 13	31	83.413	136.0	3.73	10.0-11.0	2 + 1	
17123-1	53N4446-40	83.471	137.3	3.21	12.0 - 12.7	2 + 2	
10.6-11.	AB = AB	83.446	136.7	3.43	11.0-11.8	2n	
$m_c = 11.$	1 (3n) AC	83.413	322.5	28.0	10.0-11.0	1 + 1	
		83.471	322.5	28.0	12.0 - 12.0	2 + 1	
		83.448	322.5	28.0	11.3-11.7	2n -	
	AP	83.471	105.8	19.9	12.0-14.0	1 + 1	
10400 -							
17154-1	2133 80N4975-19	82 376	250.8	1.68	dm = 0.3	1 + 1	
9.3-9.8		82.414	253.3	1.48	9.0-9.3	2+2	
		82.417	252.2	1.62	-	3 + 2	
		82.420	255.1	1.57	dm = 0.3	1 + 1	
		82.410	252.8	1.58	dm = 0.3	4n	The angle has decreased by 29° since 1831.
11432 =	0 <u>×</u> 354	83.413	195.1	0.66	8.5- 9.0	2 + 1	
18272-3	321N0643-47	83.471	199.4	0.65	8.5 - 9.0	3 + 2	m 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
7.7-8.5		83.449	197.8	0.65	8.5- 9.0	2n	The angle has increased by 44° since 1846.

G.M. POPOVIĆ

Table I (Continued)

ADS α,δ m	Disc. 1900–2000 Mults.	Epoch 1900+	θ	ρ	m	Weight	Notes
11451 = J 4 18292-334 11.3 -11.3	463 4N225661 AB	82.417 82.614 82.652 82.677 82.599	216 [°] .4 218,5 222.4 222.1 220.0	1".37 1.50 1.61 1.57 1.52	10.0-10.0 dm = 0.1 dm = 0.0 dm = 0.0	1 + 1 1 + 2 1 + 2 1 + 1 4 n	Unchanged.
11488 = Es 18322–353 10.3–11.0	5 1422 2N4309-14	82.682 83.471 83.155	77.0 80.7 79.2	3.42 3.71 3.59	9.5-11.0 10.0-11.2 9.8-11.1	1 + 1 2 + 1 2n	
13012 = J 19462510 5.2-13.5	124 0N101025 AB	83.471	227.8	12.8	m _B = 14.0	2 + 1	Orbital?
5.2-13.7	AC	83.471	222.5	22.2	$m_c = 13.5$	2 + 2	Unchanged in 73 years.
	AD	82.494 82.499 82.496	121.1 119.6 120.4	58.8 58.8 58.8	$m_{\rm D} = 13.3$ $m_{\rm D} = 13.3$	1 + 1 1 + 1 2n	
	AE	82.494 82.499 82.497	144.7 145.3 145.1	90.2 89.4 89.7	$m_E = 13.0$ $m_E = 13.0$	1 + 1 1 + 2 2n	
13050 = 02 19482-524 8.2-8.2	2 388 4N2536-52 AB	82.611	136.3	3.53	dm = 0.0	2 + 2	Unchanged.
7.7-8.9	AC	82.611	130.7	31.6	dm = 1.5	2 + 2	Unchanged.
13186 = 02 19546-57 6.7-8.5-9	2 392 9N4159-75 .0 ABxC	82.611	287.1	2.57	-	1 + 1	C probably belong to the system. The distance closing in.
13277 = 02 19578-61 5.9-6.3	∑ 395 8N243956	82.652	116.4	0.80	dm = 0.3	2 + 2	The angle has increased by 37° since 1844.
13312 = Σ	2624	82.668	175.9	1.64	7.0-7.8	1 + 2	
19598-63	SN3545-62 AB	82.677 82.682	175.0	1.83	dm = 0.5 dm = 0.5	1 + 1 1 + 1	
-		82.675	174.1	1.75	dm = 0.6	3n	Very slow retrograde motion.
6.8-9.1	AC	82.668 82.677	327.1 326.5	42.2 42.5	7.0–9.0 m _c = 9.0	1 + 2 1 + 2	
		82.672	326.8	42.4	m _c = 9.0	2n	
6.7-11.0	AD	82.668	170.4	29.2	7.0-12.0	1 + 2	
14286 = β	364	82.669	238.3	0.87	dm = 0.0	2 + 2	
20427-47 8.9-9.1	0N2503-25	82.677 82.672	240.8 239.4	0.88 0.87	dm = 0.2 dm = 0.1	1 + 2 2n	The angle has increased by 20° since 1876.
BD + 41º4 21109N41	049 18 (1900)	82.652 82.819	269.3 269.7	55.5 55.0	9.0-9.5	2 + 2 1 + 1	In had not found the star BD + $41^{\circ}4054$ (9 ^m 5) in the expected place. Mayby the component B is
9.1-		82.708	269.4	55.3	9.0-9.5	2n	BD + $41^{\circ}4054$. In that case the star BD + $41^{\circ}4054$ would have p.m. $\sim 3.5^{\circ}$.
14805 = Es 21123–16 9.9–11.2	s 1582 1N4159-84	82.652	131.6	3.27	9.0-12.0	1 + 1	

66

:d)

ι 4

ADS Q, b m	Disc. 1900–2000 Mults.	Epoch 1900+	θ	ρ	m	Weight	Notes
- GP 49 21220 - 26 11.6 - 11.8	91N3503-29 8 (4n)	82.830	210°0	600	dm = 0.1	1 + 2	Direct motion.
15007 = 2 21240 -28 7.5-7.5	2799 39N1039-65 AB	82.611 82.614 82.669 82.688 82.634	265.4 266.5 266.6 267.3 266.3	1.60 1.57 1.50 1.55 1.56	7.0-7.0 dm = 0.0 dm = 0.0 dm = 0.0	2 + 2 2 + 2 1 + 1 1 + 1 4n	The angle has decreased by 67 ⁰ since 1831.
15176 = β 21344 - 3' 7.3 7.8 -	1212 9580030–03 10.9 ABXC	82.682	166.8	36.3	$m_c \sim 12$	1 + 1	The angle has increased by 26° since 1891. C probably belong to the system.
15215 = 0 21366 -4 8.4 -9.4	0⊻ 448 10N2853 -81	82.669 82.677 82.898 82.763	200.8 200.2 198.4 199.7	0.41 0.44 0.56 0.48	dm = 1.0 dm = 0.7 dm = 0.7 dm = 0.8	2 + 1 2 + 1 2 + 2 3n	The angle has decreased by 48 ⁰ since 1845.
15251 = 4 21385 - 4 8.3 - 8.3	8 688 26N4035-63 AB	82.669	208.2	0.32	dm = 0.0	2 + 1	Unchanged.
- GP 88 21510 5 11.7 -12	3 53N3410-38 6 (4n)	82.898	241.4	2.80	12.5-13.0	2 + 1	
- GP 14 22002-0 10.0-10	45 441N4604-32 5 (4n) AB	82.898	101.7	2.06	10.0 -10.2	1 + 1	
10.3-10.	6 (4n) CD	82.898	23.0	1.78	10.0-10.5	1 + i	
15735 = 22079-1 9.1-9.6	Hu 978 27N1325 -55	82.611 82.614 82.613	208.7 208.8 208.8	1.09 0.99 1.02	dm = 0.5 9.09.6 dm = 0.6	1 + 1 2 + 2 2n	The angle has decreased by 17 ^o since 1901.
15769 = 22100-1 7.6 -8.1	∑ 2881 45N2905-35	82.682	80.5	1.18	dm = 0.3	1 + 1	The angle has decreased by 31° somee 1830
16116 = 22327 9.811.1	Hu 391 374N2325 – 56 AB	82.614	211.3	0.62	dm = 1.2	2 + 2	The angle has increased by 44° since 1901.
9.5~12.9) AC	82.614	191.5	-	$m_c = 13$	2 + 2	
16317 = 22474-3 6.1-7.4	∑ 2950 513N6109-41 AB	82.830 82.893 82.868	286.2 285.9 286.0	1.30 1.50 1.42	dm = 0.8 dm = 1.0 dm = 0.9	1 + 1 1 + 2 2n	The angle has decreased by 33° since 1832.
16435 = 22551 9.3-9.4	Hn 56 597N4117–49	82.669 82.677 82.673	95.9 94.8 95.4	1.05 1.04 1.04	dm = 0.0 dm = 0.1 dm = 0.1	2 + 2 2 + 2 2n	The angle has decreased by 30° since 1881.
16561 = 23055- 7.3-8.1	β 385 103N3156-88 AB	82.677	89.5	0.58	dm = 0.5	2 + 2	The angle has decreased by 46° since 1876.

G.M.	POPOVI	Ĉ
------	--------	---

Table I (Conti

ADS άζδ m	Disc. 1900–2000 Mults.	Epoch 1900+	θ	ρ	m	Weight	Notes
16602 = 3 23084-1 9.6-9.6	Σ 2990 34N2132-65	82.669 82.677 82.824 82.893 82.920 82.795	56.3 56.6 54.6 58.4 54.5 56.2	2".20 2.30 2.16 2.33 2.37 2.28	dm = -0.1 dm = 0.0	1 + 2 2 + 1 1 + 1 1 + 2 1 + 2 5n	The angle has decreased by 13 ⁰ since 1831.
16649 = µ 23125-1 8.4-10.0	8 79 76S016431 AB	82.677	22.5	1.63	dm = 1.5	1 + 1	Heintz, 1959: - 0 ⁹ 8, 0."11
- GP 3 23224-2 12.5-12	272N2941-74 .5 (12n)	82.898	116.9	4.20	12.0-12.0	1+1	
• 17149 = 23544-5 6.6-6.6	Σ 3050 95N3310-43 AB	82.669	312.0	1.55	dm = 0.0	1 + 2	Heintz, $1973: -0.8, -0.02$

REFERENCES

Aitken, R.: 1932, New General Catalogue of Double Stars, Vol. II, Washington
Luyten, W.J.: 1961, A Catalogue of 7127 stars..., Minnepolis, Minnesota

Muller, P., Couteau, P.: 1979, Quatrieme catalogue d'epher des d'etoiles doubles, Pub. Obs. Paris, CERGA, Obs toire de Nice Popović, G.M.: 1983, Bul. Obs. Astron. Belgrade, No 133.
(Series 38)

D.J.Zulević

(Received July 30, 1983)

SUMMARY: Presented here are 262 measures of 107 double stars made with the 65/1055 cm refractor of Belgrade Observatory.

The present series of measures is the continuation of the observations published in Number 133, of the Bull.Obs. Astron. Belgrade of the series 36. The measures I made with the 65/1055 cm refractor of Belgrade Observatory between 1982 February 15 and 1983 July 27. In the Table of Measures the columns give: ADS or DM number, double star designation, position for 1900 (IDS), mutiple, epoch omitting the century, position angle, separation, estimated magnitudes, number of nights and notes. In the Notes are given comparosons have been made with the latest available orbits. In the present work the distribution of 262 measures of distances is as follows:

Distances	Measures
to 0.50	2
0.50 to 1.00	94
1.01 to 1.50	100
1.51 to 2.00	32
2.01 or greater	34

ADS DM	DISC. IDS	Mult.	Epoch 1900+	р	ρ	Est. mag.	n	Notes
61	STF 3062 00010N5753		82.740	295.2	1".36	6.4-7.5	1	Baize, 1957: + 2°0,-0.08.
207	STF 13 00106N7624		82.740	58.9	0.87	6.7-7.2	1	Heintz, 1960: + 2%, 0:00
283	HJ 1018 00154N6707		82.740	87.0	1.29	8.6-9.2	1	Muller, $1957: + 0.7, -0.18$.
1254	STF 138 01308N0708		82.896	55.0	1.61	7.4-7.7	1	The angle has chauged by 34 since 1830.
1370	D 3 01384N5637		82.740	334.4	2.63	9.7-11.2	1	No change after 106 years.
1371	BU 453 01384N5641		82.740	71.3	0.44	10.0-10.5	1	Baize, 1973: + 9°7, + 0"04. Zulević, 1981: +0°9,-0."05.
1538	STF 186 01507N0121		82.740 82.896 82.818	52.4 56.9 54.6	1.29 1.15 1.22	7.07.0	1 1 2	Cid Palacios, 1952: + 0.5, + 0.06
2612	STF 400 03268N5942	AB	82.926	257.5	1.21	6.9-7.9	1	Baize, 1952: 198, -0.10. Scardia, 1980: -493, -0.03.
2995	STT 531 04009N3749	AB	82.893 82.921 82.926 82.913	10.4 9.6 7.7 9.2	1.51 1.46 1.45 1.47	7.3-9.0	1 1 1 3	Rabe, 1961: + 991, - 0.04.
3169	STT 82 04171N1449		82.893 82.921 82.907	352.8 356.5 354.7	1.30 1.38 1.34	0.8-0.8	1 1 2	Heintz, 1969: - 294, - 0.06.

D.J. ZULEVIĆ

			•					(Continued)
ADS DM	DISC. IDS	Mult.	Epoch 1900+	р	ρ	Est. mag.	n	Notes
3264	STF 544		82.921	20.9	1".73	5.8-8.3	1	
	04244N1525		82.926	18.5	1.71		1	Kuiper, 1937: +3?3, -0"07.
			82.923	19.7	1.72		2	Baize, 1977: + 1°2, - 0''05.
3390	STF 577 04355N3719		82.126	20.0	1.08	8.6~8.6	1	Hock, $1968: -0.2, -0.03$.
3956	STF 677 05153N6317		82.893	155.8	0.95	7.9-8.0	1	Heintz, 1962: + 0?9, - 0".10.
4200	STF 742 05304N2156		82.921	272.5	3.89	7.2-7.8	1	Hopmann, 1973:+ 190, - 0"11.
5197	STF 932 06286N1449		82.921	313.1	1.68	8.1-8.2	1	Hopmann, 1960: + 295, -0".08.
5290	STH —		83.169	284.3	0.77	8.3-8.3	1	Very slow change in both coordinates.
5871	STF 1037	AB	82,126	321.8	1.15	7.2 - 7.2	1	
	07066N2742		82.170	321.5	1.22		1	
			82.18/	320.2	1.23		1	$V_{armal} = 1020 + 100 0''10$
			82.414	319.8 320.8	1.25 1.21		4	Scardia, 1982: +0?8, -0.002
6117	STF 1093		82.170	185.0	0.67	8.8-8.8	1	
	07227N4971		82.208	185.4	0.75		1	· · · · · ·
			82.189	185.2	0.71		2	Baize, $1958: -5\%, -0\%05$.
6650	STF 1196	AB	82.170	254.1	0.87	5.6-6.3	1	
0040	08065N1757		82.208	260.1	0.83		1	
			82.189	257.1	0.85		2	Gasteyer, 1954: - 7°2, + 0"10.
		AB-C	82.208	80.0	5.48		1	Gasteyer, $1954: -0.3, -0.43$.
7007	ES 294 08428N3631		83.315	161.9	1.86	9.0-9.2	1	Unchanged.
7067	STF 1280	AB	82.208	127.6	1.18	9.3-9.4	1	
	08460N7071		82.261	124.1	1.14		1	
			82.234	125.8	1.16		2	Heintz, $1973: -0.5, -0.02$.
7307	STF 1338		82,187	259.6	0.99	6.6-6.8	1	
	09147N3837		83.315	258.7	0.98	010 010	1	
			82.751	259.1	0.98		2	Starikova, 1966: - 3°1, + 0°11.
7704	STT 215		82.187	183.6	1.29	7.3-7.5	1	
	10108N1774		82.348	182.4	1.24		1	
			83.315	184.7	1.38		1	
			83.342	183.5	1.32		1	Wierzbinski, $1956: +0.99, -0.09$
			02./90	103.5	1.31		4	Zarea, 1957: + 3.2, -0.08.
7721	STF 1423 10137N2064		83.184	9.9	0.95	9.3-10.0	1	Heintz, 1960: + 2 ^o 2, - 0."10.
8119	STF 1523	AB	83.315	95.7	2.80	4,44.9	1	
	11128N3166		83.394	96.1	2.91		1	
			83.413	95.8	2.83		1	
			83.374	95.9	2.85		3	Heintz, $1967: -0.2, +0.16$.

•

ADS DM	DISC. IDS	Mult.	Epoch 1900+	p	ρ	Est. mag.	n	Notes
8539	STF 1639 12194N2568		82.376 83.401 83.315	322°.3 323.7 327.0	1".47 1.46 1.43	6.7-7.9	1 1 1 1	
			83.383 83.386 83.389 83.405	324.8 324.2 325.6	1.48 1.46 1.48 1.39		1 1 1	
			83.408 83.245	324.8 325.0	1.39 1.45		1 8	Aller, $1951: +0^{\circ}1, -0$ ":07.
8553	STF 1643 12222N2735		82.187 83.315 83.383 83.386	12.4 12.9 13.7	2.48 2.63 2.56 2.54	9.2–9.5	1 1 1 1	
			83.389 83.408 83.178	14.1 14.0 13.5	2.56 2.56 2.56		1 1 6	Hopmann, 1964: + 291, + 0,27.
8569	STT 251 12242N3157		83.383 83.413	51.5 54.1	0.56 0.65	8.3-10.0	1	
			83.416 83.403	51.5 53.4	0.68 0.63		1 3	Baize, 1957: -0°7, +0":02.
8575	STF 1647 12255N3157		83.301 83.413 83.427 83.380	240.5 241.2 240.4 240.7	1.31 1.35 1.26 1.31	8.5-8.8	1 1 1 3	Hopmann, 1964: -2 ² 1, -0":01.
8680	HU 640 12458N2065		83.416	151.0	0.55	10.1-10.1	1	Baize, 1973: + 8?2, -0"19.
8887	HO 260 13189N2945		82.444 83.383 83.386 83.389 83.405 83.408	71.0 76.0 77.0 77.0 72.9 74.1	0.92 0.98 0.97 0.97 0.97 0.98	9.6-9.8	1 1 1 1 1	
			83.427 83.263	73.9 74.6	0.98 0.97		1 7	Ambruster, $1978: +0.7, -0.12$.
8949	STF 1757 13292N0012		83.383 83.394 83.388	115.1 115.7 115.4	2.39 2.41 2.40	7.7-8.8	1 1 2	Heintz, 1956: -1°3, + 0."30.
8974	STF 1768 13330N3648	AB	82.417 82.455 82.436	102.6 105.5 104.0	1.45 1.51 1.48	5.0-7.0	1 1 2	Wierzbinski, 1958: + 0 ⁰ 7, - 0''.35.
9031	STF 1785 13445N2689	AB	82.387 83.394 83.400 83.408 83.416 83.400	162.3 162.8 160.7 161.1 159.8 161.3	3.36 3.19 3.28 3.23 3.28 3.27	7.9-8.2	1 1 1 1 5	Strand, 1955: - 0%, - 0%14
9071	A 1614 13539N5229		83.405 83.413 83.416 83.411	133.2 133.0 133.6 133.3	1.17 1.17 1.16 1.17	9.4–9.5	1 1 1 3	Mourao, 1963: + 1 ⁰ 0, 0"14.

(Continued)

D.J. LULLVIC	DJ.	ZUL	EVIČ
--------------	-----	-----	------

ADS	DISC.	Mult.	Epoch	р	ρ	Est. mag.	n	Notes
	105		1900+					
9177	STF 1817		82.428	348:3	0:53	8.0-8.5	1	
	1409/N26/0		83.482	349.0	0.62		1	
0194			02.300	340.7	0.57		2	
9174	STF 1816		83.419	91.2	0.88	7.0-7.1	1	
	14095N2934		83.471	89.2 90.2	0.75		2	
0193	OTT: 1010		02 202	222.7	1.01		-	
9162	511 [°] 1819		83,383	233.7	1.01	/./-/.8	1	
	1410510550		83.391	231.8	1.01		2	Baize, 1973 ; + 0.7, + 0.19.
9211	BI 1272	ΔR	83 4 1 3	135.0	1 16	10.3-10.6	1	
9211	14141N4873	AD	83.416	135.3	1.10	10.5-10.0	1	
	1.1.1.1.1.0,0		83.427	134.9	1.19		î	
			83.419	135.1	1.23		3	No certain change after 91 years.
9229	STF 1834		82.439	102.4	1.18	7.9-8.0	1	
	14166N4858		82.455	104.2	1.31		1	
			83.383	102.8	1.20		1	
			83.394	102.1	1.22		1	
			83.400	106.1	1.21		1	
			83.416	103.2	1.29		1	
			83 131	102.7	1.25		1	$B_{05} = 1936 + - 0^{0}5 - 0^{0}02$
			03.131	103.4	1.24			Bos, 1950 0.5, - 0.02.
9324	A 347 14334N4839		83.482	270.0	0.60	8.7-8.5	1	Güntzel-Lingner, 1955: - 497, - 0.4
9343	STF 1865	AB	83.482	306.8	1.10	4.4-4.6	1	Wierzbinski, 1953: + 2°7, + 0°06.
	14364N1369							
9380	STF 1837	AB	83.383	89.6	1.60	7.5-8.4	1	
	14414N0965		83.400	89.7	1.52		1	
			83.416	90.6	1.48		1	
			83.399	90.0	1.53		3	Wierzbinski, $1956: +0.9, +0.01$.
9418	STT 287		82.428	346.1	1.00	7.5-7.6	1	
	14478N4480		82.924	347.8	0.97		1	
			83.548	346.0	1.01		1	
			83.307	346.6	0.99		3	Heintz, $1962: + 0.1, -0.10$.
9425	STT 288		82.428	169.0	1.40	6.9-7.5	1	
	14487N1567		83.400	169.7	1.35		1	
			83.416	171.5	1.25		1	
			83.424	173.4	1.32		1	11 + 1055 + 101 + 0.014
			83.167	170.9	1.33		4	Heintz, $1956: + 1.1, + 0.14$.
9530	A 1116 15068N1030		83.548	48.0	0.67	8.5-8.5	1	Change 27° in 78 years.
9578	STF 1932	AB	83 383	252.0	1 4 3	71-76	1	
2010	15140N2672	ЛD	83,400	254.4	1.41	7.1-7.0	1	
			83.419	257.9	1.38		1	
			83.471	253.9	1.40		1	
			83.418	254.5	1.41		4	Heintz, $1965: + 2.4, -0.03$.
9617	STF 1937 15191N3039	AB	83.545	357.6	66.0	5.6-5.9	1	Danjon, 1938: -0.5, -0.02.
9626	STF 1938	BC	82.439	13.9	1,99	7.27.8	1	
100 March 1	15207N3742		83,383	18.1	2.04		î	
			83.419	16.3	2.12		1	
			83.471	14.1	2.04		1	
			83.178	15.6	2.05		4	Baize, $1952: +0.5, -0.14$.

i) -

5.

ADS	DISC.	Mult.	Epoch	р	ρ	Est. mag.	n	Notes
M	1DS		1900+	2.4080	oluno			
641	A 82 15228N2376		83.558	349.0	0:78	10.0-11.0	1	Change 27 ^o since 1900.
716	STT 298	AB	83.424	229.2	0.72	7.4-7.7	1	
	15325N3968		83.471	227.5	0.69		1	
			83.482	228.8	0.71		1	
			83.543	227.9	0.59		1	
			83.488	228.1	0.67		5	Couteau, 1966: + 1%, + 0"15.
756	STF 1969 15394N6018		83.556	20.6	0.49	8.9-9.6	1	Heintz, 1974: + 0,7, + 0.01.
769	STF 1989		83.482	31.7	0.65	8.0-8.5	1	
	15451N7977		83.499	34.0	0.67		1	
			83.490	32.8	0.66		2	Giannuzzi, 1954: 6?7, + 0'06.
809	A 2078 15464N1929		83.558	155.2	0.89	8.5-9.0	1	Unchanged
9925	BU 812 16026N1670		83.569	107.4	0.60	9.2-9.3	1	The orbital motion.
9952	A 1799 16069N1523		83.548	127.6	0.58	9.2-9.3	1	Change 44 ⁰ in 75 years.
0071	BU 813		83.558	170.7	0.92	8.4-8.4	1	
	16239N2646		83.564	170.8	0.99		1	
			83.569 83.564	171.4 171.0	0.98 0.96		1 3	Unchanged.
0075	STE 2052	AR	87 4 78	133 7	1 4 7	75-75	1	-
0075	16245N1837	AD	82.439	134.8	1.50	1.5 - 1.5	1	
			82.510	133.5	1.47		1	
			82.459	134.0	1.48		3	Siegrist, 1952: 090, - 0'01.
			83.384	133.5	1.49		1	
			83.419	133.5	1.54		1	
			83.499 83.433	134.3 133.8	1.49 1.51		3	Siegrist, 1952: + 1.5, - 0.01.
0111	STT 313		83.558	133.2	0.91	7.7-8.3	1	
	16292N4019		83.564	132.7	0.91		1	
			83.561	132.9	0.91		2	Change 30° in 136 years
0188	D 15		83.419	141.9	1.21	9.1-9.1	1	
	16408N4340		83.425	142.1	1.16		1	
			83.485 83.443	140.2 141.4	1.17 1.18		1 3	Wierzbinski, 1955: + 2 ⁹ 3, + 0."07.
10229	STF 2106		83.545	178.7	0.53	7.0-8.0	1	
	16464N0935		83.556	178.8	0.59	an an a' an an an Ar	1	
			83.551	178.8	0.56		2	Heintz, 1962: -0°1, -0''01.
10235	STF 2107	AB	82.439	87.8	1.22	6.7-8.2	1	
	16479N2850		83.384	90.1	1.35		1	
			83.419 83.081	90.4 89.5	1.27 1.28		1 3	Rabe, 1927: 0°0, - 0".10.
0270	STF 2118		82 4 28	69.0	1 10	64-69	1	
5415	16559N6511		83.425	69.7	1.21	0.7 0.7	1	
			83.499	69.8	1.28		1	
			83,117	69.5	1.23		3	Gainnuzzi, 1956: $+1^{\circ}1$, $-0^{\circ}07$.

(Continued)

ADS DM	DISC. IDS	Mult.	Epoch 1900+	р	ρ	Est.mag.	n	Notes
10312	STF 2114 16572N0836		83.548 83.553 83.556 83.552	189°.0 188.9 188.7 188.9	1″19 1.19 1.17 1.18	6.57.7	1 1 1 3	Change 44 ⁰ in 153 years.
45°2505	KUI 79 17092N4551	AB	83.499 83.543 83.545 83.529	241.9 245.8 246.0 244.6	1.21 1.09 1.08 1.13	10.2-10.3	1 1 1 3	Baize, 1952: - 2°5, - 0°04.
10540	BU 1250 17210N3049		83.548 83.556 83.552	105.7 105.2 105.5	1,74 1.77 1.75	8.3-9.8	1 1 2	Slow change.
10646	HU 923 17318N4917		83.569	99.6	0.85	9.2-9.7	1	No change.
10815	J 754 17449N2454	AB	82,439 83,425 83,485 83,116	50.1 49.7 50.5 50.1	1.77 1.75 1.70 1.74	9.09.4	1 1 1 3	Unchanged in 71 years.
10850	STT 388 17475N1521	AB	83.425 83.479 83.452	352.5 373 . 1 352.8	0.86 0.80 0.83	6.6-6.9	1 1 2	Unchanged in 148 years.
11010	BU 1127 17596N4414		83.558 83.564 83.561	74.8 74.8 74.8	0.91 0.91 0.91	7.4-9.3	1 1 2	Popović, 1970: 5?1, 0;17.
11046	STIF 2272 18004N0232	AB	82.778 83.479 83.128	305.3 302.6 303.9	2.17 2.16 2.17	4.1-6.3	1 1 2	Heintz, 1973: + 293, - 0113.
11110	STF 2283 18047N0608		83.558	63.9	0.80	8.1-8.6	1	Change 28 ⁰ in 151 years.
11123	STF 2289 18057N1627		83.543 83.545 83.553 83.564 83.554	225.2 222.8 223.6 222.8 223.6	1.22 1.20 1.20 1.18 1.20	6.5-7.2	1 1 1 1 4	Hopmann, 1956: + 3°6, 0°03.
11128	HU 674 18072N5023		83.548	228.9	0.51	7.5-8.0	1	Change 50 ^o in 79 years.
11186	STF 2294 18094N0009		82.739 83.479 83.109	94.2 95.2 94.7	0.98 1.05 1.01	8.5-8.8	1 1 2	Wilson, 1935: + 191, 0:00.
11334	STF 2315 18210N2720		83.425 83.479 83.485 83.463	132.8 131.2 131.1 131.7	0.71 0.73 0.70 0.71	6.6-7.6	1 1 1 3	Heintz, 1960: + 3?5, + 0.01.
11479	STT 359 18314N2331		83.425 83.479 83.485 83.463	12.0 10.1 10.7 10.9	0.69 0.74 0.75 0.73	6.4-6.7	1 1 1 3	Symms, 1964: + 2 ⁹ 0, + 0°11.

ADS DM	DISC. IDS	Mult.	Epoch 1900+	р	ρ	Est.mag.	n	Notes
11483	STT 358	AB	82.428	161.1	1".53	7.0-7.2	1	
	18314N1654		82.679	161.5	1.57		1	
			82.734	161.8	1.61		1	
			82.739	164.4	1.64		1	
			83.384	164.0	1.61		1	
			83.543	161.2	1.49		1	
			82.918	162.3	1.57		6	Starikova, 1966: + 3°1, + 0°05.
11623	A 253		83.546	121.9	0.78	9.4-10.0	1	
	18400N3135		83.556	123.3	0.78		1	0
			83.551	122.6	0.78		2	Muller, $1954: -0.1 + 0.01$
11635	STF 2382	AB	83.543	354.0	2.72	5.0-6.1	1	
	18410N3934		83.556	354.4	2.56		1	Guntzel-Lingner, 1955: 0.0, -0.02.
			83.550	354.2	2.64		2	
11635	STF , 2382	CD	83.543	88.4	2.42	5.2-5.5	1	
	1840N 3934		83.556	88.4	2.33		1	Guntzel-Lingner, 1955: + 6.4, + 0.03.
			83.550	88.4	2.38		2	
11879	A 260		83.559	245.4	0.88	9.4-9.6	1	
	18538N3201		83.564	245.2	0.87		1	
			83.561	245.3	0.88		2	Unchanged.
11897	STF 2438		82.739	1.1	0.86	6.9-7.4	1	
	18558N5805		83.425	3.4	0.80		1	
			83.485	2.1	0.82		1	
			83.216	2.2	0.83		3	Jastrzebski, 1959: + 0.5, - 0.06.
12447	STF 2525		82.679	292.2	1.65	8.5-8.8	1	
	19225N2707		82.740	295.4	1.65		1	
			82.778	294.2	1.61		1	
			83.384	291.5	1.62		1	
			82.895	293.3	1.63		4	Tamburini, 1969: $+ 0.7, - 0.24$.
12889	STF 2576	AB	82.655	357.8	1.99	9.3-9.3	1	
	19418N3322		82.679	355.5	1.98		1	
			82.734	354.7	2.01		1	
			82.740	355.6	2.03		1	
			82.778 82.717	355,4	2.01		1	Rabe $1948 + 108 - 0''12$
			02	000.0	2.00		Š	Rabe, 1946. + 1.6, - 0.12.
12972	STT 387	AB	83.425	166.0	0.68	6.9-7.9	1	
	19450N3504		83.479	164.4	0.66		1	
			83.485	165.2	0.72		1	
			83.463	165.2	0.69		3	Baize, $1961: + 3.3, + 0.08$.
13723	STT 406		83.546	115.7	0.58	7.4-8.3	1	
	20166N4503		83.556	115.7	0.59		1	
			83.551	115.7	0.59		2	Heintz, $1975: -0.1, +0.01$
13885	BU 62	AB	83.559	136.0	1.13	8.6-9.5	1	
	20239N2948		83.564	136.2	1.16		1	
			83.561	136.1	1.15		2	Unchanged.
14286	BU 364		83.559	240.0	1.08	8.9-9.1	1	
	20427N2503		83.564	240.0	1.06		1	
			83.561	240.0	1.07		2	Change 21° in 107 years.
14499	STF 2737	AB	82.679	290.5	0.99	5.8-6.3	1	
	20541N0355		82.734	284.1	0.98		1	
			82.706	287.3	0.98		2	Van den Bos, $1933: + 200, -0.06$.

D.J. ZULEVIĆ

•

.,

								(Continued)
ADS DM	DISC. IDS	Mult.	Epoch. 1900+	p	ρ	Est.mag.	n	Notes
14573	STF 2744 20580N0108	AB	82.680 82.734	125 ° .9 129.8	1″.34 1.28	7.0-7.5	1	
			82.740	128.8	1.29		1	
			82.778	128.6	1.20		1	
			82.816	125.8	1.18		1	
			82.033 82.767	123.0	1.27		6	Popović 1969 + 303 0"00
			02.707	127.1	1.20		U	10p0vic, 1909. + 5.5, 0.00.
14783	HI 48		82.740	260,0	0.69	7.0-7.2	1	
	21117N6400		83.546	253.6	0.59		1	0
			83.143	256.8	0.64		2	Baize, 1950: + 499, + 0003.
15270	STF 2822		82.740	296.1	1.72	4.5-6.0	1	
	21397N2817		82.778	298.9	1.85		1	л.
			82.759	297.5	1.78		2	Heintz, $1966: -2.6, +0.01$.
15401	HO 171 21476N2719		83.559	161.9	0,80	9.5-9.5	1	Change 17 ⁰ in 100 years.
15525	STF 2850		82 778	264.7	2 7 2	75-105	Ч	
15525	21552N2328		83.546	262.2	2.97	7.5-10.5	1	
			83.556	265.2	2.76		1	
			83.293	264.0	2.82		3	No change.
15769	STF 2881		82.778	79.2	1.39	7.6-8.1	1	
	22100N2905		83.546	80.9	1.35		1	
			83.556	81.4	1.28		1	Very slow changed in both
			83.293	80.5	1.34		3	coordinates since 1930.
15794	HO 180 22116N4324		83.559	240.2	0.72	8.2-8.2	1	Change 18 ⁰ in 97 years.
15971	STF. 2909	AB	82,901	217.0	1.79	4.4-4.6	1	
atenati, el ema	22237S0032		83.548	219.2	1.75		1	
			83.224	218.1	1.77		2	Harrington, $1968: -196, -0.02$.
15988	STF 2912		82.740	123.1	0.90	5.8-7.2	1	
	22249N0355		83.548	122.1	0.98		1	
			83.144	122.6	0.94		2	Knipe, $1960: + 5.1, -0.05$.
16185	STF 2934		82.740	69.9	0.94	8.5-9.5	1	
	22370N2054		82.822	67.9	0.98		1	
			82.896	69.5	0.92		1	
			82.901 82.839	69.8 69.2	0.93 0.94		4	Heintz, $1962: +194, -0.01$.
16326	A 632	AB	82,740	167.0	0.89	8.2-9.0	1	Heintz, $1962: +0.05 + 0.011$
	22480N5712						•	
16345	BU 382 22492N4413	AB	82.740	211.0	0.83	5.8-7.8	1	Muller, 1954: + 300, - 0.13.
16373	HU 987		82.778	88.6	0.69	9.1-9.3	1	
	223U0N1313		83.348 83.163	8/.3	0.63		1	Heintz 1966 + 200 0.01
			00.100	00.0	0.00		2	1000.12.7, -0.01.

								(Continued)
ADS DM	DISC. IDS	Mult.	Epoch 1900+	р	ρ	Est.mag.	n	Notes
16435	HLD 56 22551N4117		83.559	98 ° 3	0	9.3–9.4	1	Change 27° in 102 years.
17149	STI: 3050 23544N3310	AB	82.740 82.778 82.896 82.901 82.829	313.4 311.9 310.9 311.2 311.8	1.47 1.50 1.53 1.49 1.50	6.6-6.6	1 1 1 4	Heintz, 1973: 192, 0306
17178	HLD 60 23563N3905		82.740 82.896 82.818	179.6 179.7 179.7	0.92 0.95 0.93	9.2-9.6	1 1 2	Heintz, 1963: - 19.5, - 0.14.

REFERENCES

Zulević, D.J.: 1983, Bull. Obs. Astron. Belgrade No 133.
Muller, P., Couteau, P.: 1979, Quatrieme catalogue d'ephemeri-des d'étoiles doubles, Publ.Obs. Paris, CERGA, Observatoire de Nice.

Aitken, R.: 1932, New General Catalogue of Double Stars, Vol. I,

II, Washington. Jeffers, H.M., Van den Bos, W.H., Greeby, F.M.: 1963, Index, catalogue of visual double stars, 1961. 0, Publ. Lick Obs. 21.

Bulletin de l'Observatoire astronomique de Belgrade, No 134, 1984.

CONTENTS

Original research papers:

M. Dačić:

M. Dačić:	Instrument system of the Belgrade Meridian Circle	1
M. Mijatov and V. Trajkovska:	Analysis of some characteristics of the levels of the Vertical Circle	9
Dj. Bozhichkovich and M. Mijatov:	Investigation of the divided circle of the Belgrade Large Vertical Circle	16
R. Grujić and G. Teleki:	Investigation of wind effects on the Belgrade latitude observations	26
S. Šegan:	Accuracy of time determination with the Belgrade Transit Instrument	32
A.Kubičela and I.Vince:	Effects of extrafocal observation with the Solar Spectrograph of the Belgrade Astronomical Observatory. II. Cases of various wavelengths and space-resolutions	37
Review papers:		
G. Teleki:	Progress report on the astronomical refraction	39
Preliminary announcemen	its:	
S. Šegan:	Preliminary analysis of the Belgrade Transit Instrument observational data acquired in 1969–1979	48
Professional papers:		
V.Erceg:	Les orbites de quatre etoiles doubles visuelles (ADS 2111=BU 83, ADS 2609 AB = BU 787 AB, ADS 3058=HU 302, GLE 1).	54
D.Zulević:	Orbits of two visual binaries	58
G.M. Popović:	Micrometer measures of double stars (Series 37)	60
D.Zulević:	Micrometer measures of double stars (Series 38)	69