UDC 521-525

YU ISSN 0373-3734

BULLETIN

DE

L'OBSERVATOIRE ASTRONOMIQUE DE BELGRADE

Nº 142

BEOGRAD 1990

BULLETIN

DE

L'OBSERVATOIRE ASTRONOMIQUE DE BELGRADE

FOUNDED IN 1936

PUBLISHING COUNCIL:

A. Kubičela	(Astronomical Observatory, Belgrade), Chairman,
M. Kuzmanoski	(Department of Astornomy, Faculty of Sciences, Belgrade
	University, Belgrade),
I. Vince	(Astronomical Observatory, Belgrade),
S. Sadžakov	(Astronomical Observatory, Belgrade),
M.S. Dimitrijević	(Astronomical Observatory, Belgrade),
J. Purić	(Faculty of Sciences, Belgrade University, Belgrade)

EDITORIAL BOARD:

M.S. Dimitrijević, Editor in – chief O. Atanacković–Vukmanović, Secretary J. Arsenijević

- I. Vince R. Grujić
- V. Protić–Benišek

Published by Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

Director of the Astronomical Observatory: I. Vince

The publication of this issue is financially supported by the Republic Found for Sciences of Serbia

Printed by / štampa:

A SEARCH AND CLASSIFICATION OF MULTIPLE SYSTEMS IN THE GENERAL FIELD

J. P. Anosova

Leningrad University Observatory, USSR

(Received: October 12, 1989)

SUMMARY: The subject of the present paper is a study of multiple stellar and galaxy systems aimed at a classification of their dynamical states and finding a statistical criterion for recognition of chance and non-chance groups of objects. The proposed statistical criterion is applied to some multiple systems of stars and galaxies. A corresponding algorithm is extended and finally the dynamical states of triple system ADS 9909 (φ Sco) are studied taking into account the uncertainty of the observational data.

1. INTRODUCTION

The study of surface and space distributions of stars and galaxies in the general Galactic and Metagalactic field shows a marked tendency to the clustering for these objects. It is joining of stars and galaxies in the multiples with a different number from the smallest systems (double and triple stars and galaxies) to the clusters of these objects with a large number.

The investigations of star multiplicity distributions in the solar neighbourhood (see e.g. Agekyan at al. 1962, Brosche 1964, Abt and Levi 1976, Dommanget 1977, Worley 1977, Poveda et al. 1982) have shown that a mean multiplicity ratio is equal approximately to 0.45 : 0.35 : 0.10 : 0.10 for the single, double, triple, and more multiple stars correspondingly. Dommanget (1977) made a statistical comparison between the multiple stars and the open star clusters and found that a significant distinction is observed in the characteristic distributions between the multiple systems with $n \le 10-20$ and ones with n > 20. Therefore, one can consider the s-ellar systems with a larger n as star clusters.

The galaxies also have a strong tendency to the clustering, their multiplicity distribution is similar to the analogous one for the stars of our Galaxy. There have been also observed galaxies with multiple nuclei. The study of multiple systems has interest for many problems in stellar and extragalactic astronomy because of widespreading of multiple stars and galaxies in the Galactic and Metagalactic fields and in the star and galaxy clusters, as well as some cosmogonic conclusion which one may draw from the investigation of statistics and dynamics of multiple systems (the age estimations for clusters, Galaxy and Metagalaxy including the multiples; a presentation of their qualitative evolution scenario etc.).

The general problems in the study of multiple systems of objects (stars, galaxies etc.) are the following ones:

1) a discovery of multiple systems in the general Galactic or Metagalactic field or in the star or galaxy clusters;

2) a separation of the discovered multiples to the chance (optical) groups of objects and the non-chance ones;

3) an eduction of the systems with components connected physically;

4) a division of such multiple systems into the ones with components connected dynamically (i. e. with relatively strong dynamical connections) and the ones without such connections;

5) a division of the systems with connected components into the stable and unstable ones; 6) a numerical study of dynamical evolution for instable systems: the estimations of their life-time; alysis of processes of formation, evolution, and tion for the subsystems of a smaller multiplicity; g of the trajectories of the component's relative ns etc.

One must solve the problems formulated obove ling to the indicated sequence. The necessary tion for solving these problems is the availability e three-dimensional coordinates and velocities and elative masses for all components in a multiple n, i.e. the availability of data obtained by the comof astrometrical and astrophysical observations hese objects. The problems enumerated require iverse accuracy levels in the data used for their on, in addition to that the requirements to accurael grow as the number of problems increases. The lete solution of all problems enumerated above ultiple stars is possible only at the highest accuracy attainable at present for the observational data obfrom the ground observations as well as by the observatories.

The problem to obtain the complex of obseral data for star and galaxy systems is a complitask in connection with some natural physical es of their components. It requires significant s of specialists in different astronomical specialiis. The majority of multiple stars and galaxies ins the components of different brightnesses. ently the components have so significant diversithe apparent magnitudes and in the spectral types iminosity classes (for stars) or in the morphological (for galaxies) that it strongly troubles obtaining homogeneous high-precise data for all components the astrometrical observations as well as the physical ones. Moreover, a large part of the obserultiple stars and galaxies have no known distances 1 for systems with the values r > 100 pc it is ssible to solve correctly the problems formulated at present. For the multiple galaxies, one may obtain the relative positions and radial velocities mponents.

In connection with these difficulties, the probo obtain the complex of astrometrical and astrocal data for the multiple stars has not been pracformulated before. For the most part, the obseris of components in multiple stars (until an assulimited apparent magnitude) have been carried out ssing with the observations of double stars. Morethe programs of astrometrical and astrophysical vations include for the most part different objecthe photographic astrometrical observations are ally carried out for stars with $m = 9^{m} - 11^{m}$; the physical ones – for stars brighter than 7^m-8^m; program of meridian astrometrical observations de only the primary components (brighter than 4^m) of a few multiple stars. For the multiple galaxies, as also a significant deficit of observational data.

2. THE CONSTRUCTION OF HIERARCHICAL STRUCTUCTURE FOR THE FIELD OF OBJECTS

The first problem in the study of multiple stars and galaxies is the discovery of such systems in the general Galactic or Metagalactic field or in the clusters of objects under consideration.

In the majority of works, some subjective methods have been used for a recognition of multiple systems (see e.g. Holmberg 1940, Karachentsev 1970, Turner and Gott 1977). Materne (1978) was the first to develop a strict algorithm to construct a hierarchical structure in the Metagalactic field on the base of the well-known mathematical method of cluster-analysis (see e.g. Aivasian et al.). Then Tully (1980), Huchra and Geller (1982), and Vennik (1984) used this method in order to compile the more complete and homogeneous lists of galaxy groups in the Metagalaxy.

This method consists of the following operations: 1) at first, one searches from a totality of N objects of the field two objects i and j (i, j = 1, 2, ..., N) with an extreme value of a selection parameter chosen (Materne (1978), Huchra and Geller (1982, 1983) have chosen it as a minimum theree-dimensional distance R_{ii} between objects, Tully (1980) and Vennik (1984) have taken it as a maximum parameter of the gravitating force $F_{ij} = M_{max} R_{ij}^{-2}$, where $M_{max} = max (M_i, M_j)$, M_i and M_j are the masses of objects i and j); 2) secondly, one considers such two objects as a single unit with a mass equal to the summary one of this binary and with an inertia centre at its baricentre; 3) furthermore, one uses this algorithm for N-1 objects etc., until all the members within the considered totality are joined in a unified hierarchical structure according to a chain defined by the condition for the maximum of values R_{ii}^{-1} or F_{ii} .

In order to separate the members of multiple systems from the background objects, one must use some isolating criteria, however there is no objective criterion of such type at present. Therefore, some empirical dependences between the characteristics of multiple system components and background objects have been generally used. Such dependences reflect an isolation of the members of systems from the background objects in a phase space of coordinates and velocities. The diverse authors used the unlike selection parameters and various (sometimes strongly distinguishing from each other) decisive values of these parameters when they compiled the lists or catalogues of multiple stars and galaxies.

3. CLASSIFICATION OF MULTIPLE SYSTEMS

The multiple systems of objects (stars, galaxies, their groups or clusters etc.) with any number of compo-

nents the d

comp space be iso space; groups

groups; in the mon fe compor regular be isola nate spa -chance systems I city spac

A classifi

B

III-- 1a passa nents might be divided into three basic types from the dynamical point of view;

I - such multiple systems in which all or a few components are by chance within a region of the phase space covered by the system: these systems cannot be isolated from the background objects in the phase space; one may qualify suchlike systems as the *chance* groups of objects or *optical* systems;

II -- such multiple systems which are no chance groups; they are isolated from the background objects in the phase space; their components have some common features; however, the gravitating forces between components are small or approximately equal to the regular forces of the environment; these systems, cannot be isolated from the background objects in the coordinate space; one may qualify suchlike systems as the *nonchance* groups of objects. One might divide these systems into two classes:

If a - systems completely isolated in the velocity space (e. g. the moving star clusters);

II b - systems only partially isolated in the ve-

locity space (e, g, in one or two of velocity components, like some of well-known Eggen's kinematical groups);

III — multiple systems which can be isolated from the background objects in the coordinate space; in these systems the irregular gravitating forces between their components essentially exceed the regular forces of the environment; one may qualify such systems as the multiples with a physical connection between their components.

One might divide the systems of the latter type into two classes:

III - 1 - multiple systems in which there is no dynamical connection among all or a part of components so that the total energy is non-negative $E \ge 0$ One might also divide such systems into two subclasses:

III - 1a - the multiple systems in which there is no genetic connection among all or a part of components: all n single objects in a system rapidly pass by each other or a number s (s < n) of single components and subsystems inside this system rapidly pass by each other,

Table 1

III -1b - the multiple systems in which *there* is a genetic community of components but also there is a "recession" of components ($E \ge O$) - e.g. according to the well-known conception of V.A. Ambartsumian;

III -2 - the multiples in which *there is a dyna*mical connection of the components so that the total energy is negative E < O; one might also divide such systems into two subclasses:

III – 2a – the multiple systems in which there is no genetic community among a part of components: a number s (s < n) of single components and subsystems with a smaller multiplicity than n inside a system pass slow (E < O) by each other;

III - 2b - the multiples in which there is a genetic community among all components (a co-formation); such systems may have one of two dynamical types:

III - I - dynamically stable multiples;

III - II - dynamically unstable ones.

The proposed classification of multiple systems (stars, galaxies etc.) might clearly be shown by a block-scheme (see Table 1).

4. STATISTICAL CRITERIA FOR RECOGNITION OF CHANCE AND NON-CHANCE GROUPS OF OBJECTS.

Deutsch (1961) was the first to develop a statistical criterion in order to recognize the chance star groups in the galactic field; this criterion uses only the astrometric data for stars – the relative positions of components on the celestial sphere and their proper motions.

This criterion estimates the expectation EX of a number of chance realizations that n single stars will be found within a circle of radius ρ and area σ on the celestial sphere of total area Σ , on condition that the proper motions μ of these stars are in agreement in limits of their uncertainties $\delta\mu$

$$EX = C_N^{-n} \left(\frac{\sigma}{\Sigma}\right)^{n-1} \left(\frac{s}{S}\right)^{n-1}, \qquad (1)$$

where C_N^{-n} is a number of combinations from N by n; N is the total number of stars; the star proper motions are represented as the vectors radiating from one point and reaching their ends to some region of area S, s is an area of circle of radius $\epsilon \sqrt{n}$ where ϵ is a probable error of a single measurement of the star proper motion.

Deutsch's criterion is feasible only to the multiple stars. Moreover, it does not take into consideration a likeness or difference in the space characteristics of stars – their parallaxes and radial velocities.

In the present work, a statistical criterion is proposed in order to recognize the chance and non-chance star and galaxy groups with any multiplicity n which takes into consideration a likeness or difference of the individual configurational and kinematical data for all components within a system

$$\mathbf{r}, \boldsymbol{\mu}, \mathbf{v}_{-\mathbf{A}}; \quad \boldsymbol{\rho}, \mathbf{r}, \boldsymbol{\mu}, \mathbf{v}_{-i}; \quad i=1,2,...,n-1$$
 (2)

where A is the primary component of a system with multiplicity n, i is the number of its i-th companion; μ is the relative angular separation of the i-th object from the component A; r, μ , and v are the distance on the line-of-sight, the modulus of a relative proper motion and the relative radial velocity accordingly. The effects of uncertainties in the values

$$\delta \mathbf{r}, \delta \mu, \delta \mathbf{v}_{\mathbf{A}} = \delta \rho, \delta \mathbf{r}, \delta \mu, \delta \mathbf{v}_{\mathbf{i}}$$
 (3)

are also taken into account.

The necessary condition in order to establish the chance or nonchance for a multiple system is shown to be an availability of the total complex of observed data (2) and (3) for all components, unless the relative orbits of all components are obtained. For every multiple system with a total complex of observed data, one could estimate:

1) the probability P that all n components have by chance been found in the region σ of phase space occupied by the multiple system,

2) the expectation EX of a number of the systems with parameters corresponding to the observed data (2) taking into account (3).

This probability P and expectation EX in the case of a sphere Σ with a radius R are estimated by the following formulae by assuming a random distribution of the objects within the sphere

$$P = C_{N-1}^{n-1} B^{n-1} (1-B)^{N-n}$$
(4)

$$\mathbf{E}\mathbf{X} = \mathbf{C}_{\mathbf{N}}^{\mathbf{n}} \mathbf{B}^{\mathbf{n}-1} (1-\mathbf{B})^{\mathbf{N}-\mathbf{n}}$$

where B is the ratio of the volume of the region σ to the volume of the sphere Σ given as (Anosova 1990)

$$B = 1.55 \ 10^{-3} \ (tg \ \rho_{n/2})^2 \ (\frac{tg \ \Delta \mu/2}{tg \ \mu})^2 \ (\frac{r_A}{R})^5$$

$$\frac{|v_a|}{U} \ . \tag{5}$$

$$[1 - (\frac{r_n}{r_A})^3] [1 - (\frac{r_n}{r_A})^2 \ \frac{v_n}{v_A}] \ .$$

where $r_A > r_n$; the number n corresponds to a component that is the most distant one from the primary component A of the system; when $r_A < r_n$ the indexes n and A in the quantities r and v are changed: the quantity U is the maxumum possible total velocity of objects in the field under consideration, μ is the proper motion of an object located at the distance R from

observer which corresponds to the value U.

Comparing the expectations EX obtained with an observed number of multiple systems with data close to (2) in the uncertainty limits (3), one could conclude that the multiple system under consideration is a chance group of objects or a non-chance one by the following conditions:

 $I-\mbox{the multiple system}$ is certainly a non-chance group if the expectation is submitted to the inequality

$$EX \leq 1; \tag{6}$$

II — the multiple system is certainly a chance (optical) group if the equality takes place

$$EX \approx N/n,$$
 (7)

where N/n is the maximum possible number of systems with multiplicity n in the general field of objects; III – one cannot make any certain conclusion

for the multiple system if the relation is realized

$$1 \le EX \le N/n \tag{8}$$

perhaps, the lack of confidence for such multiples is due to large errors (3) of the values (2).

The statistical criterion proposed might be used for solving of a number of problems: 1) a recognition of multiple systems — chance and non-chance groups of objects in stellar and extragalactic fields; 2) a sampling of the probable members in the moving star clusters and streams; 3) an elimination of the background objects in the star and galaxy groups and clusters; 4) a recognition inside the star and galaxy clusters of the subgroups of objects connected physically.

In the coordinate space, formula (5) becomes

$$B = 0.25 (tg \rho_n/2)^2 (r_A/R)^3 [1 - (r_n/r_A)^3] (9)$$

where $r_n < r_A$. This formula with (4) is a statistical criterion isolating multiple systems in the coordinate space. It could be used in order to recognize multiple systems with components connected physically. By analogy, one can easily obtain a statistical criterion isolating multiples in the velocity space.

5. CRITICAL PARAMETER VALUES ISOLATING THE CERTAINLY PHYSICAL MULTIPLE STARS AND GALAXIES

One might use the criterion proposed above in order to recognize chance and non-chance groups of objects and physical multiples in order to obtain some objective critical values of parameters isolating the certainly physical systems from the probably background objects considering some different selection parameters – the relative angular separations ρ within pairs of objects, the corresponding three-dimensional distances R or the parameter F of the gravitating force.

The condition (6) must be fulfilled for the certainly physical system with n components, and the condition (7) must be satisfied for the probably chance system with multiplicity n + 1, in this case the (n + 1)-th probably background object is the most nearby one to the system of multiplicity n in the coordinate space.

Transposing the expressions (4) and (9) in order to estimate the expectations EX_n and EX_{n+1} for the systems with multiplicities n and n+1, one can obtain the ratios of the parameters

$$\rho_{n+1}/\rho_n, R_{n+1}/R_n, F_{n+1}/F_n.$$
(10)

Substituting in the expressions obtained the quantities of the expectations (6) and (7), one obtains some objective extreme quantities (10) corresponding to a maximum possible isolation of a system with multiplicity n from the background objects of the field

$$\begin{aligned} (\rho_{n+1} / \rho_n)_{max} &= \sqrt{N/n+1}, (R_{n+1} / R_n)_{max} = \\ &= \sqrt{N/n+1}, \\ (F_{n+1} / F_n) &= (n+1/N) \frac{\max(M_{n+1}, \Sigma_{i=1}^n M_i)}{\max(M_n, \Sigma_{i=1}^{n-1} M_i)} \end{aligned}$$

Let us consider for example the triple stars in the solar neighbourhood within the radius R = 20 pc(Gliese, 1969). For the certainly chance triple stars with components A, B, C in this case, one has the following limited estimations for the ratios of the selection parameters

$$(\rho_{n+1}/\rho_n)_{max} \cong 30, (R_{n+1}/R_n)_{max} \cong 30,$$

 $(F_{n+1}/F_n)_{max} \cong 10^{-3}.$ (12)

The proposed statistical criterion recognizing the chance and nonchance multiple systems gives some possibility to estimate a critical quantity Δv_{cr} for the tolerant differences of the radial velocities of components in the certainly physical multiple galaxies for the different separation between their components on the celestial sphere and along the line of sight. The results of calculations carried out for the double Markarian galaxies from a paper of Dahari (1985) are shown in Table 2 in which the quantity Δv_{cr} is expressed in km/s, z is the redshift of the primary component within a binary, D is the linear distance between the components in kpc. The estimations obtained show that the quantity Δv_{cr} strongly varies depending on the values of z and D; if their values, are small the quantity Δv_{cr} may reach the largest values of $\Delta v_{cr} = 1000 \text{ km/s}$. As the values z and D incerease the quantity Δv_{cr} rapidly decreases and falls to the values compared with the uncertainties of modern observations of radial velocities of galaxies. Table 2

5

Th wi	e quantitie th compone	s Δ v _{c1} (km/s ents connecte	s) for multip xd physically	le galaxie (EX≤1)	s	T
Z	d(kpc)	10	30	50	70	_
	102	1000	150	60	30	

20

10

$3 \cdot 10^{-2}$	50	5	2	1
$4 \cdot 10^{-2}$	25	1	1	0.5
				

200

 $2 \cdot 10^{-2}$

APPLICATION OF THE STATISTICAL CRITERI-6 ON TO MULTIPLE STARS ANG GALAXIES

a) some wide triple stars in the solar neighbourhood

In the Index catalogue of double and multiple stars (Jeffers et al. 1963), there are a few wide multiple systems which have large angular separations between their components. A distribution N (ρ) for the binaries and multiples from this Catalogue, where ρ is the maximum separation between two components, is presented

Distribution N (ρ) of multiple stars in IDS

in Table 3. The data for triple stars are separately shown in the third column of this Table.

Among these triple stars, one selects seven systems located at the distances from the Sun shorter than 20 pc and having the total complex of observed data (2)and (3) for all components. The most distant components have the characteristics (2) similar to the ones of other components in five wide multiple stars presented. For two systems ADS 10058 and ADS 11853, the distances from the Sun and the radial velocities of the distant components are in disagreement with the corresponding values of other components.

Using the proposed statistical criterion, one estimates for the multiple stars under consideration the probability P that component C, that is the most distant one from the primary component A, by chance in its environment, and the expectation EX of a member of suchlike optical systems inside the sphere of radius $R = max (r_A, r_C)$ on the following parameters of the stellar field (see e.g. Wielen 1974): a radius of the neighbourhood R = 20 pc, a mean local star number density $\nu = 0.12$ stars in 1 pc³, a velocity |v| = 20 km/s, and a peculiar velocity standard $\sigma_v = 20$ km/s. The results of calculations are in Table 4.

Table 3

Table 4

ρ	0-2	25	3-5	5-10	1030	30-100	100
N 5.	$4 \cdot 10^4$ 1	$1.6 \cdot 10^4$	$2.6 \cdot 10^2$	7.2 • 10	2.5 · 10	2	2
N(n=3) 3.	9 \cdot 10^3	$1.7 \cdot 10^2$	3.3 \cdot 10	9	2	1	

The probabilities P and expectations EX of a number of optical stars (chance groups)

ADS	7114+ (9+10)UMa	a Cen	20390 S3142	10058	11853	48	6175 (Castor)
ρ'	$3.8 \cdot 10^2$	$1.3 \cdot 10^2$	7.7 • 10	9.4	6.9	5.5	1.2
		The	probabilities	Р			
1)	$5.0 \cdot 10^{-3}$	7.6 • 10 ⁻⁵	$2.6 \cdot 10^{-5}$	0.30	2.6 · 10 ⁻⁵	$1.4 \cdot 10^{-7}$	$7.2 \cdot 10^{-8}$
2)	$1.1 \cdot 10^{-4}$	$5.3 \cdot 10^{-7}$	$4.2 \cdot 10^{-7}$	0.60	$2.5 \cdot 10^{-5}$	$5.2 \cdot 10^{-5}$	$1.2 \cdot 10^{8}$
3)	$7.3 \cdot 10^{-5}$	$2.8 \cdot 10^{-7}$	$2.5 \cdot 10^{-7}$	0.60	$3.0 \cdot 10^{-9}$	$3.0 \cdot 10^{9}$	$5.9 \cdot 10^{-9}$
4)	$2.8 \cdot 10^{-5}$	7.0 · 10 ⁻⁸	7.6 • 10 ⁻⁸	0.30	2.6 · 10 ⁻⁵	$4.0 \cdot 10^{-10}$	$8.0 \cdot 10^{-19}$
Rpc	20	20	20	200	50	20	20
		The	expectations	EX			
1)	8.5	$0 \cdot 10$	$4.5 \cdot 10^{-2}$	$5.3 \cdot 10^{5}$	0.68	$2.4 \cdot 10^{-3}$	$1.2 \cdot 10^{-4}$
2)	0.18	$8.9 \cdot 10^{-4}$	$7.2 \cdot 10^{-4}$	$0.3 \cdot 10^{6}$	0.59	$3.4 \cdot 10^{-4}$	$1.9 \cdot 10^{-5}$
3)	0.12	$3.5 \cdot 10^{-4}$	$4.5 \cdot 10^{-4}$	$0.3 \cdot 10^{6}$	0.58	$2.0 \cdot 10^{-6}$	$9.1 \cdot 10^{-6}$
4)	$0.47 \cdot 10^{-1}$	1.1 · 10 ⁻⁴	$1.3 \cdot 10^{-4}$	$5.6 \cdot 10^{5}$	0.68	$2.6 \cdot 10^{-7}$	$1.3 \cdot 10^{-6}$

Explanations: 1) only ρ values used; 2) only ρ and μ used; 3) ρ , μ , r used; 4) used values of all quantities ρ , μ , r, v.

It appears that the first five multiple stars are certainly physical systems; ADS 10058 is probably an optical one; the quadruple star ADS 11853 is a projection of two physical binaries.

b) the multiple galaxies in the metagalactic field

Let us calculate the values P and EX for the galaxy triplets from a list of Karachentseva et al. (1979). The following characteristics of the metagalactic field were used for the estimations of the quantities sought: a mean galaxy number density of $\nu = 0.05$ galaxies in 1 Mpc³ (see Agekyan et al. 1962), the Hubble constant is $H_0 = 75$ km s⁻¹ Mpc⁻¹, the radius of the sphere is $R = \max(r_A, r_C)$.

The results of calculations are in Table 5, the triplets classified by the authors of the list as the probably physical systems on a critical quantity $\Delta v_{cr} = 500$ km/s are marked by asterisks. In Table 6 (the second line), there is a distribution N (EX) of the galaxy triplets in the values EX. This Table shows that the galaxy triplets are clearly separated into two groups according to the quantities EX: 44 triplets have EX < 300, and 33 ones have EX > 1 000, there are only 6 triple galaxies in the intermediate interval. If one considers EX = 300

as a critical value of EX (an increasing of EX may be caused by an internal velocity dispersion as well as by the uncertainties in the values v of components) then for the most part (70 triplets out of 83 ones) the results by I.D. Karachentsev and V.E. Karachentseva on the selection of the physical galaxy triplets are confirmed. Only in three cases (N 33, 50, and 68 from the list by Karachentseva et al. 1979), the nearby triplets with close components have a difference Δ v of the radial velocities more than 500 km/s, however the values EX for them are small and these triplets might be qualified as probable physical systems. Ten distant and wide systems (N 31, 34, 46, 48, 60, 73–77) with $\Delta v < 500$ km/s have EX > 300 and therefore they might be qualified as possible chance (optical) systems. Use of the criteria (6) and (7) enables to recognize 11 certainly physical systems (N 1, 22, 24, 25, 28, 33, 36, 39, 41, 44, 54) with EX < 1 and 33 probably optical systems with $EX > 10^3$ (their numbers are underlined in Table 6) among the triple galaxies under consideration. In Table 7 there are the distributions of the ratios of threedimensional distances for the galaxy triplets with the quantities EX inside the intervals indicated. In the last line of this Table a number of triplets with corresponding values EX is given, in Table 7a there are the

Table 5

N ^O	EX	N ^O	EX	N ⁰	EX	N ⁰	EX	N ^O	EX	N ⁰	EX
1*	$3.4 \cdot 10^{-13}$	15*	$2.7 \cdot 10^2$	29	$8.2 \cdot 10^2$	43*	6.8 · 10	57	$7.1 \cdot 10^{3}$	71*	$2.1 \cdot 10^2$
2*	$2.2 \cdot 10^2$	16*	$2.9 \cdot 10^{2}$	30	$1.5 \cdot 10^{5}$	44*	$4.3 \cdot 10^{-3}$	58	$2.9 \cdot 10^{4}$	72*	$2.4 \cdot 10^{2}$
3*	3.0 · 10	17	$8.8 \cdot 10^{3}$	31*	$6.9 \cdot 10^2$	45*	$2.2 \cdot 10$	59*	$2.1 \cdot 10^{2}$	73*	$3.5 \cdot 10^{3}$
4*	8.5 · 10	18	$5.9 \cdot 10^{4}$	32	$5.2 \cdot 10^{3}$	46*	$1.3 \cdot 10^{3}$	60*	$0.8 \cdot 10^4$	74*	$7.1 \cdot 10^3$
5	$1.1 \cdot 10^{4}$	19	9.1 · 10 ⁴	33	$2.4 \cdot 10^{-1}$	47*	$1.4 \cdot 10^{2}$	61*	$5.8 \cdot 10$	75*	$5.5 \cdot 10^{2}$
6	$2.9 \cdot 10^{5}$	20	$4.7 \cdot 10^{3}$	34*	$4.1 \cdot 10^{3}$	48*	$3.3 \cdot 10^2$	62*	9.0	76*	$1.6 \cdot 10^{3}$
7	$7.2 \cdot 10^4$	21*	8.9	35	$1.9 \cdot 10^{4}$	49*	$2.3 \cdot 10^2$	63	$3.7 \cdot 10^{3}$	77*	$2.8 \cdot 10^{3}$
8	$2.3 \cdot 10^3$	22*	$5.5 \cdot 10^{-1}$	36*	$9.3 \cdot 10^{-2}$	50	$2.0 \cdot 10$	64*	7.9 · 10	78*	6.7 · 10
9	$2.2 \cdot 10^4$	23*	1.7 · 10 ⁻⁵	37	$0.5 \cdot 10^{7-}$	51*	$1.2 \cdot 10^{2}$	65	$2.8 \cdot 10^{5}$	79*	$1.4 \cdot 10^2$
10	$1.8 \cdot 10^{3}$	24	$9.0 \cdot 10^4$	38*	$1.0 \cdot 10^{2}$	52*	$1.4 \cdot 10$	66	$1.8 \cdot 10^{3}$	80^{*}	2.2
11*	6.0 · 10	25*	$8.8 \cdot 10^{-1}$	39*	$2.2 \cdot 10^{-1}$	53	$1.6 \cdot 10^{4}$	67*	$1.6 \cdot 10^2$	81*	9.3 · 10
12*	9.5 · 10	26*	6.3 · 10	40	9.1 · 10 ⁴	54."	$4.8 \cdot 10^{-1}$	68	$2.3 \cdot 10^2$	82*	$1.7 \cdot 10$
13	5.8 · 10 ⁵	27	5.7 · 10 ⁴	41*	$3.8 \cdot 10^{-3}$	55*	1.7	69		83	$8.6 \cdot 10^{-3}$
14*	3.0 · 10	28*	$2.1 \cdot 10^{-2}$	42*	3.6	56	$1.6 \cdot 10^{5}$	70*	$3.5 \cdot 10$	84	1.6 • 10

A distribution of expectations EX for the multiple galaxies from the lits of Karachentseva et al. and Dahari

EX	≤ 1	1-10	10-100	100300	300-500	500-1000	> 1000
n = 3	10	5	16	13	3	3	33
n = 2	17	11	7	6	3	3	2

7

Table 6

Triplets of galaxies

mean values and rms deviations for the parameters EX, R_C/R_B , and ρ_C/ρ_B . The data show (Table 7) that a strong prevalence of small ratios R_C/R_B (an isolation of the distant component from the close pair is not large) takes place for the probably physical galaxy systems with EX < 300. At the same time, the distribution of values R_C/R_B for the probably optical systems is practically random within the interval (1, 100). Table 7a shows also the absence of correlation between the quantities (EX, ρ_C/ρ_B) and (R_C/R_B , ρ_C/ρ_B). According to this Table, the certainly physical systems have $R_C/R_B \leq 5$, the probably physical ones have $5 < R_C/R_B \leq 15$, the possible chance ones have $15 < R_C/R_B \leq$

30, and the certainly optical (chance) systems have $R_C/R_B > 30$.

Now, let us apply the statistical criterion of recognizing optical and physical multiple systems to the close double galaxies from the list of Dahari (1985) in which the primary components are Seyfert galaxies. The results of calculation of P and EX for these objects are in Table 8, the distribution N (EX) for them is given in the third line of Table 6. These data show that the condition $EX \le 1$ is satisfied for 17 nearby and close double galaxies and they may be qualified as certain physical systems; the inequality $1 \le EX \le 300$ takes place for 24 binaries and they might be qualified as

Table 7

The distributions of the metalchy coefficients of galaxy triplets	The	distributions	of the	hierarchy	coefficients of	galaxy triplets
---	-----	---------------	--------	-----------	-----------------	-----------------

Re/Rb EX	≤1	1-100	100300	300-1000	$10^{3} - 10^{5}$
1 - 5	4	12	6	2	7
5 - 10	6	7	2	2	6
10 20	1	2	3	0	4
20 - 50	0	1	1	2	5
50 - 100	0	0	0	0	6
>100	0	0	1	0	5
N	17	22	13	6	32

Table 7a

Table 8

The means of hierarchy coefficients for the galaxy triplets

FX	0.1 ± 0.2	47 ± 36	210 ± 54	540 ± 200	$(30 \pm 14) \cdot 10^3$
$(R_{\rm c}/R_{\rm b})$	4.3 ± 2.3	8.0 ± 7.3	16 ± 25	18 ± 21	45 ± 65
$(\rho_{\rm c}/\rho_{\rm b})$	3.0 ± 1.8	2.9 ± 1.8	3.0 ± 2.2	2.9 ± 1.2	3.5 ± 4.1
Ν	11	22	13	6	32
				10 10 10 10 10 10	

Seyfert double galaxies

NO	EX	N ^o	EX						
10	$6.0 \cdot 10^2$	463	1.3	915	$1.3 \cdot 10^2$	3227	$7.0 \cdot 10^{-3}$	5506	1.0 · 10
40	$2.5 \cdot 10^{-4}$	474	$7.4 \cdot 10^{3}$	926	$8.1 \cdot 10^2$	3516	$2.0 \cdot 10^{2}$	5929	$1.2 \cdot 10^{-2}$
141	$1.1 \cdot 10^2$	506	1.2 • 10	975	6.1	3998	$3.5 \cdot 10^{-2}$	5953	$7.6 \cdot 10^{-1}$
176	4.0	530	$2.9 \cdot 10^{3}$	1040	$2.4 \cdot 10^{-1}$	4117	$3.6 \cdot 10^{-2}$	6251	$3.9 \cdot 10^2$
266	$7.2 \cdot 10^{-2}$	533	1.3 • 10	1073	$4.1 \cdot 10^{2}$	4151	$1.3 \cdot 10^{2}$	7212	4.4 . 100
268	$9.6 \cdot 10^2$	595	$1.3 \cdot 10^{2}$	1218	5.9	4258	$5.1 \cdot 10^{-3}$	7319	1.8
279	5.2 · 10	612	9.5	1239	3.1	4593	1.6	7469	1.9
349	$9.7 \cdot 10^{-1}$	716	$2.7 \cdot 10$	1144	7.4	4922	$3.9 \cdot 10^{-2}$	4329	$1.3 \cdot 10$
374	$4.4 \cdot 10^2$	739	$1.0 \cdot 10^{-1}$	2992	$5.3 \cdot 10^{-1}$	527 3	$2.2 \cdot 10$	700	2.5
423	1.2	744	2.0 · 10	3031	5.1 • 10	5427	6.2 • 10		

probable physical systems; six doubles (MrK 10, 268, 374, 926, 1073, and 6251) might be qualified as probable optical systems and two double galaxies (MrK 474 and 550) with $EX > 10^3$ are certainly optical systems.

7. ALGORITHM FOR RECOGNITION, ESTABLISH-MENT OF A NUMBER AND MULTIPLICITY FOR SYSTEMS', AND THEIR CLASSIFICATION IN THE GENERAL FIELD

After constructing a hierarchical structure for a field of objects, using the statistical criterion one can recognize the groups of objects in the field, establish the number and multiplicity of them, and make their classification — in order to separate the chance and physical systems among them.

A proposed algorithm consists of the following operations:

l) one takes any object A_j from the general totality of N objects in the field;

2) for this object A_j , one constructs a sequence of N - 1 objects arranged according to decreasing of the selection parameter used in the construction of the hierarchical structure of the field;

3) for this sequence of N-1 objects, one obtains a sequence of the expectations EX_1 , EX_2 ,..., EX_{N-1} according to the formulae (4) and (5) justified for the phase space;

every time, one considers as a primary object of a multiple system the inertia centre of a subsystem consisting of i-1 objects for which the calculatins have already been executed, and the observational data (2) and (3) for this subsystem are obtained as the means for i-1 and A_i objects;

4) one verifies the inequality (6) $EX \le 1$ for every element of the sequence EX_i (i=1, 2,..., N-1). Note that the sequence EX_i determined for N-1 objects considered in the phase space is no monotonously increasing sequence in spite of decreasing of the selection parameter with rise of the number i;

5) a number K of elements from the totality EX_i satisfing the condition (6) then determines the multiplicity of this system n = K + 1; if neither of the elements EX_i satisfies the condition (6) then the object A_j is qualified as a single object of the field; if the criterion of isolation in the phase space is not satisfied for any object i then the observed data for this object i are excluded from the calculation of EX_{i+1} , i.e. the position of object i + 1 in the phase space is considered in regard to the inertia centre of i - 1 objects etc.;

6) an examination of elements A_j from the general totality of N objects excluding from it the objects included in the multiple systems found earlier allows to define a number n* and a composition of the non-chance groups of objects with a various multiplicity in the general field;

7) by repeating the operations 1) and 2) and by using the statistical criterion of isolating in the coordinate space — one determines for every object A_j (j = 1,2,..., N) a sequence of the expectations EX_{ij}^* for the number of the corresponding chance groups in the coordinate space by using formulae (4) and (9) with the observational parameters of their members. The obtained sequences EX_{ij}^* are the monotonous inceasing sequences in accordance with the algorithm used for adding of objects to an object A_i ;

8) one finds objects for which the inequality (6) ceases to be fulfilled for the increasing sequence EX_{ij}^* ;

9) the number i + 1 determines a multiplicity $n_1 = i + 1$ of a system (an object A_j and i of its companions) for which the condition of isolation is fulfilled in the coordinate space, and this system might be qualified as the certainly physical system in the field of objects under study;

10) a repetition of the operations 6) gives a number n^{**} of systems with a physical connection of their components isolated in the coordinate space. Using the statistical criterion of isolation in the velocity space, one may recognize the multiples – the certainly non-chance groups in this space – by repetition of operations 7) – 10).

8. CRITERIA FOR CLASSIFICATION OF DYNAM-MICAL STATES IN CERTAINLY PHYSICAL MU-LTIPLE SYSTEMS

The main characteristics of dynamical states within multiples which are certainly physical (the type III of the classification of multiple systems – see item III) are the values of their total energies E and the relative energy E_{ij} (i, $j = 1, 2, ..., n, i \neq j$) of every possible combinations of components – the subsystems of a smaller multiplicity. The signs of the energies E and E_{ij} determine the existence or absence of dynamical connection between the components and correspondingly the classes of multiples.

Class III -1 – multiple systems in which there is no dynamical connection of the components, they have non-negative total energies $E \ge 0$. The following cases are possible:

a - 1) $E \ge 0$, $E_{ij} \ge 0$; i, j = 1, 2, ..., n; $i \ne j$

for all possible combinations of components in a system - the dynamical connection is absent for all components; a - 2) $E \ge 0$, $E_{ij} < 0$; i, j = 1, ..., s; $i \ne j$; s < n

(for some subsystems of a lower multiplicity) - in a multiple system there are s components connected dynamically, the rest of n-s components are not dynamically connected with them and with each other; b) the subclass - "recession" of components connected genetically (a co-formation) in a system shows a special case when two or a few components have a positive

relative energy and move in the opposite directions with a large relative velocity.

Class III-2 – multiple systems in which there is a dynamical connection between all components, they have a negative total energy E < O.

In order to relate two types of dynamics in multiple systems (stable or unstable systems) with the components connected dynamically and physically (class HI - 2b) one should use the criteria developed in celestial mechanics (see e.g. Timoshkova and Kholshevnikov 1982, Anosova 1985) for stability of the systems consisting of N gravitating bodies.

III -1 - dynamically hierarchical stable multiple systems with Keplerian character of motions of the bodies – the stability criteria (the conditions of isolation of the distant bodies from the subsystems of other bodies) are fulfilled during all the time of dynamical evolution of a multiple system.

III - II - dynamically non-hierarchical unstable multiple systems are separated by two forms:

a) the conditions of an escape (a hyperbolity of mainly radial motion of a distant component regarding to a subsystem of other bodies) are fulfilled from the very beginning of a study of the dynamical evolution

b) the escape conditions in a system will be fulfilled after a certain lapse of time T from the beginning of tracking of its evolution.

9. TAKING INTO ACCOUNT THE UNCERTAINTIES IN THE OBSERVED DATA ON CLASSIFICATION OF MULTIPLE SYSTEMS

In order to estimate the dynamical state of an observed star or galaxy system one must take into account some uncertainties in the observational data i.e. take into account the errors in the intial state of this system.

In the present work, in order to take into consideration this effect one proposes to use a method of statistical tests - a method of variation of observational data in the limits of their uncertainties for the components of multiple systems.

Let us describe this method for the triple stellar systems; it could be easily generalized for a system with any multiplicity.

One has for the components within a triple star system a vector of observational parameters

$$\vec{\mathbf{X}} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{19}) = (\boldsymbol{\rho}, \boldsymbol{\theta})_{\mathbf{AB}, \mathbf{AC}}; (\boldsymbol{\mu}_{\boldsymbol{\alpha}}, \boldsymbol{\mu}_{\boldsymbol{\delta}}, \mathbf{v}, \boldsymbol{\pi}, \mathbf{M})_{\mathbf{A}, \mathbf{B}, \mathbf{C}}$$
(15)

and a vector of their errors

$$\overline{\delta}\mathbf{x} = (\delta \mathbf{x}_1, \delta \mathbf{x}_2, ..., \delta \mathbf{x}_{19}). \tag{16}$$

The dynamical state of a triple system is determined by the following energetic characteristics: the total energy

$$\mathbf{E} = \mathbf{E}(\vec{\mathbf{X}}), \, \boldsymbol{\sigma}_{\mathbf{E}} = \boldsymbol{\sigma}_{\mathbf{E}}(\vec{\mathbf{X}}, \delta \vec{\mathbf{x}}) \tag{17}$$

and the relative energies of pairs of components

$$\mathbf{E}_{ij} = \mathbf{E}_{ij} \left(\vec{\mathbf{X}} \right), \ \sigma \mathbf{E}_{ij} = \sigma \mathbf{E}_{ij} \left(\vec{\mathbf{X}}, \vec{\delta \mathbf{x}} \right)$$
(18)

Let us use the Monte Carlo method of the variations of values x_1 within the confidence intervals

$$\mathbf{x}_{1i} \, \epsilon \, [\mathbf{x}_1 - \kappa \, \delta_{\mathbf{x}1}, \, \mathbf{x}_1 + \kappa \, \delta_{\mathbf{x}1}] \tag{19}$$

where l = 1, 2, ..., 19 is the number of the observational parameters. xl are their observed quantities, j = 1, 2, ..., N is the number of the test. Proposing the Gaussian distribution for the uncertainties δ_x truncated at the confidence probability P = 0.95 one has a quantity $\kappa = 2$.

For every multiple system, one can make N tests varying all (of by turns) in order to obtain every time new quantities for these parameters and to calculate by them the energetic characteristics E and E_{ij} which determine every time the class of the dynamical state of this multiple system. For a large number of tests (N $\cong 10^3 - 10^4$), the frequency of realization of the classes of dynamical states determines the probabilities of these states for a multiple system under consideration.

10. DYNAMICAL STATES FOR SELECTED TRIPLE STARS

An analysis of data from nearly 60 Catalogues received from the Centre de Donnees Stelaires in Strasbourgh by the Centre of Astronomical Data of the Astronomical Council of the Academy of Sciences of the U.S.S.R. has shown that at present the total complex of observational data necessary for solution of the problems formulated above (see section II) concerning the study of multiple systems exists for 16 nearby and bright triple stars including such well-known systems such as a Cen, a Gem (Castor), γ And etc. However even for these systems, the estimations of uncertainties in the observational data are not present in the Catalogues for all components. In the present paper 8 triple stars are investigated: ADS 1630, 2926, 6175 (Castor), 6650, 6811, 7114, 9626, and 9909.

The results of application of the method of simulteneous variations of all observational parameters within the limits of their errors are given in Table 9 for these triple stars. In Table 9 there are the probabilities of dynamical states of these systems, the mean quantities of their energetic characteristics — the total energy E and energy E_b of a close pair and the mean quantities σE and σE_b for the boundaries of confidence intervals at the level 1σ for these values.

Nama	ADS	ADS (^r pc)	Prol	oabilities I	of states	E + a	$\Gamma \rightarrow -\Gamma$	
Name			I (E≥0)	IIII	(E > 0)	111-11	E±0E	$E_b \pm \sigma E_b$
γ And	1630	80	0.00	0.53		0.47	-117 ± 25	- 104 ± 19
Castor	6175	14	0.02	0.12		0.86	-18 ± 10	-17 ± 10
γ Sco	9909	22	0.00	0.20		0.80	-531 ± 8.6	-44.3 ± 7.5
ζ Cnc	6650	19	0.29		0.71		-12 ± 25	-31 ± 17
μ Воо	9626	29	0.11		0.89		-10.0 ± 8.4	-19.6 ± 6.4
21 Cnc	6811	50	0.30		0.70		-50 ± 140	-80 ± 110
ι UMa	7114	16	0.20		0.80		-4.6 ± 4.5	-2.5 ± 2.6
	2926	170	0.97		0.03		$+ 23 \pm 23$	+ 15 ± 23

The probabilities of dynamical states and means of exercise

One may formulate the results obtained as the following ones:

1) the triple stars ADS 1630, 6175, and 9909 located at the distances from the Sun of 80, 14, and 22 pc. respectively, are certainly dynamically connected systems with a probability $P \ge 0.98$ (the variations of σΕι σE 0

nergies are
$$\delta E = |\frac{E}{E}|, \ \delta E_{b} = |\frac{E}{E_{b}}| \le 0.2, \ 0.6);.$$

2) the triples ADS 2926, 6650, 6811, 7114, and 9626 have large variations of the total energy $\delta E \cong 1-3$. Therefore, for them one cannot certainly obtain the values of the total energies. However, the probabilities of dynamical connections in these systems, except in ADS 2926, are large P (E < O) > 0.7. The triple star ADS 2926 has a positive energy P(E > O) = 0.97according to the observed data existing at present. Moreover, the maximum contribution in the positive energy E appeas to make a positive energy E_b of the close pair AB with an angular separation $\rho = 7.$ "6 between the components $P(E_b > O) = 0.77$. It should be noted that the kinematical parameters of an inertia centre of the pair AB and a distant component C are in good agreement, but the uncertainties of space velocities of A and B are significantly large. Therefore, the problem of physical connections of the components of ADS 2926 may be solved only after a closer definition of the kinematical characteristics of the close pair;

3) the triple systems ADS 6650 and ADS 9626 have small variations of the energies of the close pairs $\delta E_b \cong 0.2, 0.5$ and these pairs are dynamically connected binaries with a probability P = 0.96; in order to establish some dynamical connection between these binaries and the third distant component one must verify the kinematical parameters for the latter one.

4) in the triple stars ADS 6811 and ADS 7114, one cannot certainly estimate the total energy E_b of a close pair (the variations $\delta E_b \cong 1$), although marked orbital motions of the components are observed in them and the probability of its dynamical connection is P > 0.85. One must verify the space velocities of the close stars in these systems;

5) the certainly physical triple stars ADS 6175 (r = 14 pc) and ADS 9909 (r = 22 pc) are dynamically non-hierarchical unstable triple systems with a probability P > 0.80 in spite of an apparent high hierarchy of their configurations: ADS 6175 $-\beta = \rho_{AC}/\rho_{AB} \approx 12$, ADS 9909 – $\beta \approx 6$. In the triple star ADS 1630 (r = 80 pc) one can make no certain conclusion on a type of dynamics because of the large uncertainties in the space velocity of the distant component A with respect to the close pair BC.

11. A STUDY OF DYNAMICAL EVOLUTION OF TRIPLE STAR ADS 9909 (§ Sco)

The data from Table 9 show that the study of dynamical states of triple star systems has given the certain results at least for two triple stars ADS 6175 and ADS 9909.

A study of dynamical evolution for the second system was carried out in detail.

The triple star ADS 9909 has the following observational parameters: the precise coordinates for the epoch 1950.0 $-a = 16^{h}01^{m}363889$, $\delta = -11^{\circ}$ 14'12'27; the primary component A with an apparent magnitude $m_A = 4^m 16$ has a close companion B with $m_B = 5^m_{,2} 2$ at the angular separation $\rho_{AB} = 1.30$ and also a more distant companiom C with $m_C = 7m_{36}$ at the angular separation $\rho_{AC} = 7.43$; the spectral type of the pair AB is F 5-8 IV-V and the one of C is G 7-8 V

One has a vector of observational data at the epoch $T_0 = 1920.5$ for this system

$$\mathbf{X} = \boldsymbol{\rho}_{\mathbf{A}\mathbf{B}}; \boldsymbol{\rho}_{\mathbf{A}\mathbf{C}}; \boldsymbol{\theta}_{\mathbf{A}\mathbf{B}}; \boldsymbol{\theta}_{\mathbf{A}\mathbf{C}}; (\Delta \boldsymbol{\mu}_{\boldsymbol{a}})_{\mathbf{A}\mathbf{B}}; (\Delta \boldsymbol{\mu}_{\boldsymbol{\delta}})_{\mathbf{A}\mathbf{B}}; (\Delta \boldsymbol{\mu}_{\boldsymbol{a}})_{\mathbf{A}\mathbf{C}}; (\Delta \boldsymbol{\mu}_{\boldsymbol{\delta}})_{\mathbf{A}\mathbf{C}}; \mathbf{V}_{\mathbf{A},\mathbf{B},\mathbf{C}}; \boldsymbol{\pi}_{\mathbf{A},\mathbf{B},\mathbf{C}};$$
(20)

Table 9

= 1,30, 7.43, 9.0, 60.2, M_{A.B.C} (0.044, 0.035, 0.009, - 0.009)" per year; (-33.6, -33.6, -33.8) km/s; 0.044; (1.60.1.20, 0.80) M

and a vector of the uncertainties for these data

 $\vec{\delta x} = \delta \rho_{AB}; \delta \rho_{AC}; \delta \theta_{AB}; \delta \theta_{AC}; (\delta \Delta \mu_a)_{AB}; (\delta \Delta \mu_a)_{AB};$ $(\delta \Delta \mu_{a})_{AC}; (\delta \Delta \mu_{\delta})_{AC}; \delta(\mathbf{y})_{A,B,C}; \delta(\pi)_{A,B,C}; (21)$ $\delta(M)_{A,B,C} = 0.04, 0.01, 0.7, 0.2;$ (0.005, 0.001, 0.003, 0.003)" per year; (0.2, 0.2, 0.2) km/s, 0.002; (0.10, 0.10, 0.10) M_o

The configuration of triple star system ADS 9909 as well as the vectors of relative proper motions of components are in Figure 1.

The masses M of stars are calculated by the following formulae

$$lg M = \frac{6.76 - M_{bol}}{3.85} \text{ for } M_{bol} > 7^{\text{in}}_{..5} 5$$
and
$$lg M = \frac{4.62 - M_{bol}}{10.03} \text{ for } M_{bol} < 7^{\text{m}}_{.5} 5$$
(22)

the quantities M are expressed in the solar masses; M_{bol} is the bolometric absolute magnitude of stars to be obtained by their spectral types and luminosity classes.

The following system of units is assumed (see Anosova 1985)

unit of distance
$$[r] = 0.01 l_* pc = 2062.65 l_*a.u.$$

unit of mass $[M] = 2 \cdot 10^{33} \mu_* g$, (23)
unit of time $[t] = 10^4 k_*$ years,

One may assume $l_* = \mu_* = k_* = 1$ for the multiple systems with components - the solar type stars. The unit star velocity is [v] = 0.9778 km/s, G = 0.4474.

In Table 9 (the third line) there are given the results of determining the dynamical state of the triple star ADS 9909 - the probabilities of dynamical connec-

tion between components and the quantities of energetic parameters. These data show that this triple star is a certainly physically connected system with the probability $P \approx 1$; its energies E and E_b are reliably obtained with the variations $\delta E = |\frac{\sigma E}{E}| \leq 0.2$, $\delta E_b = |\frac{\sigma E_b}{E_b}| \leq 0.2$. Therefore, one can solve the problem of determining its dynamics type stable or unstable (see item IX and Anosova 1985, Anosova and Orlov 1985, Anosova 1986).

In order to solve this problem one may again use the method of statistical tests proposed above for 50 runs varying the observational data (20) of their doubled errors assuming the Gaussian distribution of these uncertainities. One calculates the means, and rms deviations of the basic dynamical parameters (see Anosova 1985, Anosova and Orlov 1985, Anosova 1986) at an initial time moment T_o.

The following initial data have been obtained as a result of the tests carried out - the coordinates and velocities of the components are in the baricentric coordinate system the masses of the bodies are relative

X 1	Ξ	-0.016 ±0.000	52, 07	x ₂	=	-0.001 ±0.001	7, 4	X3	Ħ	0.0356 ±0.0021
у ₁	Ξ	0.013 ±0.001	89, .6	У2	n	-0.013 ±0.001	9, 6	y3	=	-0.0501 ±0.0033
Z 1	=	0	,	Z ₂	Ξ	0	,	Z ₃	=	0
Χ́1	=	-1.37 ±0.19	,	х ₂	H	3.20 ±0.21	,	Х _З	=	-2.15 ±0.31
ÿ1	=	1.64 ±0.24	,	ý2	=	-2.47 ±0.45	,	ýз	=	0.47 ±0.30
ż1	Ξ	0.02 ±1.32	,	ż2	=	-0.02 ±1.66	,	Ż₃	z	0.09 ±1.38
M ₁	=	1.0	,	M ₂	=	0.76 ±0.08	,	M ₃	=	0.49 ±0.07

where the indexes 1,2,3 correspond to the components A,B,C, respectively.

The main dynamical parameters of the triple star ADS 9909 have the following values at an initial time moment $T_0 = 1920.5$:

mean dimension $d = (32 \pm 2) a.u.$

mean crossing time $\tau = (2.7 \pm 3)$ years,

total energy $E = (-53.2 \pm 8.6) - \text{energy units in the}$ system of units (23);

total energy of the close binary $E_b = (-44.3 \pm 7.5)$

energy units; virial coefficient $k_o = \frac{T_o^*}{U_o} = (0.28 \pm 0.01)$ where

 T^{\ast}_{0} and $U^{}_{0}$ are the kinetic and potential energies of the system at $t = T_0$; an angular momentum $L = (0.11 \pm 0.02)$ units of angular momentum; the dynamical elements of the inner pair (AB) orbit: major semi-axis ain = = (19.5 ± 0.4) a.u., eccentricity e = (0.78 ± 0.02) , period

 $P_{in} = (54 \pm 1)$ years; the dynamical elements for the external pair AB-C: $a_{ex} = (170 \pm 50)$ a.u., $e_{ex} = (0.71 \pm 0.21)$, $P_{ex} = (1.2 \pm 0.2) \cdot 10^3$ years; coefficient of sta-

bility s = $\frac{a_{ex}(1 - e_{ex})}{a_{in}}$ = (2.3 ± 0.9), its critical

quantity $s^* = 3.5$ (if $s > s^*$ a triple system must be stable – according to Hairingtons 1972) criterion.

The probability that the triple system ADS 9909 is stable is equal $P_s = 0.05$, the probability of instability is $P_{is} = 0.95$.

In connection with the conclusion that ADS 9909 has the unstable type II of dynamics one may study the dynamical evolution of this system by computer simulations (see Anosova 1985, 1986, Anosova and Orlov 1985). A corresponding study carried out from $T_o =$ = 1920.5 has given the following results: a lower limit of escape time is $t_e = (1.2 \pm 0.3) \cdot 10^3$ years (in 38% of the cases under consideration, the system did not disrupt during a time $t = 100 \tau = 3 \cdot 10^3$ years); one has observed during the evolution $n = 4.3 \pm 2.6$ of triple approaches of bodies which have a perimeter $p = \sum_{i \neq j} r_{ij} \leq 100$ a.u. where r_{ij} is the distances between two components; a triple approach causing an escape has the perimeter p = = (56 ± 18) a.u.; a final binary AB (after the escape of component C) has a semiaxis major $a_f = (5.1 \pm 1.6) a.u.$ an eccentricity $e_f = 0.70 \pm 0.27$, and a period $P_f = (23 \pm 7)$ years; a value of $\cos \chi = 0.95 \pm 0.05$ where χ is an inclination of the orbit of the escaper C to the orbit of the final binary AB - both orbits are approximately co-planar (as at the initial time moment T); the inclination of the velocity vector of the escaper C to the angular momentum vector of the triple system is given by $\cos \gamma = 0.017 \pm 0.011$; the final value of the virial coefficient is $k = 0.43 \pm 0.16$ at the end of evolution (after escape of component C γ – the system is near an equilibrium state; an excess of the energy taken away by the component C is equal to $DE = 0.14 \pm 0.80$ - an excess of the kinetic energy of escaper over the one necessary for an escape of triple system according to the criterion of G.A. Tevzadze (see 1962).

Thus, the study of the dynamical state and dynamical evolution of the triple star ADS 9909 (γ Sco) carried out here has shown that this system is certainly a physical one and it has probably the unstable type II dynamics. The quantitative results obtained on the basis

1 aute 10

Parameter	Uncertainty	$\pi = 0.00$	70	$\pi = 0$."	010
x ₁	δ x1	x ₁	δΕ	X1	δ Ε
π"	±0.005 0.002	0.070	0.05 0.04	0.010	0.45 0.20
(μ _{AB})"/y	±0.005	0.026, + 0.006	0.02 0.00	-0.0022,0.003	0.25 0.03
$\mu_{AB}(\mu_{o})$	±0.5 0.2	0.6	0.25 0.10	0.4	0.10 0.04
μ _c "/s	±0.005 0.0005	0.048, - 0.037	0.05 0.01	0.002,0.002	0.08 0.01
V _{AB} km/s	±1.0 0.3	7.2	0.03 0.01	3.4	0.08 0.02
V _c km/s	±1.0 0.3	3.2	0.02 0.01	1.6	0.06 0.02
<i>р</i> ," АВ	±0.1 0.005	6.25	0.02 0.00	7.58	0.02 0.00
M _c (M _o)	±0.5 0.2	2.2	0.02 0.01	2.1	0.01 0.00
ρ _{AC}	±0.1 0.005	73.41	$0.1 \cdot 10$ $0.5 \cdot 10$) ⁻³ 57,64) ⁻⁵	$\begin{array}{rrr} 0.3 & \cdot & 10^{-2} \\ 0.2 & \cdot & 10^{-5} \end{array}$
Integral contribution	$(\delta x_1)_{obs}$		0.27		0.50
	$(\delta x_1)_{\min}$		0.10	*	0.25

Individual contribution of uncertainties of the observational data

of observational data have given a large dispersion in values of the evolutional parameters; in order to obtain more certain results one should improve the accuracy of the observational data.

12. THE NECESSARY ACCURACY LEVEL OF THE OBSERVATIONAL DATA

The method proposed in order to take into account the uncertainties in the observational data for the multiple star components allows to estimate the individual contributions from the uncertainties of every characteristics observed and to evaluate the accuracy level necessary for solving the problem produced – revealing the dynamical states of objects under study.

In the present work, such a study has been carried out for two triple stars a Gem (Castor) - ADS 6175 and ADS 2926 whose parallaxes are equal to 0".070 and 0."010 respectively.

The results are given in Table 10. In the first column of this Table there are the observed data x_1 ; in the second column there are their uncertainties δx_1 obtained from the observations (the upper lines and the values (δx_1)_{min} corresponding to the maximum accuracy level reached at present by the systematically planned observations (the lower lines) – see Kiselev and Kiyaeva 1980, Anosova 1984, Anosova and Orlov 1985, Dommanget 1985, Anosova 1986, Anosova and Sudakov 1987, Anosova et al. 1987.

The conditions of reaching such an accuracy level in the observational data for the components of triple stars will be given below. In the following columns of Table 10 there are the values of the observed characteristics x_1 and the variations $\delta_E = |\frac{\sigma_E}{E}| = |\frac{E(x+\delta_x) - E(x)}{E(x)}|$ of a relative change of the total energy for the systems ADS 2926 and ADS 6175 under consideration.

The study carried out has given the following results: 1) the variations of energy are $\delta_E \sim \kappa \ \delta_X' \ \kappa =$ = const for all values x_1 ; 2) the main contribution in δ_E for rather distant triple stars is given by the uncertainties in the parallaxes being a growth of δ_E with a decrease of π (Table 11).

Debendence on on a	De	oend	ence	δπ	on	π
--------------------	----	------	------	----	----	---

ì		•			
	я	h	IP.	1	1
	•	~	40		

π	$\delta_{\pi} = \pm 0.005$	$\delta_{\pi} = \pm 0.002$
0070	0.08	0.03
0.040	0.20	0.08
0.020	0.50	0.20
0.010		0.40

3) therefore, a reliable study of dynamics for the triple stars with $\delta_{\pi} = \pm 0.0005$ is possible only for $\pi \ge 0.0005$

0.020 (the probability of dynamical connection between components P (E – 2 $\sigma_{\rm E} \le 0$) ~ 1 on $\delta_{\rm E} \le 0.50$ and E < 0); in the opposite case, the sign of the total energy and, therefore, the probability of dynamical connection is not determined. The study of triple stars with $\pi \ge 0.010$ is possible for $\delta_{\pi} = \pm 0.020$ (see Dommanget 1985);

4) taking into account the sizes Δz of triples along the line-of sight for $\delta_{\pi} = \pm 0.^{\circ}$ D05 a reliable study is possible only for the triple star α Cen (Table 12) supposing $\Delta z = 0.01$ pc – a mean size of triple systems whose components are solar-type stars. Some attempts of analogous study for the triple star ADS 3093 are possible for $\delta_{\pi} = \pm 0.^{\circ}$ O01 – 0.^{\circ} O02 (using the observations by the cosmic observatories – see Dommanget 1985). Taking into account the sizes along the line-of--sight for more distant systems a reliable study is possible only statistically.

- 1° - L	a 17
1 2 1 1	

$\Delta \pi^{"}$ ($\Delta z = 0.01 \mathrm{pc}$)	π"	triple system
± 0.010	0.756±0.003	a Cen
0.001	0.202±0.006	ADS 3093
0.0002	0.074±0.001	a Gem

In order to take into account the sizes of systems along the line of sight by statistics one must obtain the relative distances R_{ij} between the components i and j with the angular separation ρ_{ij} and positional angle θ_{ij} according to the formula

$$R_{ij} = \frac{4}{\pi} \rho_{ij}$$

where $\rho_{ij} = R_{ij} \cos \omega$, ω is the angle between the vectors R_{ij} and ρ_{ij} ,

$$\rho_{ij} = \frac{1}{4} \int_{0}^{2\pi} \int_{-\pi/2}^{\pi/2} R_{ij} \cos^2 \omega \, \mathrm{d} \, \theta_{ij} \, \mathrm{d} \omega = \frac{\pi}{4} R_{ij}$$

(according to Kleiber's theorem) assuming an equal distribution of angles ω and θ_{ij} within the intervals $[-\pi/2, \pi/2]$ and $[0, 2/\pi]$;

5) for the hierarchical triple stars, taking into account of observed parameters for a close pair (at first, the relative masses of components, then, their relative proper motions) plays a great role;

6) the smallest contribution in the variations δ_E of multiple systems is made by the uncertainties in the relative coordinates.

The necessary accuracy level of observations might be reached on the following conditions:

a) for the astrometrical observations an accuracy $\delta_{\rho} = \pm 0.005$ and $\delta_{\mu} = \pm 0.005$ per year (ρ , μ are the relative coordinates and proper motions of components) may be achieved on $\rho > 3$ " by the dense series of ob-

servations at the long-focus refractors during 10-15 years (Kiselev and Kiyaeva 1980); for the systems containing the close pairs with $\rho < 2$ ", one must carry out the specie interferometry observations;

b) the uncertainties of the radial velocities $\delta_v = \pm 0.1-0.5$ km/s are reached by the spectrocsopic observations using the equipment of CORAVEL's type (Anosova et al. 1987);

c) one may obtain the uncertainities $\delta_{\rm M} = \pm 0.2$ M_o of star masses using the differences of their apparent magnitudes (data from the photoelectric photometry) in the nearby triple systems with the well-known trigonometric parallaxes for every component provided that any peculiarity in their spectra is absent.

d) an accuracy level $\delta_{\pi} = \pm 0.002$ of the stellar parallaxes is proposed to be reached by the observations on board of the European astrometric satellite HIPPAR-COS;

e) an essential increase in the accuracy of astrophysical and astrometrical data (δ_{μ} , $\delta_{\pi} = \pm 0.0003$) will be reached by the observations on board of the HUBBLE SPACE TELESCOPE.

A program of the Leningrad University Observatory consisting of 137 neaby and bright multiple stars and made with a purpose to study their dynamical states has been included in the HIPPARCOS Input Catalogue (in part, in accordance with the technical possibilities) and submitted to the HUBBLE SPACE TELESCO-PE Science Institute.

REFERENCES

Abt, H. A., Levy, S.: 1976, Astrophys. J. Suppl. Ser., 30, 273.
Agekian, T. A. et al: 1962, The Course of Astrophysics and Stellar Astronomy, Moscow, Nauka, vol. 2. Aivasian, C. A., Bezhaeva, S. I., Staroverov, O. W.: 1974, Classification of Multivariate Observations, Moscow, Statistics.

Anosova, J. P.: 1984, Problems of Astrophysics, Saransk, 75. Anosova, J. P.: 1985, Totals of Science and Technology. Ser. Astronomy, 26, 57.

Anosova, J. P.: 1986, Astrophys. and Space Sci., 124, 217.

Anosova, J. P.: 1990, PH. D. Thesis, Leningrad State University.

- Anosova, J. P., Orlov, V. V.: 1985, Transections of Astron. Observ. of the Leningrad State Univ., 40, 66.
- Anosova, J. P., Sudakov, S. V.: 1987, Transactions of Astron. Observ. of the Leningrad State Univ., 41, 80.
- Anosova, J. P., Sementsov, V. N., Tokovinin, A. A.: 1987, Sov. Astron., 64, 2, 423.
- Brosche, P.: 1964 Astron. Nachr., 288, 33.
- Dahari, O.: 1985, Astron. J., 30, 1772.
- Deutsch, A. N.: 1961, Isv. of Pulkovo Obsery., 22, 79.
- Dommanget, J.: 1977, Revista Mex. Astron. y Astrofis., 3, 67
- Dommanget, J.: 1985, Astrophys. and Space Sci., 110, 47.
- Geller, M., Huchra, J.: 1983, Astrophys. J. Suppl. Ser., 52, 61. Gliese, W.: 1969, Veroffentl. Astr. Rech-Inst. Heidelberg, No 22.
- Holmberg, E.: 1940, Astrophys. J., 92, 200.
- Huchra I., Geller, M.: 1982, Astrophys. J. 257, 423.
- Jeffers, H., van den Bos, W., Greeby, F.: 1963, Index catalogue of visual double stars, 1961, O-Univ. Calif. Publ. Lick observ., 21.
- Karachentsev, I. D.: 1976, Problems of Cosmic Physics, 5, 201. Karachentseva, V. E., Karachentsev, I. D., Shcherbanovskij, A.
- L.: 1979. Izv. Spec. Astrofis. Observ., 11, 3. Kiselev, A. A., Kiyaeva, O. V.: 1980, Sov. Astron., 57, 1227.
- Materne, J.: 1978, Astron Astrophys., 63, 401.
- Poveda, A., Allen, C., Parrao, L.: 1982. Astrophys. J., 258, 589.
- Terzadze, G. A.: 1962, News Acad. Sci. Armenian SSSR, 15, 167.
- Timoshkova, E. I., Kholshevnikov, K. V.: 1982, Totals of Science and Technology, Ser Astron., 20, 3.
- Tully, R.: 1980, Astrophys. J. 237, 390.
- Turner, E. L., Gott, J.: 1977, Astrophys. J. 213, 309.
- Vennik, J.: 1984, Tartu Astrophys. Observ., Prepring.
- Wielen, R.: 1974, Astron. Rechen-Inst. Heidelberg Mit., A, 86, 395.
- Worley, C.: 1977, Revista Mex. Astron. y Astrofis., 3, 57.

ТРАГАЊЕ И КЛАСИФИКАЦИЈА ВИШЕСТРУКИХ СИСТЕМА У ОПШТЕМ ПОЉУ

Ж. П. Аносова

Опсерьаторија Лењинградског универзитета

УДК 523.83

Оригинални научни рад

Предмет овог рада је проучавање вишеструких звезда и галаксија са циљем да се класификују њихова динамичка стања и да се пронађу статистички критеријуми за разликовање случајних група објеката од неслучајних. Предложени статистички критеријум је примењен на неке вишеструке звезде и галаксије. Разрађен је одговарајући алгоритам и на крају су проучена динамичка стања гројног система ADS 9909 (Sco) узимајући у обзир грешке посматрачких података.

AN APPROACH TO THE PROBLEM OF SECULAR ACCELERATION OF THE MOON

V. Protitch-Benishek, M. B. Protitch

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

(Received: January 4, 1990)

SUMMARY: If we adopt the solution of extended method in the Delaunay theory of the Moon as real and entirely logical and substitute the square term in the Moon's mean longitude by the very long period inequality, the remaining residuals — fluctuations — can be treated as the consequence of collected effect of a few other inequalities. The frequencies of these periodical terms correspond to the identical relative positions of the Moon's node, Sun and Earth.

On the basis of such an approach to the problem of secular acceleration of the Moon and fluctuations, lunar observations in the period 1681 - 1985 are analysed.

The results are quite consistent with values presented by other authors.

1. INTRODUCTION

The secular quadratic term was introduced in the expression for the Moon's longitude on the basis of Halley's conclusion that the mean lunar motion was not constant (Halley, 1695). The term had an empirical character and from the very beginning there have been great difficulties in attempts of establishing its real amount and finding an acceptable theoretical explanation. Unfortunately, in spite of the efforts of many investigators during almost three whole centuries, we cannot claim that in this field significant progress has been achieved.

Even the theory of nonuniformity in the Earth's rotation based on the lunar tidal effect, contrary to expectations, has failed in giving a complete explanation of the difference between the lunar secular acceleration derived theoretically and the values resulting from observations. Brumberg and Kovalevsky (1986), and especially Seidelmann (1986), certainly for this reason put this problem among the unsolved problems of Celestial Mechanics since it is doubtlessly important

also from the point of view of the Earth-Moon's stability system.

However, if one thinks about the reasons why the final solution of the problem is still unceratain, it is not difficult to suppose that this situation may be the consequence of assuming a priori the notion of the secular acceleration in the mean lunar motion as an evident fact and of accepting the existing formal theoretical explanation as a proof for its real existence. But such a concept certainly includes a quite different approach to the problem and a subsequent analytical solution, more adequate for the explanation of the phenomenon.

2. MEAN LONGITUDE OF THE MOON

Supposing that such a line of reasoning is correct and justified, it is of interest to envisage what kind of result can be obtained if the residuals found in the lunar longitude are expressed as a collective effect of several long-period inequalities; in other words, if an alternative assumption is introduced. The alternation possibility was also mentioned by Newcomb in his "Researches" (Newcomb, 1878), in addition to the hypothesis of nonuniformity in the Earth's rotation. However, we do not limit ourselves in this procedure to pure fluctuations alone, but we also take into account the secular quadratic term completely. A sufficiently reliable basis to such an approach is the already known analytical solutions of the differential equations of mass-point motion through the procedure applied in Delaunay's theory of the Moon. Solutions of this kind have been the subjects of many studies and cases of their application in Celestial Mechanics become more numerous today (e.g. the problem of motion near the libration points, the problem of central motion of an unlimited number of masive bodies, etc). The use of modern methods adapted to software application aimed at finding such solutions also contributes to this.

Without going into details, it will be enough to write down only the solution defining the mean longitude analytically:

$$L = L_0 + n \cdot t + \sum_{i=1}^{n} A_i \sin(a_i \cdot t + \beta_i)$$
(1)

mentioning that analogous relations are obtainable also for the cases of ϖ and Ω (pericentre longitude and node of an orbit) and that in the expressions yielding $a_i \ e, \ i$ (semi--major axis, eccentricity and inclination) there is no secular linear term. As for the parameters L_{∞} , u, A_i , a_j , β_j , the best way is their determination from direct observations since according to the existing experience only then one can avoid the differences appearing usually between their real values and the theoretically derived ones.

As seen, there are no quadratic and mixed terms in which t is before the sign Σ , here. This means that such solutions are in accordance with the oscillatiory nature of central motions of celestial bodies being essentially true, but in macrodimensions. In addition they are not contradictory to Kepler's laws and the stability of a system is not violated, in particular of the Earth--Moon system.

It should be mentioned that Brown's theory of the Moon is practically also based on solutions of this kind, though the classical definition and the presentation of secular inequalities as a series are preserved in it:

$$P_1 \cdot t + P_2 \cdot t^2 + \dots$$

in this way Brown, like Hansen and Newcomb before him, had no choice but to introduce also an empirical long-period term in the longitude expression. For residual deviations, the minor fluctuations as they were named by Newcomb, had been looked for and various solutions were found until de Sitter (1927) and later on, Spencer Jones (1939) proposed their solutions in which the fluctuations were interpreted as a set containing the difference between the observational and theoretical secular acceleration value and the minor fluctuations. The consequences of such an approach are well known.

3. OBSERVATIONAL DATA ANALYSIS AND RESULTS

By reducing the discrepancies (O-C) in the Moon's mean longitude to the quasi-keplerian motion. taking also into account the total amount of the secular acceleration, M. Protitch (1987) attempted their explanation following the conclusions mentioned above. In this way, he demonstrated after the revision and analysis of Newcomb's results from 1878 and 1917, firstly in Hansen's system and afterwards by reducing to Brown's system, that all ancient. Babylonian-Hellenic--Arabian, and later (by the end of 17th century) eclipses of the Moon can be well represented by substituting the quadratic term with an inequality of a very long period. He also established that as a consequence of such an interpretation a periodical character in the fluctuations is clearly seen and that their frequencies are correlated with cycles whose durations are determined by the time needed for the restitution of the same, or nearly the same, relative positions of the Sun, the Earth, the node and the perigee of the lunar orbit.

The plots presented here (Fig. 1, a, b) display the trend of the residuals in Hansen's system before and after the elimination of its secular quadratic term (n = = +26''.68 arc sec/cy² epoch 1900.0). One should add that the parameters of this inequality are derived in a way similar to Newcomb's one (Newcomb, 1917) but omitting his correction to the secular acceleration.

These results gave us an impetus to carry out a verification of such an approach to the problem based on an analysis of later lunar observations (from the period 1681–1985) not considered by him and to establish whether an alternative concept of the secular acceleration, phenomenologically and according to what contains very different from the present one, is justified or not.

The data used by us for this purpose are taken from Brouwer's (1952) thorough study. On the basis of his values B, which are fluctuations in the Moon's mean longitude, by applying a corresponding correction G and also the long-period Venus term A, accepted from Hansen's theory, we obtain the residuals with respect to the quasi-keplerian motion. With regard to (1) we should have:

$$\delta L_{\mathbf{k}} = (\mathbf{O} - \mathbf{C})_{\mathbf{k}} = \delta L_{\mathbf{o}} + \delta \mathbf{n} \cdot \mathbf{t} + \sum_{i=1}^{n} C_{i} \sin (a_{i} \cdot \mathbf{t} + \beta_{i}) =$$

= B + G + A (2)

where: δL_0 and δn are the longitude corrections for the epoch and for the mean diurnal motion, C_i , a_i and β_i

are the parameters of the assumed inequalities which should be determined, B are Brouwer's fluctuation values derived from occultations, G and A are the corrections of the form:

> $G = 4.^{\circ}65 + 12.^{\circ}96T + 12.^{\circ}36T^{2} + A$ $A = +14.^{\circ}27 \sin(131.^{\circ}92T + 344.^{\circ}82)$

(T from 1900.0 in Julian centuries).

One should say that the values B do not contain Brown's great empirical term and that the quadratic term in G is the tropic value of the secular acceleration derived from observations (theoretical value+de Sitter's correction 7."14T + 5." $22T^2$) also assumed by Spencer Jones (1939).

In Brouwer's series there are data by 1948.5 only. Therefore, to obtain the further data (by 1985) we use the published values of ΔT according to Clemence's (1948) definition:

$$B'' = 0.5491 \cdot T - 13.77 - 39.71 \cdot T - 16.44T^2$$

where T is in time seconds.

Though inhomogeneous the material prepared in this way gave nevertheless a sufficiently reliable base for solving the problem. The data from the period 1920-1950 are treated by use of the third-degree-five-points-least-square-smoothing procedure. The main problem which should be solved requires a number of periodical terms, which can be important, to be known. One of them is found immediately: we assume the long-period inequality having been the substitution for the secular quadratic term in an earlier paper (Protitch, 1987). In addition, it is a part of global fluctuations so that finding a real solution for its residual part would be at the same time a confirmation to its reality.

The numerical value of this inequality derived from observations covering an interval greater than 24 centuries is: +2369."9 · cos (6."883T + 270."33). Its period is 5230 tropic years, or 64686 synodic, 69325 anomalistic and 70197 draconistic lunar revolutions. The amplitude is, as seen, identical to the variation amplitude. The introducing of it implies a mean longitude correction for 1900.0 of: $\delta L_0 = -14$."07 and a reduction in the annual mean motion of $\delta n = -2$."9316. By omitting this term denoted as δL_1 one would obtain the fluctuation amount with respect to the quasi-keplerian motion:

$$\mathbf{B}_{\mathbf{k}} = \delta \mathbf{L} - \delta \mathbf{L}_{1} = \Delta \delta \mathbf{L} \tag{3}$$

which should be represented through the corresponding long-period functions.

In our analysis we just interpret $\Delta\delta L$ and on the basis of the smoothed curve for the interval 1695–1985.

Figure 1. The trend of residuals in the mean longitude of the Moon (Hansen); a -- secular quadratic term included, b in the quasi-keplerian system secular quadratic term eliminated.

Figure 2. Fluctuations in the Moon's mean longitude. The dots represent observed values used by various authors (De Sitter, Sp. Jones, Brouwer, Morrison) and the full line represents the calculated values (Protitch).

in which a periodical character is clearly seen, we choose twenty equidistant values.

By applying the classical procedure of determining the parameters of a periodical function and assuming i = 4 we determine C_i , a_i , β_i . The obtained periods indicate their similarity to the commensurability periods for longitudes of the Sun, the Moon's node and the Earth and therefore they are reduced to the latter ones. However, the inspection of the residuals reveals the presence of at least two additional periodical terms. Repeating the procedure we find the periods for which the following rounded values are assumend: 46.5 and 74.5 years. These periods appear to be commensurable with the lenght of the eclipse year and begin at the times when the lunar nodes and the Sun are in the same point of ecliptic. An insight into Oppolzer's (1887) Canon or Meeuse-Mucke's (1983) Canon is in favour of their reality.

Without insisting upon a high precision in deriving the parameters C_i and β_i assuming that the seven long-period inequalities can be substituted as the input data with a sufficient accuracy (within +1 arc second) we determine the values $(B_0)_C$ by applying the inverse procedure. Their trend is presented in Fig. 2 together with the values used by other authors. True, as far as we know, Stoyko (1967) and Pejcev (1986) mentioned in their papers concerning the nonuniformity in the Earth's rotation that in this the longitude of the node of the lunar orbit and the Moon's relative position with respect to the Sun have some part, but without answering the question completely. If we wanted to use our results concerning this matter, we would establish that the correction ΔT has a tendency of further increase.

4. CONCLUSION

We are fully aware of criticisms which can be addressed to such an attempt of explaining the fluctuations in the mean lunar longitude and also the ones in its secular acceleration. It is well known that many authors before us (Cowell, Brown, Radau, Ross, etc) have tried and found in a similar way various long-period terms, but without attempting to look for any explanation of their nature. Examples are the long-period empirical terms introduced by Newcomb, Brown, Fotheringham and others. Similar analyses and attempts to express the trend of the corrections ΔT through periodical functions and consequently to determine the values for the near future by means of extrapolation, as done for example by Cholij (1989), are becoming more and more frequent nowadays.

REFERENCES

- Halley, E.: 1695, *Phyl. Trans. Roy. Soc. London*, No 218. Brumberg, V. A., Kovalevsky, J.: 1986, *Celest. Mech.*, 39, 133 – – 140.
- Seidelmann, P. K.: 1986, Colest. Mech., 39, 141-146.
- Newcomb, S.: 1878, Researches on the Motion of the Moon, Pt. I, Washington.
- De Sitter, W.: 1927, On the secular acceleration and the fluctuation of the longitude of the Sun. Mercury and Venus, BAN, 4, 124.
- Spencer Jones, H.: 1939, Mon. Not. R. Astr. Soc., 99.
- Protitch, M. B.: 1987, Les fluctuations dans la longitude de la Lune et la rotation de la Terre, presented on Coll. Nº 100 (unpubliched).
- Newcomb, S.: 1917, Astron. Pap., Vol. IX, Pt. II.
- Brouwer, D.: 1952, Astron. J., 57, 125.
- Clemence, G. N.: 1948, Astron. J., 53, 169.
- Cholij, V. Ya.: 1989, Kinem. Fiz. Nebes. Tel, 5, 7-12.

СЕКУЛАРНО УБРЗАЊЕ У СРЕДЊОЈ ЛОНГИТУДИ МЕСЕЦА: МОГУЋЕ ОБЈАШЊЕЊЕ

В. Протић - Бенишек, М. Б. Протић

Астрономска опсерваторија, 11050 Београд, Волгина 7, Југославија

УДК 521.174 Оригинални научни рад

Ако се прихвате као реална и сасвим логична решења добивена генерализацијом метода примењеног у Delaunay-евој теорији Месеца, па уместо секуларног квадраног члака у његовој средњој лонгитуди уведе дугопериодична неједнакост, преостали резидуи /О-С/ - флуктуације – могу се објаснити као последица сумарног ефекта суперпоновања неколико других неједнакости, различитот грајања и амплитуда. Фреквенце тих неједнакости сразмерне су интервалима времена који деле тренутке наступања идентичних, или квазиидентичних релативних положаја чвора Месечеве путање, Земље и Сунца.

У овом раду приказани су резултати до којих се долази анализом података посматрања из периола 1681-1985. Тако изведене флуктуације добро се слажу са вредностима које су дали други аутори.

A CONSIDERATION OF VELOCITY DISTRIBUTION WITHIN CORONAE OF GALAXIES

S. Ninković,

Astronomical Observatory, Volgina 7, 11050 Beograd, Yugoslavia

(Received: August 24, 1989)

SUMMARY: Coronae of galaxies are assumed to be spherically symmetric, self-consistent and in a steady state. The velocity distribution is studied on the basis of the hydrodynamical equation through the ratio $\overline{v_t^2}/\overline{v_r^2}$ (transversal aul radial velocity components, respectively). It is found that in the conditions supposed to occur in real galaxies the radial velocities prevail so that the fraction of the radial velocity in the total kinetic energy of the system attains even more than 50%. Applied to our Galaxy the results of the present paper suggest a value of the ratio mentioned above of a little bit greater than one at the galactocentric position of the Sun.

1. INTRODUCTION

It is well known that for the purpose of explaining some phenomena in stellar astronomy (rotation curves of spiral galaxies, etc) a concept of galactic coronae-vast, very massive systems, dominating the dynamics of their galaxies--has been developed (e.g. Trimble, 1987). Because of sufficiently flat rotation curves an inverse-square law has been usually assumed for the mass distribution within the coronae. Since the coronal constituents are unknown, there is no observational evidence on their velocity distribution. However, as well known, in the most simple case when spherically symmetric coronae are considered, the inverse-square law can be obtained by assuming an isotropic and isothermal velocity distribution. On the other hand Antonov and Chernin (1975, also Antonov et al., 1975) argued that an isotropic and isothermal velocity distribution cannot be expected within very rarefied systems such as coronae since their relaxation time is extremely long. The two authors proposed another velocity distribution characterised by a domination of radial velocities which may have resulted from the primordial conditions. One should point out that a pure inverse-square law is not realistic for two reasons:

i) it yields a singularity in the central density;

ii) integrated over infinity it yields an infinite total mass. To avoid the second disadvantage one can assume that the inverse-square law is valid only within a finite radius. However, in this case we have a discontinuity at the boundary of the system since at the inner side of the boundary the density is greater than zero and at the outer one it vanishes.

The purpose of the present paper is to introduce more realistic conditions for the density function and then to consider the velocity distribution under these conditions.

2. THEORETICAL BASE

For reasons of simplicity it is here assumed that the corona of a galaxy is a self-consistent system. In such a case the most simple decision is to assume also the spherical symmetry and the steady state. In reality the coronae co-exist with discs of their galaxies so that strictly speaking they cannot preserve the spherical symmetry which they might have if they existed separately.

These two assumptions mean that the Poisson equation and the hydrodynamical one (e. g. Ogorodnikov, 1958) are valid. The latter equation will be written here because in the present paper it is widely used

$$\overline{v_t^2} = u_c^2 + \frac{r d\rho}{\rho dr} \overline{v_r^2} + 2\overline{v_r^2} + r \frac{dv_t^2}{dr}$$
(1)

In equ. (1) the following designations are used: v_t^2 -the mean square of transversal velocity at a given radius r, v_1^2 -the mean square of radial velocity, u_c -the circular velocity and ρ the density.

It can be proved that at the centre (r=0) is valid $v_t^2 = 2v_r^2$ provided that the density function is realistic, i. e. being decreasing, finite at the centre, almost constant near it and vanishing at a certain radius r₁, so that the derivative is always negative, except at the centre where it vanishes, but near it its absolute value is very small. The proof easily follows from (1) since under such conditions must be $u_c(0) = 0$. Therefore, it is clear why in different families of models describing the spherically symmetric and self-consistent systems in a steady state the velocity distribution is isotropic at the centre (Binney and Tremaine, 1987, p. 242).

Beyond the centre the velocity distribution of a spherically symmetric system is generally anisotropic because in such systems it depends on two integrals of motion-the energy and the modulus of the angular momentum. Imposing a realistic condition on v_r^2 , i. e. introducing it as

$$\overline{v_r}^2 = \overline{v_r}^2 (0) f(r),$$
 (2)

where f(r) is a montonously decreasing function so that

Figure 1 An example of "transversal" velocity distribution; $r_c/r_1 = 0.1$, $\overline{v_r^2}(0) = 0.15x4\pi GAr_c^2$

f(0) = 1 and $f(r_1) = 0$, one finds that with respect to the ratio v_1^2/v_r^2 one can define two kinds of velocity distributions for a given mass distribution. These are:

i) the "transversal" anisotropic $-\overline{v_t^2} \ge 2\overline{v_r^2}$ (the equality corresponds to r = 0, see Fig. 1);

ii) the "radial" anisotropic where within some part $r \in (0, r_a)$ is $\overline{v_t^2} < 2\overline{v_r^2}$ and beyond that interval, $r > r_a, \overline{v_t^2} > 2\overline{v_r^2}$ (Fig. 2). Since all the objects belonging to a corona are within their potential wells, the central value of the radial-velocity square, $\overline{v_r^2}(0)$, must satisfy the condition $\overline{v_r^2}(0) < (2/3)\Pi(0)$, where Π is the potential of the system.

The form of the function describing the mass distribution within the corona of a galaxy in the present paper is the same as that in an earlier paper of the present author (Ninković, 1988). The corresponding solution of the Poisson equation was also given there. The task is to specify possible constraints on the velocity distribution for these conditions using equation (1).

3. PROCEDURE

Since in equ. (1) there are only two physical quantities – the distance and the velocity square – their units should be specified. The distance unit will be r_i (limiting radius) and the velocity square will be expressed in $4\overline{u}GAr_c^2$ (G is the gravitation constant, for the meaning of others see Ninković, 1988).

The scale parameter r_c must be specified, too. The circumstance that as a rough description of the distance dependence within a corona may be used the inverse-square law acts as a constraint to the choice of the ratio r_c/r_1 . Intuitively one finds a value of 0.1 as the fair one. It agrees well with those values assumed in some models of our Galaxy (e. g. Caldwell and Ostriker, 1981; Rohlfs and Kreitschmann, 1981). With regard to the requirements concerning the function f(r) (2) it is convenient to choose expressions like $(1-r/r_1)$, i. e. $(1-r^2/r_1^2)$. The former expression raised to a power greater than 1 yields a sufficiently steep decrease in f(r) near the centre. The latter one acts as a smoothing term by enabling a more gradual decrease of f(r). This is seen from the following examples.

In the case $\overline{v_r^2}(0) = 1$ (units established above, equal to $0.56\Pi(0)$) a solution of (1) is obtained with

$$f(r) = a_1 (1 - r/r_{\varrho})^3 + a_2 (1 - r/r_{\varrho})^2 + a_3 (1 - r^2/r_{\varrho}^2),$$

$$\sum_{i=1}^{3} a_i = 1;$$

in the particular case $a_1 = 0.09$, $a_2 = 0.89$, $a_3 = 0.02$. (Fig. 3). The role of the first ferm is to make the decrease sufficiently steep near the centre (on the contrary one would obtain a negative $\overline{v_t^2}$), the second one is the basic term (for this reason its coefficient is largest) and the role of the third term is to diminish the increase of $v_1^2 (v^2 = v_1^2 + v_1^2)$ near the boundary. For values of v_r^2 (0) as large as 1 this increase is inevitable because at $r = r_1$ as easy to see it will be $\overline{v_t^2} = u_c^2 - 4a_3 \overline{v_r^2}$ (0). Since $\overline{v_t}^2$ cannot be negative, this is a limitation for the value of a_3 . Only at $\overline{v_r^2}$ (0) approximately as small as $0.8 (0.44\Pi(0))$ this limitation is not so strong and it is possible to obtain a function $\overline{v^2}(r)$ always decreasing. However, as seen from Figs. 2-3 the minimum of the ratio $\overline{v_t^2}/\overline{v_r^2}$ is much deeper in the second case (larger $v_r^2(0)$) achieving about 0.01 and occuring at about $r = 0.55 r_1$, whereas in the first case the value of the minimum is about 0.66 and it corresponds to the approximate value of r equal to 0.7 r1. The "critical" value of $\overline{v_{r}^{2}}(0)$ above which is impossible to obtain a "transversal" solution of (1) (like in Fig. 1) occurs at about $v_r^2(0) = 0.15 (0.08 \Pi (0)).$

The present procedure is repeated for two more cases: $r_c/r_1 = 0.01$ and $r_c/r_1 = 0.5$. The latter one evidently does not correspond to the present purpose, thus it is used only as an illustrative one.

In the case $r_c/r_1 = 0.01$ all the facts found in the former case $(r_c/r_1 = 0.1)$ become more strongly expressed. For example, if $\overline{v_r^2}(0) = 2$ (about one half of II (0)) the dependence of the radial velocity square is given by

> $f(r) = a_1 (1-r/r_1)^4 + a_2 (1-r^2/r_1^2);$ $a_1 = 0.975, \qquad a_2 = 0.025 (Fig. 4).$

The value of the coefficient a_2 is large enough to achieve smoothing $\overline{v^2}(r)$ is a monotonously decreasing function. The minimum in $\overline{v_t^2}/\overline{v_r^2}$ occurs at about $r/r_1 = 0.26$ $(26r_c)$ and it is less than 0.001! A transversal solution is impossible to obtain above $\overline{v_r^2}(0) \approx 0.2 (0.06 \Pi(0))$.

For the case $r_c/r_1 = 0.5$ the minima are not so deep by far and one can add that transversal solutions cess at about $\overline{v_r}^2(0) = 0.1 (0.25 \Pi (0))$.

Therefore, it is seen that within self-consistent coronae of galaxies velocity distributions with prominent radial motions are generally acceptable. If the arguments of cosmogony are also invoked, then distributions characterised by prominent radial motions are very probable (e. g. Jaaniste and Saar, 1975).

4. DISCUSSION AND CONCLUSIONS

One could say that the general conclusions of the present paper and of that by Antonov and Chernin (1975) are similar. One should bear in mind that no quantitative comparison is possible since in the present paper a different mass distribution, with no singularity at the centre and no discontinity at the boundary, is assumed. On account of this the ratio $\overline{v_t^2}/\overline{v_r^2}$ is a function of distance whose values generally depend on the mass distribution unlike Antonov and Chernin who

Figure 2 A ,,radial'' solution; $r_c/r_1 = 0.1$, $\overline{v_r^2}(0) = 0.7x$ $x4\pi GAr_c^2$, $f(r) = 0.0571(1-r/r_1)^3 + 0.7714$ $(1-r/r_1)^2 + 0.1714(1-r^2/r_1^2)$

Figure 4 $r_c/r_1 = 0.01, \overline{v_r^2}(0) = 2x4\pi GAr_c^2, f(r) = 0.975$ $(1-r/r_1)^4 + 0.025 (1-r^2/r_1^2)$

obtained an arbitrarily small and weakly variable $\overline{v_t^2}/\sqrt{v_r^2}$ ratio.

As quantitative measures of the radial fraction in the velocity distribution one can use according to the present author the value of $\overline{v_r}^2$ (0) above which there are no "transversal" solutions of (1) expressed in units of the central potential. We see that for the cases which are likely for the coronae of galaxies (r_c/r_1 about 0.1 or less) this amount is 6-8%. Of course, such a small rate is low probable and therefore it seems that some kind of "domination" of radial motions within the coronae of galaxies is very probable.

Another quantitative measure may be the fraction of the radial component in the total kinetic energy of the system. As well known the double total kinetic energy is defined as

$$2W_{\mathbf{k}} = \int_{O}^{1} \overline{\mathbf{v}^2} \, \mathrm{d}\mathbf{M},$$

where dM is the mass differential. Accordingly the mean velocity square taken over the entire system will be

$$\langle \overline{v^2} \rangle = M^{-1} \int_{O}^{r_1} \overline{v^2} \, dM;$$
 (3)

M is the total mass of the system. Since the integral in (3) is additive, it will be

$$<\bar{v_{r}^{2}}> = <\bar{v_{r}^{2}}> + <\bar{v_{t}^{2}}>$$

and accordingly the fraction of the radial component will be simply defined as the ratio

$$\langle \overline{\mathbf{v}_r^2} \rangle / \langle \overline{\mathbf{v}}^2 \rangle$$
 (4)

The values of the ratio (4) corresponding to some cases considered above are

$$r_c/r_l = 0.1$$
 $\overline{v_r^2}(0) = 0.15$ 0.19

$$v_r^2(0) = 0.7$$
 0.55

$$v_r^2(0) = 1$$
 0.66

$$r_c/r_l = 0.01$$
 $\overline{v_r^2}(0) = 2$ 0.67.

It is clear that for a given r_c/r_1 the ratio (4) depends on the amount of $\overline{v_1^2}$ (0); to a larger $\overline{v_r^2}$ (0) corresponds a larger ratio (4). It is seen that in some limiting cases (in the sense that above them one already begins to obtain solutions with $\overline{v^2}$ not monotonously decreasing) the ratio (4) attains even more than 50%.

Finally, it would be interesting to apply the present results to our own Galaxy. As has been already said the value of 0.1 for r_c/r_1 might be applicable for this purpose. Then, since the integral (3) can be put into a dimensionless form, one obtains $\langle \vec{v}^2 \rangle = 0.547x$ $\times 4\pi GAr_c^2$ regardless of $\vec{v_r}^2$ (0) assumed. If one assumes as rough values $r_c = 10$ kpc and $A = 0.01 M_{\odot} pc^{-3}$, one obtains $\langle \overline{v}^2 \rangle = 175^2 \text{ km}^2 \text{ s}^{-2}$. The mean square of the radial velocity taken over the entire system naturally depends on $\overline{v_r}^2$ (0) assumed in the analysis. For the two cases presented in Figs. 2-3 it is $\langle \overline{v_r}^2 \rangle =$ = 0.298x4 π GAr_c², i. e. 0.363x4 π GAr_c², or 129² km² s⁻², 143² km² s⁻². If the value of 8.5 kpc is assumed for the galactocentirc distance of the Sun according to the IAU, then at the Sun we shall have $\overline{v_t^2}/\overline{v_r^2} \approx 1.01$ course, all these conclusions are tentative since they are valid for the case of a spherically symmetric and self-consistent galactic corona which, strictly speaking, is not true. Perhaps, such a situation is not far from the truth (see galactic models, e. g. by Caldwell and Ostriker, 1981 and by Rohlfs and Kreitschmann, 1981). In any case a study taking into account these circumstances is desirable.

One should certainly emphasize once again that the coronal constituents are unknown, so that any observational verification of the present conclusions meets extremely serious difficulties. The only chance is to study eventual consequences for models of the Galaxy (and also for other galaxies).

The principal conclusion of the present paper is that the conclusions of Antonov and Chernin (1975) are confirmed in principle and that they are made more complete by introducing the ratio (4) as a quantitative measure of the radial—component fraction in the kinetic energy of the coronae of galaxies.

NOTE

A preliminary report on the present work was presented at the IX National Conference of Yugoslav Astronomers held in Sarajevo (October 1988).

ACKNOWLEDGEMENT

This work has been supported by RZNS (Republican Community for Science of Serbia) through the project "Physics and Motions of Celestial Bodies and Artificial Satellites".

REFERENCES

- Antonov, V. A., Osipkov, L. P., Chernin, A. D.: 1975, in Dinamika i évolyutsiya zvezdnykh sistem, ed. K. F. Ogorodnikov, vyp. 4 ser. Problemy issledovaniya vselennoj, izd. AN SSSR VAGO GAO, Moskva-Leningrad, p. 289.
- Antonov, V. A., Chernin, A. D.: 1975, Pis'me v Astron. Zh., 1, 18.
- Binney, J., Tremaine, S.: 1987, Galactic Dynamics, Princeton University Press, Princeton, New Jersey.

Caldwell, J. A. R., Ostriker, J. P.: 1981, Astrophys. J., 251, 61. Jaaniste, J., Saar, E.: 1975, Publ. Tart. Astrof. observ., 43, 216. Ninković, S.: 1988, Bull. Observ. Astron. Belgrade, 139, 21. Ogorodnikov, K. F.: 1958, Dinamika zvezdnykh sistem, Gos. iz-

- dat. fiz. mat. literatury, Moskva, ch. IX. Rohlfs, K., Kreitschmann, J.: 1981, Astrophys. Space Sci., 79, 289.
- Trimble, V.: 1987, Ann. Rev. Astron. Astrophys., 25, 425.

РАЗМАТРАЊЕ РАСПОДЕЛЕ БРЗИНЕ У КОРОНАМА ГАЛАКСИЈА

С. Нинковић,

Астрономска опсерваторија, Волгина 7, 11050 Београд, Југославија

УДК 524.7-85 Оригинални научни рад

Претпоставља се да су короне галаксија сферно-симетричне, само-усаглашене и у стационарном стању. Расподела брзине се проучава на основу хидродинамичке једначине преко односа v_t^2/v_r^2 /трансверзална и радијална компонента брзине, респективно/. Нађено је да у условима који се срећу у стварним галаксијама радијална кретања преовлађују тако да удео радијалне компоненте брзине у укупној кинетичкој енергији система достиже и више од 50%. На основу резултата овог рада примењених на нашу Галаксију проистиче да је за галактоцентрични положај Сунца вредност горњег односа нешто мало већа од јединице.

STARK BROADENING OF K I LINES

Milan S. Dimitrijević¹ and Sylvie Sahal-Bréchot²

¹Astronomical observatory, Volgina 7, 11050 Beograd, Yugoslavia ²Departement "Atomes et molecules en astrophysique", Unité associée au C. N. R. S. No 812, Observatoire de Paris Meudon, France

(Received: July 19, 1989)

SUMMARY: Using a semiclassical approach, we have calculated electron-, protonand ionized helium-impact widths and shifts of 51 neutral potassium multiplets as a function of electron temperature and electron density.

1. INTRODUCTION

Stark broadening parameters for potassium lines are useful in astrophysics as well as in plasma diagnostics, technology of high pressure discharge lamps etc. Solar abundance of potassium is 4.70 (Hack and Struve, 1969). K abundance is also determined by using line profiles, e.g. for γ Ser and ζ Her (Hack and Struve, 1969). Potassium line profiles are also important for the study of pulsed lamps at medium and high pressures, containing K vapors. Such lamps are important for neodymium laser optical pumping, since potassium lines coincide with absorption bands of laser material.

Using a semiclassical-perturbation formalism (Sahal-Bréchot, 1969a, b) we have calculated recently (Dimitrijević and Sahal-Bréchot, 1987) electron-, proton- and ArII-impact line widths and shifts of 50 neutral potassium multiplets at electron density $N_e = 10^{15}$ cm⁻³. Due to Debye screening, obtained data are not always linear with electron density, especially in the case of transitions between more excited states. Since the corrections proposed e. g. by Griem (1974) are not simple to do, we recalculated Stark broadening data as a function of electron density also. Moreover, we improved the integration procedure (the improvements influence especially the shift at higher temperatures) and we included ionized helium-impact broadening nearmeters due to its astrophysical meaning.

2. THEORY

Details concerning the calculation procedure are given elsewhere (Sahal-Bréchot, 1969a, b) and only a few details will be given here. Within the framework of semiclassical-perturbational formalism developed using impact approximation, the full halfwidth (2W) and shift (D) of an electron-impact broadened line can be expressed as (Sahal-Bréchot, 1969a, b):

$$2W = N_e \int_{0}^{\infty} vf(v) dv [_{i}, \sum_{\neq i} \sigma_{ii}, (v) + \sum_{f', \neq f} \sigma_{ff'}(v) + \sigma_{e1}(v)]$$
(1)
$$D = N_e \int_{0}^{\infty} vf(v) dv \int_{R_2}^{R_D} 2\pi\rho d\rho \sin 2\varphi_p.$$

Here, N_e is the electron density, f(v) the Maxwellian velocity distribution function for electrons, ρ denotes the impact parameter of the incoming electron, i and f denote the initial and final atomic energy level and i', f'their perturbing levels. The inelastic cross section σ_{ii} , (v) can be expressed by an integration over the impact parameter of the transition probability P_{ii} , (ρ ,v)

$$\sum_{\substack{i' \neq i}} \sigma_{ii'}(v) = \frac{1}{2} \pi R_1^2 + \int_{R_1}^{R_D} 2\pi \rho d\rho \sum_{i' \neq i} P_{ii'}(\rho, v) \quad (2)$$

and the elastic cross section is given by

$$\sigma_{e1} = 2\pi R_2^2 + \int_{R_2}^{R_D} 8\pi\rho d\rho \sin^2 \delta$$
(3)
$$\delta = [\varphi_p^2 + \varphi_q^2]^{1/2}$$

The phase shifts φ_p and φ_q due respectively to the polarization potential (r^{-4}) and to the quadrupolar potential (r^{-3}) part, are given in §3 of Section 3 in the paper of Sahal-Bréchot (1969a). All the cut offs R_1 , R_2 , R_3 , R_D are described in § 1 of Section 3 of Sahal-Bréchot (1969b).

If we want to make certain that a line is isolated, we can use the parameter c defined by Dimitrijević and Sahal--Bréchot (1984) and given in Table. For an electron concentration lower than

$$N_{0}(cm^{-3}) = [c/2W(Å)] [N(cm^{-3})/10^{15}]$$
(4)

the line can be treated as isolated in the core, even if weak forbidden components due to the failure of this approximation still appear in the wing.

3. RESULTS AND DISCUSSION

Data for needed energy levels were taken from Bashkin and Stoner (1975). Oscillator strengths have been calculated using the method of Bates and Damgaard (1949) and tables of Oertel and Shomo (1968), while for low-lying levels, the oscillator strengths were taken from Wiese, Smith and Miles (1969). For higher levels, when tables of Oertel and Shomo are not applicable, the method described by Van Regemorter, Hoang Binh Dy and Prud'homme (1979) was used.

The results are shown in Table 1 for a number of temperatures (2500; 5000; 10000; 20000; 40000 and 80000 K) and for electron densities from 10^{13} cm⁻³ to 10^{18} cm⁻³. In table is also given a parameter denoted by c (see Eq. 4) which can be used to obtain an estimate for the maximum electron density for which the line may be treated as isolated.

We checked also is the collision volume (V) multiplied by the electron density (N_e) much lesser than one for values given in the table. In such a case, the impact approximation is valid (Sahal-Bréchot, 1969). The values for which $N_eV > 0.5$ are not given in the table, while values where $0.1 < N_eV \le 0.5$ are denoted with an asterisk and are given in order to enable interpolation to lower densities. In the cases when the impact approximation is not valid, the ion broadening contribution may be estimated by the quasistatic ionbroadening parameter (Griem, 1974) introduced by Griem et al (1962). Ar II impact linewidths and shifts for 50 neutral potassium multiplets at $N_e = 10^{15}$ cm⁻³ may be found in Dimitrijević and Sahal-Bréchot (1987).

ACKNOWLEDGEMENTS

One of us (M. D.) has been supported by the Observatoire de Paris. This work, supported by the C. N. R. S. is a part of French-Yugoslav collaboration through the project "L'éllargissement Stark des raies spectrales des plasmas astrophysiques et de la laboratoire". Also this is a part of the project "Atomic, molecular and plasma spectroscopy" supported by SKNTI and RZN of Serbia.

REFERENCES

- Bashkin, S. and Stoner, J. O. Jr.: 1975, Atomic Energy Levels and Grotrian Diagrams, Vol. 1 North Holland, Amsterdam,
- Bates, D. R. and Damgaard, A.: 1949, Phil. Trans. R. Soc. London Ser. A 242, 101.
- Dimitrijević, M. S. and Sahal-Bréchot, S.: 1984, JOSRT 31, 301.
- Dimitrijević, M. S. and Sahal-Bréchot, S.: 1987. JOSRT 38, 37. Griem, H. R.: 1974, Spectral Line Broadening by Plasmas, Aca-
- demic Press, New York.
- Griem, H. R., Baranger, M., Kolb, A. C. and Oertel, G. K.: 1962, *Phys. Rev.* 125, 177.
- Hack, M., Struve, O.: 1969, Stellar Spectroscopy (Normal stars), Osservatorio astronomico di Trieste.
- Oertel, G. K. and Shomo, L. P.: 1968, Astrophys. J. Suppl. Series 16, 175
- Sahal-Bréchot, S.: 1969a, Astron. Astrophys. 1, 91.
- Sahal-Bréchot, S.: 1969b, Astron. Astrophys. 2, 322.
- Van Regemorter, H., Hoang Binh Dy and Prud'homme, M.: 1979, J. Phys. B 12, 1073.
- Wiese, W. L., Smith, M. W. and Miles, B. M.: 1969, Atomic Transition Probabilities, Vol. II U. S. Government Printing Office, Washington, D. C.

Table 1. This table lists electron –, proton – and ionized helium – impact broadening parameters for K I lines for electron densities from 10^{13} cm⁻³ to 10^{18} cm⁻³ and temperatures from 2500 K to 80000 K. Transitions and averaged wavelengths for the multiplet (in Å) are also given. Under 2W are given full halfwidths (in Å) while D denote corresponding shifts. By using c [see Eq. (4)], we obtain an estimate for the maximum electron density for which the line may be treated as isolated and the tabulated values may be used. Asterisk denotes cases when the collision volume multiplied by the electron density (condition for the validity of the impact approximation) lies between 0.1 and 0.5.

NE= 0.1E+14							
TRANSITION	T(K)	ELECIRONS 2WE(A)	DE(A)	PROTONS 2WI (A)	DI(A)	IONIZED HE 2WI (A)	LIUM DI (A)
3D - 4P 91050.0A c= 0.27E+19	2500. 5000. 10000. 20000. 30000. 80000.	3.60 3.39 3.11 2.80 2.62 2.17	-0.470E-01 -0.877E-01 -0.110 -0.619E-01 -0.510E-01 -0.242E-01	1.61* 1.86 2.11 2.17 2.04 1.43	1.38* 1.61 1.89 2.26 2.45 2.50	1.27* 1.44* 1.64* 1.89 2.04 2.15	1.09* 1.27* 1.46* 1.67 1.83 2.31
3D - 5P 31453.0A c= 0.27E+21	2500. 5000. 10000. 20000. 30000. 80000.	0.573E-02 0.655E-02 0.770E-02 0.942E-02 0.107E-01 0.140E-01	0.333E-02 0.398E-02 0.404E-02 0.364E-02 0.311E-02 0.240E-02	0.210E-02 0.215E-02 0.220E-02 0.227E-02 0.232E-02 0.247E-02	0.883E-03 0.993E-03 0.112E-02 0.125E-02 0.134E-02 0.158E-02	0.205E-02 0.207E-02 0.211E-02 0.215E-02 0.218E-02 0.228E-02	0.709E-03 0.798E-03 0.897E-03 0.101E-02 0.108E-02 0.127E-02
3D - 6P 13384.0A c= 0.21E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.352E-02 0.410E-02 0.480E-02 0.572E-02 0.640E-02 0.788E-02	0.230E-02 0.270E-02 0.264E-02 0.243E-02 0.218E-02 0.167E-02	0.132E-02 0.135E-02 0.139E-02 0.145E-02 0.149E-02 0.160E-02	0.605E-03 0.681E-03 0.767E-03 0.862E-03 0.922E-03 0.109E-02	0.127E-02 0.129E-02 0.132E-02 0.136E-02 0.138E-02 0.146E-02	0.486E-03 0.547E-03 0.616E-03 0.693E-03 0.741E-03 0.873E-03
3D - 7P 10482.0A c= 0.68E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.560E-02 0.655E-02 0.772E-02 0.925E-02 0.103E-01 0.123E-01	0.370E-02 0.420E-02 0.418E-02 0.343E-02 0.298E-02 0.197E-02	0.201E-02 0.206E-02 0.214E-02 0.223E-02 0.229E-02 0.248E-02	0.961E-03 0.109E-02 0.122E-02 0.137E-02 0.147E-02 0.173E-02	0.193E-02 0.197E-02 0.201E-02 0.207E-02 0.211E-02 0.224E-02	0.769E-03 0.871E-03 0.981E-03 0.110E-02 0.118E-02 0.139E-02
3D - 8P 9348.6A Œ 0.32E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.974E-02 0.114E-01 0.136E-01 0.164E-01 0.183E-01 0.212E-01	0.646E-02 0.694E-02 0.650E-02 0.505E-02 0.410E-02 0.220E-02	0.332E-02 0.342E-02 0.355E-02 0.372E-02 0.383E-02 0.417E-02	0.164E-02 0.186E-02 0.209E-02 0.236E-02 0.253E-02 0.298E-02	0.318E-02 0.324E-02 0.333E-02 0.343E-02 0.351E-02 0.374E-02	0.131E-02 0.149E-02 0.168E-02 0.189E-02 0.203E-02 0.240E-02
3D - 9P 8764.8A c= 0.18E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.167E-01 0.196E-01 0.236E-01 0.288E-01 0.318E-01 0.361E-01	0.107E-01 0.112E-01 0.102E-01 0.740E-02 0.557E-02 0.247E-02	0.539E-02 0.558E-02 0.610E-02 0.630E-02 0.689E-02	0.274E-02 0.311E-02 0.352E-02 0.397E-02 0.425E-02 0.502E-02	0.515E-02 0.527E-02 0.542E-02 0.561E-02 0.574E-02 0.614E-02	0.218E-02 0.249E-02 0.282E-02 0.319E-02 0.341E-02 0.403E-02
3D - 4F 15165.0A c= 0.17E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.264E-02 0.295E-02 0.355E-02 0.408E-02 0.439E-02 0.508E-02	-0.110E-02 -0.702E-03 -0.358E-03 -0.111E-03 -0.114E-03 0.416E-04	0.595E-03 0.627E-03 0.666E-03 0.713E-03 0.745E-03 0.837E-03	-0.377E-03 -0.424E-03 -0.476E-03 -0.535E-03 -0.572E-03 -0.674E-03	0.550E-03 0.571E-03 0.598E-03 0.631E-03 0.654E-03 0.719E-03	-0.302E-03 -0.340E-03 -0.383E-03 -0.430E-03 -0.460E-03 -0.542E-03

NE = 0.1E + 14							
	-	ELECTRONS		PROTONS		IONIZED HE	LIUM
TRANSITION	T(K)	2WE(A)	DE(A)	2WI (A)	DI(A)	2WI(A)	DI(A)
10 55	2500	0.22(5.01	0 3400 03	0 0000 00	0.7547.00	0 (745 02	0 (000 00
30 - 3r	2500.	0.2362-01	0.3486-02	0.8396-02	0.754E-02	0.674E-02	0.600E-02
11022.3A	5000.	0.2168-01	0.13/E-02	0.949E-02	0.859E-02	0.756E-02	0.68/E-02
C = 0.14E + 18	10000.	0.197E-01	0.734E-03	0.108E-01	0.977E-02	0.851E-02	0.781E-02
	20000.	0.180E-01	-0.200E-03	0.125E-01	0.112E-01	0.963E-02	0.885E-02
	30000.	0.170E-01	-0.202E-03	0.134E-01	0.124E-01	0.104E-01	0.950E-02
	80000.	0.147E-01	-0.975E-04	0.136E-01	0.152E-01	0.127E-01	0.114E-01
10 10	2500	0.4400.04	0.0000.04	0 0777 04	0.0407.05	0.0705.04	0 757D 05
45 - 4P	2500.	0.448E-04	0.339E-04	0.27/E-04	0.942E-05	0.273E-04	0.757E-05
7676.2A	5000.	0.509E-04	0.401E-04	0.280E-04	0.106E-04	0.275E-04	0.850E-05
C = 0.4/E + 20	10000.	0.624E-04	0.454E-04	0.284E-04	0.119E-04	0.277E-04	0.955E-05
	20000.	0.825E-04	0.461E-04	0.290E-04	0.133E-04	0.281E-04	0.107E-04
	30000.	0.973E-04	0.410E-04	0.294E-04	0.143E-04	0.283E-04	0.115E-04
	80000.	0.139E-03	0.285E-04	0.306E-04	0.168E-04	0.291E-04	0.135E-04
4S - 5P	2500	0.963F-04	0 6065-04	0 4068-04	0 165E-04	0 397E-04	0 133F-04
4045 28	5000	0.1105-03	0.7108-04	0.4148-04	0.1865-04	0.401E-04	0.1495-04
$\sim 0.44E+10$	10000	0.1268-03	0.7775-04	0.4142 04	0.2005-04	0.407E-04	0.14912 04
0-0.441113	20000	0.1206-0.3	0.77712-04	0.4245-04	0.2096-04	0.4076-04	0.1000-04
	20000.	0.1486-03	0.7636-04	0.4366-04	0.2356-04	0.4156-04	0.109E-04
	30000.	0.1646-03	0.6705-04	0.4456-04	0.2516-04	0.420E-04	0.202E-04
	30000.	0.2002-03	0.4926-04	0.4/26-04	0.2966-04	0.4386-04	0.2386-04
4S - 6P	2500.	0.233E-03	0.152E-03	0.920E-04	0.409E-04	0.893E-04	0.328E-04
3446.7A	5000.	0.271E-03	0.176E-03	0.942E-04	0.460E-04	0.906E-04	0.370E-04
= 0.14 E + 19	10000.	0.315E-03	0.183E-03	0.969E-04	0.518E-04	0.922E-04	0.416E-04
	20000.	0.373E-03	0.171E-03	0.100E-03	0.582E-04	0.945E-04	0.468E-04
	30000.	0.414E-03	0.150E-03	0.103E-03	0.623E-04	0.960E-04	0.501E-04
	80000.	0.505E-03	0.107E-03	0.110E-03	0.734E-04	0.101E-03	0.590E-04
		1117 - Theorem Constraint - Particip					
4S - 7P	2500.	0.526E-03	0.346E-03	0.193E-03	0.909E-04	0.186E-03	0.728E-04
3217.3A	5000.	0.615E-03	0.395E-03	0.198E-03	0.103E-03	0.190E-03	0.824E-04
C = 0.64E + 18	10000.	0.723E-03	0.385E-03	0.205E-03	0.116E-03	0.194E-03	0.928E-04
	20000.	0.364E-03	0.333E-03	0.214E-03	0.130E-03	0.199E-03	0.104E-03
	30000.	0.961E-03	0.282E-03	0.220E-03	0.139E-03	0.203E-03	0.112E-03
	80000.	0.114E-02	0.184E-03	0.237E-03	0.164E-03	0.215E-03	0.132E-03
48 - 90	2500	0 1075 02	0 7005 02	0.2600.02	0 1005 02	0 2545 02	0 1445 03
45 - 68	2500.	0.1076-02	0.700E-03	0.3682-03	0.180E-03	0.3546-03	0.144E-03
3101.9A	5000.	0.125E-02	0.765E-03	0.380E-03	0.204E-03	0.3612-03	0.164E-03
C = 0.36E + 18	10000.	0.149E-02	0.738E-03	0.394E-03	0.230E-03	0.370E-03	0.185E-03
	20000.	0.180E-02	0.580E-03	0.412E-03	0.259E-03	0.381E-03	0.208E-03
	30000.	0.200E-02	0.479E-03	0.425E-03	0.278E-03	0.390E-03	0.223E-03
	80000.	0.232E-02	0.277E-03	0.461E-03	0.328E-03	0.415E-03	0.264E-03
45 - 9P	2500	0.199E-02	0.128F-02	0.650F-03	0.328E-03	0.621F-03	0.262E-03
3034 84	5000	0.235F-02	0.1345-02	0.6725-03	0.373E-03	0.6355-03	0.298F-03
$c = 0.22 \text{F} \pm 12$	10000	0 2825-02	0 1245-02	0 7008-02	0 4225-02	0 6535-03	0 3385-03
0-0.221710	20000	0.2020-02	0.1245-02	0.7358-02	0.4226-03	0.6758-03	0.3305-03
	20000.	0.3442-02	0.9312-03	0.7502-03	0.4/02-03	0.0756-03	0.1000-03
	30000.	0.380E-02	0.7605-03	0.7582-03	0.510E-03	0.6916-03	0.4098-03
	80000.	0.431E-02	0.395E-03	0.828E-03	0.602E-03	U./39E-03	U.484E-03

STARK BROADENING OF K I LINES

NE= 0.1E+14							
		ELECTRONS		PROTONS		IONIZED HE	MULIUM
TRANSITION	T(K)	2WE(A)	DE(A)	2WI(A)	DI(A)	2WI(A)	DI(A)
1D - 55	2500	0 5845-03	0 4125-03	0 1365-03	0 1145-03	0 1165-03	0 9145-04
12402 03	5000	0.5041 05	0.4121 03	0.150E-03	0.1205-02	0.1268-02	0.1025-03
- 0 E0E120	10000.	0.0722-03	0.4902-03	0.1502-05	0.1206-03	0.120E-03	0.1052-03
0- 0.30ET20	10000.	0.7486-03	0.5732-03	0.105E-03	0.1446-03	0.138E-03	0.110E-03
	20000.	0.844E-03	0.566E-03	0.1822-03	0.161E-03	0.151E-03	0.130E-03
	30000.	0.900E-03	0.513E-03	0.193E-03	0.1/3E-03	0.160E-03	0.139E-03
	80000.	0.115E-02	0.361E-03	0.224E-03	0.203E-03	0.184E-03	0.163E-03
15 63							
4P - 65	2500.	0.665E-03	0.488E-03	0.143E-03	0.133E-03	0.116E-03	0.10/E-03
6929.5A	5000.	0.765E03	0.572E-03	0.160E-03	0.150E-03	0.130E-03	0.120E-03
c= 0.75E+19	10000.	0.824E-03	0.625E-03	0.180E-03	0.169E-03	0.145E-03	0.136E-03
	20000.	0.916E-03	0.619E-03	0.202E-03	0.190E-03	0.163E-03	0.152E-03
	30000.	0.950E-03	0.554E-03	0.216E-03	0.203E-03	0.174E-03	0.163E-03
	80000.	0.117E-02	0.413E-03	0.254E-03	0.239E-03	0.204E-03	0.192E-03
					·		
4P - 7S	2500.	0.126E-02	0.936E-03	0.265E-03	0.247E-03	0.213E-03	0.198E-03
5795.3A	5000.	0.151E-02	0.110E-02	0.297E-03	0.278E-03	0.239E-03	0.223E-03
c= 0.27E+19	10000.	0.154E-02	0.110E-02	0.333E-03	0.313E-03	0.268E-03	0.252E-03
	20000.	0.170E-02	0.103E-02	0.374E-03	0.352E-03	0.301E-03	0.283E-03
	30000.	0.184E-02	0.896E-03	0.400E-03	0.377E-03	0.322E-03	0.303E-03
	80000.	0.224E-02	0.642E-03	0.471E-03	0.445E-03	0.379E-03	0.358E-03
4P - 8S	2500.	0.232E-02	0.168E-02	0.468E-03	0.434E-03	0.377E-03	0.347E-03
5334.3A	5000.	0.260E-02	0.191E-02	0.526E-03	0.492E-03	0.423E-03	0.394E-03
c= 0.13E+19	10000.	0.298E-02	0.189E-02	0.590E-03	0.554E-03	0.474E-03	0.445E-03
	20000.	0.323E-02	0.153E-02	0.662E-03	0.624E-03	0.533E-03	0.501E-03
	30000.	0.360E-02	0.127E-02	0.709E-03	0.668E-03	0.570E-03	0.537E-03
	80000.	0.425E-02	0.762E-03	0.835E-03	0.788E-03	0.671E-03	0.634E-03
4P - 95	2500.	0.431E-02	0.317E-02	0.870E-03	0.800E-03	0.700E-03	0.638E-03
5094.3A	5000.	0.475E-02	0.346E-02	0.977E-03	0.908E-03	0.786E-03	0.727E-03
c= 0.76E+18	10000.	0.537E-02	0.319E-02	0.110E-02	0.103E-02	0.882E-03	0.824E-03
	20000.	0.623E-02	0.244E-02	0.123E-02	0.116E-02	0.990E-03	0.929E-03
	30000.	0.695E-02	0.189E-02	0.132E-02	0.124E-02	0.106E-02	0.996E-03
	80000.	0.796E-02	0.907E-03	0.155E-02	0.146E-02	0.125E-02	0.118E-02
4P -10S	2500.	0.730E-02	0.522E-02	0.146E-02	0.133E-02	0.118E-02	0.106E-02
4951.4A	5000.	0.807E-02	0.544E-02	0.164E-02	0.152E-02	0.132E-02	0.121E-02
c= 0.48E+18	10000.	0.924E-02	0.498E-02	0.184E-02	0.172E-02	0.148E-02	0.138E-02
	20000.	0.111E-01	0.357E-02	0.207E-02	0.194E-02	0.166E-02	0.156E-02
	30000	0.123E-01	0.261E-02	0.222E-02	0 208E-02	0.178E-02	0 167E-02
	80000	0 138F-01	0.105E-02	0.261E-02	0.246F-02	0.210E-02	0 1985-02
		31200E VI	4.704M A6	Jean Jake VZ	J.2701 02	J. 2101 02	0.1001 02
4P -11S	2500.	0.119E-01	0.843E-02	0.230E-02	0.207E-02	0.185E-02	0.164E-02
4859.04	5000	0.131E-01	0.818E-02	0.259E-02	0.237E-02	0.208E-02	0.1895-02
C= 0 33E+18	10000	0 1525-01	0 7068-02	0 2905-02	0 2708-02	0 2345-02	0 2165-02
0-0.001110	20000	0 1875-01	0 4915-02	0.3265-02	0.3055-02	0.2575-02	0.2100-02
	20000.	0.2045-01	0.3645-02	0.3405-02	0.3075-02	0.2026-02	0.2400-02
	30000.	0.2002-01	0.3045-02	0.3496-02	0.32/1-02	0.2011-02	0.203E-02
	80000.	U.228E-01	U.124E-02	U.412E-02	0.38/E-02	U.330E-02	U.311E-02

NE = 0.1E + 14							
MINANCE MITCH		ELECTRONS		PROTONS		IONIZED HE	
TRANSITION	1(K)	ZWE (A)	DE (A)	2W1 (A)	DI (A)	2W1 (A)	OI(A)
4P -12S	2500.	0.173E-01	0.118E-01	0.334E-02	0.297E-02	0.269E-02*	0.235E-02*
4795.7A	5000.	0.206E-01	0.116E-01	0.375E-02	0.341E-02	0.301E-02	0.272E-02
c = 0.24E + 18	10000.	0.238E-01	0.917E-02	0.421E-02	0.389E-02	0.338E-02	0.311E-02
	20000.	0.298E-01	0.624E-02	0.473E-02	0.441E-02	0.380E-02	0.353E-02
	30000.	0.327E-01	0.465E-02	0.506E-02	0.474E-02	0.407E-02	0.380E-02
	80000.	0.358E-01	0.144E-02	0.597E-02	0.560E-02	0.479E-02	0.450E-02
4D - 2D	2500	0 35 38-03	0 1215-02	0 9725-04	0.2495-04	0.9545-04	0 2708-04
4P - 5D	2000.	0.253E-03	0.131E-03	0.8736-04	0.3466-04	0.0545-04	0.2796-04
11/45.UA	10000.	0.2716-03	0.144E-03	0.0000-04	0.3906-04	0.8036-04	0.3535-04
C = 0.44 E + 20	20000	0.312E-03	0.142E-03	0.9086-04	0.4385-04	0.8755-04	0.3526-04
	20000.	0.394E-03	0.111E-03	0.9535-04	0.4926-04	0.890E-04	0.3962-04
	30000.	0.4046-03	0.9446-04	0.9526-04	0.5265-04	0.9012-04	0.4236-04
	80000.	0.0396-03	0.6736-04	0.1016-03	0.020E-04	0.9375-04	0.4906-04
4P - 4D	2500.	0.766E-03	0.563E-03	0.200E-03	0.147E-03	0.177E-03	0.118E-03
6955.2A	5000.	0.839E-03	0.605E-03	0.215E-03	0.166E-03	0.188E-03	0.133E-03
C = 0.35E + 19	10000.	0.914E-03	0.579E-03	0.232E-03	0.186E-03	0.201E-03	0.150E-03
	20000.	0.101E-02	0.457E-03	0.253E-03	0.210E-03	0.217E-03	0.168E-03
	30000.	0.109E-02	0.406E-03	0.267E-03	0.224E-03	0.227E-03	0.180E-03
	80000.	0.120E-02	0.282E-03	0.305E-03	0.264E-03	0.256E-03	0.212E-03
4P - 5D	2500.	0.166E-02	0.124E-02	0.422E-03	0.316E-03	0.373E-03	0.253E-03
5825.3A	5000.	0.181E-02	0.128E-02	0.455E-03	0.357E-03	0.397E-03	0.286E-03
> 0.14E+19	10000.	0.197E-02	0.122E-02	0.494E-03	0.401E-03	0.426E-03	0.322E-03
	20000.	0.221E-02	0.923E-03	0.540E-03	0.451E-03	0.460E-03	0.363E-03
	30000.	0.236E-02	0.776E-03	0.570E-03	0.483E-03	0.482E-03	0.388E-03
	80000.	0.254E-02	0.453E-03	0.654E-03	0.570E-03	0.546E-03	0.458E-03
4P - 6D	2500.	0.333E-02	0.249E-02	0.833E-03	0.626E-03	0.731E-03	0.500E-03
5354.1A	5000.	0.364E-02	0.252E-02	0.901E-03	0.710E-03	0.781E-03	0.568E-03
⊂= 0.74E+18	10000.	0.398E-02	0.225E-02	0.980E-03	0.802E-03	0.840E-03	0.644E-03
	20000.	0.452E-02	0.165E-02	0.107E-02	0.902E-03	0.909E-03	0.725E-03
	30000.	0.483E-02	0.128E-02	0.113E-02	0.967E-03	0.955E-03	0.776E-03
	80000.	0.512E-02	0.581E-03	0.130E-02	0.114E-02	0.108E-02	0.917E-03
4P - 7D	2500.	0.624E-02	0.467E-02	0.153E-02	0.116E-02	0.134E-02	0.923E-03
5107.2A	5000.	0.683E-02	0.445E-02	0.166E-02	0.132E-02	0.143E-02	0.105E-02
c = 0.43E + 18	10000.	0.752E-02	0.385E-02	0.181E-02	0.149E-02	0.155E-02	0.120E-02
	20000.	0.863E-02	0.274E-02	0.199E-02	0.168E-02	0.168E-02	0.135E-02
	30000.	0.917E-02	0.204E-02	0.210E-02	0.180E-02	0.177E-02	0.145E-02
	80000.	0.960E-02	0.736E-03	0.242E-02	0.213E-02	0.201E-02	0.171E-02
4P - 8D	2500-	0.109E-01	0.789E-02	0.265E-02	0.200E-02	0.230E-02	0.159E-02
4960.2A	5000.	0.120E-01	0.778E-02	0.288E-02	0.229E-02	0.247E-02	0.183E-02
C = 0.28E + 18	10000	0.134E-01	0.616E-02	0.315E-02	0.260E-02	0.267E-02	0.208E-02
	20000	0.154E-01	0.4295-02	0.346E-02	0.2955-02	0.291E-02	0.236E-02
	30000	0.162E-01	0.314E-02	0.366E-02	0.316E-02	0.306E-02	0.254F-02
	80000.	0.168E-01	0.986E-03	0.423E-02	0.373E-02	0.349E-02	0.300E-02
	Contraction and a state of the second						

-.

NE= 0.1E+14		·					
	CONTROL	ELECTRONS	1	PROTONS	1.	IONIZED HE	LIUM
TRANSITION	T(K)	2WE(A)	DE(A)	2WI (A)	DI (A)	2WI(A)	DI(A)
4P - 9D	2500.	0.180E-01	0.128E-01	0.432E-02*	0.325E-02*	0.373E-02*	0.257E-02*
4865.2A	5000.	0.199E-01	0.122E-01	0.470E-02	0.375E-02	0.402E-02*	0.298E-02*
C= 0 19F+18	10000	0.224E-01	0.926E-02	0.515E-02	0.427E-02	0.436E-02	0.341E-02
0-0.101.10	20000	0.2595-01	0.6428-02	0.567E-02	0 4845-02	0 4755-02	0 388F-02
	20000.	0.2708-01	0.461E-02	0.5075-02	0.5015-02	0.5018-02	0.1175-02
	30000.	0.2706-01	0.4016-02	0.000E-02	0.5216-02	0.501E-02	0.4176-02
	80000.	0.2772-01	0.1346-02	0.0935-02	0.010E-02	0.5756-02	0.4952-02
4D - 6D	2500	0 6755-01	0 1735-01	0 2215-01	0 2058-02	0 2218-01	0 3175-02
40 - 02	5000	0.075E-01	0.219E-01	0.221E-01	0.3355 02	0.221E-01	0.3578-02
62191.0A	5000.	0.9356-01	0.2186-01	0.2312-01	0.4446-02	0.2312-01	0.3576-02
C= 0.28E+21	10000.	0.127	0.235E-01	0.232E-01	0.499E-02	0.231E-01	0.401E-02
	20000.	0.166	0.206E-01	0.233E-01	0.560E-02	0.231E-01	0.450E-02
	30000.	0.189	0.184E-01	0.233E-01	0.599E-02	0.232E-01	0.482E-02
	80000.	0.232	0.154E-01	0.235E-01	0.707E-02	0.233E-01	0.567E-02
4D - 7P	2500.	0.369E-01	0.215E-01	0.124E-01	0.559E-02	0.120E-01	0.448E-02
27199.0A	5000.	0.451E-01	0.232E-01	0.127E-01	0.630E-02	0.122E-01	0.506E-02
c = 0.46E + 20	10000.	0.561E-01	0.225E-01	0.131E-01	0.710E-02	0.124E-01	0.570E-02
	20000.	0.701E-01	0.178E-01	0.136E-01	0.799E-02	0.127E-01	0.642E-02
	30000.	0.790E-01	0.154E-01	0.139E-01	0.855E-02	0.129E-01	0.687E-02
	80000.	0.941E-01	0.945E-02	0.150E-01	0.101E-01	0.136E-01	0.810E-02
4D - 8P	2500.	0.477E-01	0.296E-01	0.156E-01	0.767E-02	0.150E-01	0.614E-02
20691.0A	5000.	0.569E-01	0.315E-01	0.16IE-01	0.870E-02	0.153E-01	0.697E-02
c= 0.16E+20	10000.	0.690E-01	0.293E-01	0.167E-01	0.981E-02	0.157E-01	0.788E-02
	20000.	0.852E-01	0.212E-01	0.175E-01	0.110E-01	0.162E-01	0.887E-02
	30000.	0.951E-01	0.172E-01	0.180E-01	0.118E-01	0.165E-01	0.950E-02
	80000	0 110	0.868E-02	0.196E-01	0 140E-01	0.176E-01	0.112E-01
	00000.	0.110	0.0001 02	0.1901 01	0.1401 01	0.1/01 01	O.TICH OI
4D - 4F	2500	0 441	-0.263	0.803E-01	-0 704E-01	0 668F-01	-0.565F-01
136023 A	5000	0 484	-0 276	0 8895-01	-0 792F-01	0.735E-01	-0 636F-01
~ 0 1/F+22	10000	0.527	-0.228	0.00000001	-0.8015-01	0.9125-01	-0 716E-01
C- 0.146722	20000.	0.527	-0.220	0.3076-01	-0.8911-01	0.0005-01	-0.710E-01
	20000.	0.617	-0.172	0.110	-0.100	0.9002-01	-0.805E-01
	30000.	0.670	-0.156	0.117	-0.107	0.9566-01	-0.862E-01
	80000.	0./3/	-0.953E-01	0.137	-0.126	0.111	-0.102
ID - FP	2500	0 100	0 1000-01	0 6655-01	0 5000-07	0 5225-01	0 4768-03
40 - 51	2500.	0.199	0.1836-01	0.0001-01	0.5986-01	0.533E-01	0.4/02-01
31162.0A	5000.	0.184	0.184E-02	0.752E-01	0.682E-01	0.5998-01	0.545E-01
C= 0.11E+19	10000.	0.168	-0.103E-01	0.861E-01	0.776E-01	0.674E-01	0.620E-01
	20000.	0.157	-0.943E-02	0.991E-01	0.887E-01	0.764E-01	0.702E-01
	30000.	0.151	-0.100E-01	0.106	0.968E-01	0.825E-01	0.754E-01
	80000.	0.133	-0.642E-02	0.107	0.120	0.101	0.906E-01
55 - 5P	2500.	0.350E-02	0.127E-02	0.174E-02	0.362E-03	0.174E-02	0.291E-03
27114.0A	5000.	0.416E-02	0.120E-02	0.175E-02	0.407E-03	0.174E-02	0.327E-03
c= 0.20E+21	10000.	0.550E-02	0.767E-03	0.176E-02	0.456E-03	0.175E-02	0.367E-03
	20000.	0.767E-02	0.485E-03	0.177E-02	0.512E-03	0.175E-02	0.412E-03
	30000.	0.913E-02	0.402E-03	0.177E-02	0.548E-03	0.175E-02	0.441E-03
	80000.	0.123E-01	0.272E-03	0.180E-02	0.646E-03	0.177E-02	0.519E-03

NE= 0.1E+14							
TRANSITION	T(K)	ELECTRONS 2WE (A)	DE(A)	PROTONS 2WI (A)	DI (A)	IONIZED HE 2WI (A)	LIUM DI (A)
55 - 6P 12531.0A C= 0.19E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.302E-02 0.352E-02 0.420E-02 0.514E-02 0.585E-02 0.732E-02	0.191E-02 0.215E-02 0.217E-02 0.176E-02 0.153E-02 0.116E-02	0.120E-02 0.123E-02 0.126E-02 0.130E-02 0.133E-02 0.141E-02	0.502E-03 0.565E-03 0.636E-03 0.715E-03 0.765E-03 0.901E-03	0.117E-02 0.119E-02 0.120E-02 0.123E-02 0.125E-02 0.130E-02	0.403E-03 0.454E-03 0.511E-03 0.574E-03 0.615E-03 0.724E-03
55 - 7P 9951.3A c= 0.62E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.503E-02 0.588E-02 0.699E-02 0.844E-02 0.946E-02 0.113E-01	0.329E-02 0.368E-02 0.370E-02 0.299E-02 0.247E-02 0.160E-02	0.184E-02 0.189E-02 0.195E-02 0.203E-02 0.209E-02 0.225E-02	0.855E-03 0.965E-03 0.109E-02 0.122E-02 0.131E-02 0.154E-02	0.178E-02 0.181E-02 0.185E-02 0.190E-02 0.193E-02 0.204E-02	0.685E-03 0.775E-03 0.873E-03 0.983E-03 0.105E-02 0.124E-02
55 - 8P 8924.4A C= 0.29E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.886E-02 0.104E-01 0.124E-01 0.151E-01 0.168E-01 0.195E-01	0.588E-02 0.623E-02 0.598E-02 0.433E-02 0.351E-02 0.183E-02	0.305E-02 0.314E-02 0.326E-02 0.340E-02 0.351E-02 0.381E-02	0.148E-02 0.168E-02 0.190E-02 0.214E-02 0.229E-02 0.270E-02	0.292E-02 0.298E-02 0.306E-02 0.315E-02 0.322E-02 0.342E-02	0.119E-02 0.135E-02 0.152E-02 0.172E-02 0.184E-02 0.217E-02
55 - 9P 8390.7A c= 0.17E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.153E-01 0.180E-01 0.216E-01 0.265E-01 0.292E-01 0.332E-01	0.101E-01 0.104E-01 0.906E-02 0.597E-02 0.505E-02 0.210E-02	0.497E-02 0.514E-02 0.535E-02 0.561E-02 0.579E-02 0.632E-02	0.250E-02 0.285E-02 0.322E-02 0.363E-02 0.389E-02 0.459E-02	0.474E-02 0.485E-02 0.499E-02 0.516E-02 0.528E-02 0.564E-02	0.200E-02 0.228E-02 0.258E-02 0.292E-02 0.312E-02 0.369E-02
5P - 6S 36529.0A c= 0.21E+21	2500. 5000. 10000. 20000. 30000. 80000.	0.180E-01 0.209E-01 0.247E-01 0.299E-01 0.344E-01 0.445E-01	0.121E-01 0.142E-01 0.146E-01 0.126E-01 0.110E-01 0.868E-02	0.442E-02 0.473E-02 0.511E-02 0.554E-02 0.583E-02 0.664E-02	0.317E-02 0.357E-02 0.402E-02 0.451E-02 0.483E-02 0.569E-02	0.396E-02 0.418E-02 0.445E-02 0.477E-02 0.499E-02 0.560E-02	0.255E-02 0.287E-02 0.323E-02 0.363E-02 0.388E-02 0.457E-02
5P - 7S 17979.0A C= 0.26E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.122E-01 0.139E-01 0.154E-01 0.175E-01 0.197E-01 0.243E-01	0.881E-02 0.104E-01 0.985E-02 0.896E-02 0.775E-02 0.543E-02	0.255E-02 0.284E-02 0.317E-02 0.354E-02 0.378E-02 0.444E-02	0.230E-02 0.259E-02 0.292E-02 0.328E-02 0.352E-02 0.414E-02	0.209E-02 0.232E-02 0.258E-02 0.288E-02 0.307E-02 0.359E-02	0.184E-02 0.208E-02 0.234E-02 0.264E-02 0.283E-02 0.333E-02
5P - 8S 14178.0A c= 0.93E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.169E-01 0.188E-01 0.217E-01 0.242E-01 0.272E-01 0.322E-01	0.123E-01 0.138E-01 0.137E-01 0.107E-01 0.869E-02 0.509E-02	0.345E-02 0.387E-02 0.434E-02 0.487E-02 0.521E-02 0.613E-02	0.318E-02 0.360E-02 0.406E-02 0.457E-02 0.489E-02 0.577E-02	0.279E-02 0.312E-02 0.350E-02 0.392E-02 0.419E-02 0.493E-02	0.254E-02 0.288E-02 0.326E-02 0.367E-02 0.393E-02 0.464E-02

STARK BROADENING OF K I LINES

NE= 0.1E+14							
and a state of the state	1000	ELECTRONS	Section 2	PROTONS	20,41070	IONIZED HE	LIUM
TRANSITION	T(K)	2WE (A)	DE(A)	2WI(A)	DI (A)	2WI(A)	DI(A)
5P - 9S	2500.	0.263E-01	0.195E-01	0.531E-02	0.487E-02	0.428E-02	0.389E-02
12600.0A	5000.	0.290E-01	0.208E-01	0.596E-02	0.553E-02	0.480E-02	0.443E-02
c = 0.46E + 19	10000.	0.332E-01	0.192E-01	0.669E-02	0.627E-02	0.539E-02	0.502E-02
0 000000.25	20000	0.389E-01	0 134E-01	0 751E-02	0 705E-02	0.604E-02	0.566F-02
	30000	0 4365-01	0 1098-01	0.804E-02	0.756E-02	0.6465-02	0.607E-02
	20000.	0.5018-01	0.5008-02	0.0091 02	0.9025-02	0.761E-02	0.7178-02
	80000.	0.5012-01	0.5096-02	0.9400-02	0.0926-02	0.7016-02	0.7176-02
ED 100	2500	0 4125 01	0.0045.01	0 0045-00	0 7505 00	0 6627 02	0 5075 00
SP -105	2500.	0.4126-01	0.2946-01	0.8246-02	0.750E-02	0.6632-02	0.597E-02
11/61.0A	5000.	0.456E-01	0.303E-01	0.926E-02	0.854E-02	0.744E-02	0.683E-02
C= 0.2/E+19	10000.	0.523E-01	0.269E-01	0.104E-01	0.969E-02	0.836E-02	0.776E-02
all parties in	20000.	0.6358-01	0.174E-01	0.11/E-01	0.109E-01	0.938E-02	0.878E-02
	30000.	0.706E-01	0.142E-01	0.125E-01	0.117E-01	0.100E-01	0.941E-02
	80000.	0.794E-01	0.557E-02	0.147E-01	0.139E-01	0.118E-01	0.111E-01
5P11S	2500.	0.639E-01	0.461E-01	0.124E-01	0.111E-01	0.993E-02	0.881E-02
11253.0A	5000.	0.702E-01	0.435E-01	0.139E-01	0.127E-01	0.112E-01	0.101E-01
c= 0.18E+19	10000.	0.817E-01	0.362E-01	0.156E-01	0.144E-01	0.125E-01	0.116E-01
	20000.	0.101	0.220E-01	0.175E-01	0.164E-01	0.141E-01	0.131E-01
	30000.	0.112	0.186E-01	0.187E-01	0.175E-01	0.150E-01	0.141E-01
	80000.	0.124	0.641E-02	0.221E-01	0.207E-01	0.177E-01	0.167E-01
5P - 4D	2500.	0.201E-01	0.138E-01	0.505E-02	0.369E-02	0.451E-02	0.296E-02
37255 03	5000	0.232E-01	0.135E-01	0.543E-02	0.416E-02	0.477E-02	0.334E-02
~ 0 10F+21	10000	0 2718-01	0 1015-01	0.5878-02	0 4675-02	0 5098-02	0.3768-02
0- 0.105121	20000	0.3418-01	0.7878-02	0 6398-02	0.5258-02	0.548E-02	0 4228-02
	20000.	0.3705-01	0.6735-02	0.673E-02	0.5628-02	0.5738-02	0 4525-02
	20000.	0.3/96-01	0.0732-02	0.7608-02	0.562E-02	0.5/5E-02	0.5328-02
	80000.	0.4400-01	0.0910-02	0.7091-02	0.0021-02	0.0401-02	0.3322 02
5D 5D	2500	0 1612 01	0 1155 01	0 2025 02	0 2028 02	0 2428-02	0.2428-02
10070 OZ	2500.	0.1012-01	0.1156-01	0.3936-02	0.3036-02	0.3436-02	0.2456-02
18272.0A	5000.	0.1/6E-01	0.1216-01	0.4265-02	0.343E-02	0.308E-02	0.2756-02
C= 0.14E+20	10000.	0.1958-01	0.1062-01	0.4652-02	0.386E-02	0.397E-02	0.310E-02
	20000.	0.227E-01	0.791E-02	0.509E-02	0.434E-02	U.430E-02	0.348E-02
	30000.	0.247E-01	0.670E-02	0.539E-02	0,465E-02	0.453E-02	0.3/3E-02
	80000.	0.273E-01	0.352E-02	0.621E-02	0.548E-02	0.515E-02	0.440E-02
							0.0555.00
5P - 6D	2500.	0.238E-01	0.171E-01	0.582E-02	0.445E-02	0.508E-02	0.355E-02
14319.0A	5000.	0.260E-01	0.172E-01	0.631E-02	0.504E-02	0.544E-02	0.404E-02
c= 0.53E+19	10000.	0.286E-01	0.151E-01	0.688E-02	0.569E-02	0.587E-02	0.457E-02
	20000.	0.330E-01	0.104E-01	0.754E-02	0.641E-02	0.637E-02	0.515E-02
	30000.	0.354E-01	0.839E-02	0.798E-02	0.687E-02	0.670E-02	0.552E-02
	80000.	0.380E-01	0.366E-02	0.919E-02	0.811E-02	0.762E-02	0.652E-02
5P - 7D	2500.	0.385E-01	0.290E-01	0.935E-02	0.712E-02	0.814E-02	0.568E-02
12679.0A	5000.	0.422E-01	0.270E-01	0.102E-01	0.811E-02	0.873E-02	0.648E-02
c= 0.27E+19	10000.	0.466E-01	0.224E-01	0.111E-01	0.919E-02	0.944E-02	0.736E-02
	20000.	0.537E-01	0.141E-01	0.122E-01	0.104E-01	0.103E-01	0.832E-02
	30000.	0.572E-01	0.118E-01	0.129E-01	0.111E-01	0.108E-01	0.892E-02
	80000.	0.603E-01	0.424E-02	0.149E-01	0.131E-01	0.123E-01	0.105E-01
NE = 0.1E + 14							
---	--	--	--	---	---	--	--
TRANSITION	T(K)	ELECTRONS 2WE (A)	DE(A)	PROTONS 2WI (A)	DI(A)	IONIZED HEI 2WI (A) I	LIUM DI (A)
5P - 8D 11811.0A c= 0.16E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.620E-01 0.682E-01 0.760E-01 0.876E-01 0.926E-01 0.962E-01	0.450E-01 0.441E-01 0.334E-01 0.200E-01 0.176E-01 0.540E-02	0.149E-01 0.162E-01 0.178E-01 0.195E-01 0.207E-01 0.239E-01	0.113E-01 0.130E-01 0.147E-01 0.167E-01 0.179E-01 0.212E-01	0.129E-01 0.139E-01 0.151E-01 0.164E-01 0.173E-01 0.197E-01	0.901E-02 0.104E-01 0.118E-01 0.134E-01 0.144E-01 0.170E-01
5P - 9D 11286.0A c= 0.10E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.968E-01 0.107 0.121 0.139 0.146 0.150	0.684E-01 0.661E-01 0.480E-01 0.294E-01 0.250E-01 0.715E-02	0.232E-01* 0.252E-01 0.277E-01 0.304E-01 0.322E-01 0.373E-01	0.175E-01* 0.201E-01 0.230E-01 0.261E-01 0.280E-01 0.331E-01	0.200E-01* 0.216E-01* 0.234E-01 0.255E-01 0.269E-01 0.308E-01	0.138E-01* 0.160E-01* 0.184E-01 0.209E-01 0.224E-01 0.266E-01
NE= 0.1E+15 3D - 4P 91050.0A c= 0.27E+19	2500. 5000. 10000. 20000. 30000. 80000.	33.5 32.1 29.8 27.2 25.5 21.3	-1.79 -1.36 -1.14 -0.619 -0.510 -0.242	21.7* 20.3* 14.3	21.8* 23.8* 24.7	21.5*	22 .7 *
3D - 5P 31453.0A C= 0.27E+21	2500. 5000. 10000. 20000. 30000. 80000.	0.573E-01 0.655E-01 0.770E-01 0.942E-01 0.107 0.140	0.333E-01 0.397E-01 0.4C4E-01 0.364E-01 0.311E-01 0.240E-01	0.210E-01 0.214E-01 0.220E-01 0.227E-01 0.232E-01 0.247E-01	0.874E-02 0.987E-02 0.111E-01 0.125E-01 0.134E-01 0.158E-01	0.205E-01 0.207E-01 0.211E-01 0.215E-01 0.218E-01 0.228E-01	0.700E-02 0.792E-02 0.892E-02 0.100E-01 0.108E-01 0.127E-01
3D - 6P 13384.0A c= 0.21E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.352E-01 0.410E-01 0.480E-01 0.572E-01 0.640E-01 0.788E-01	0.229E-01 0.270E-01 0.263E-01 0.243E-01 0.218E-01 0.167E-01	0.132E-01 0.135E-01 0.139E-01 0.145E-01 0.149E-01 0.160E-01	0.592E-02 0.672E-02 0.761E-02 0.857E-02 0.919E-02 0.108E-01	0.127E-01 0.129E-01 0.132E-01 0.136E-01 0.138E-01 0.146E-01	0.472E-02 0.538E-02 0.610E-02 0.688E-02 0.738E-02 0.872E-02
3D - 7P 10482.0A c= 0.68E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.560E-01 0.655E-01 0.772E-01 0.925E-01 0.103 0.123	0.368E-01 0.419E-01 0.417E-01 0.343E-01 0.298E-01 0.197E-01	0.200E-01 0.206E-01 0.214E-01 0.223E-01 0.229E-01 0.248E-01	0.927E-02 0.106E-01 0.121E-01 0.136E-01 0.146E-01 0.173E-01	0.193E-01 0.197E-01 0.201E-01 0.207E-01 0.211E-01 0.224E-01	0.736E-02 0.846E-02 0.964E-02 0.109E-01 0.118E-01 0.139E-01
3D - 8P 9348.6A c= 0.32E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.974E-01 0.114 0.136 0.164 0.183 0.212	0.642E-01 0.690E-01 0.648E-01 0.504E-01 0.410E-01 0.220E-01	0.330E-01 0.342E-01 0.355E-01 0.372E-01 0.383E-01 0.417E-01	0.155E-01 0.180E-01 0.205E-01 0.233E-01 0.251E-01 0.297E-01	0.316E-01 0.324E-01 0.332E-01 0.343E-01 0.351E-01 0.374E-01	0.123E-01 0.143E-01 0.164E-01 0.186E-01 0.201E-01 0.238E-01

NE= 0.1E+15							
		ELECTRONS		PROTONS		IONIZED HEI	LIUM
TRANSITION	T(K)	2WE(A)	DE(A)	2WI(A)	DI(A)	2WI (A) I	DI(A)
3D - 9P	2500.	0.167	0.105	0.536E-01*	0.254E-01*		
8764.8A	5000.	0.196	0.111	0.557E-01*	0.297E-01*	0.524E-01*	0.235E-01*
C= 0.18E+19	10000.	0.236	0.102	0.581E-01	0.342E-01	0.541E-01*	0.272E-01*
	20000.	0.288	0.740E-01	0.610E-01	0.390E-01	0.560E-01*	0.311E-01*
	30000	0.318	0.556E-01	0.630E-01	0.419E-01	0.574E-01*	0.336E-01*
	80000	0.361	0.2475-01	0.6895-01	0 4995-01	0.614E-01	0 401E-01
	00000.	0.001	0.2112 01	0.00000 01	0.4552 01	O.OIHD OI	0.40112 01
3D - 4F	2500	0.264E-01	-0.110F-01	0 5958-02	-0.371E-02	0 5505-02	-0.2975-02
15165.0A	5000	0.295E-01	-0.701E-02	0.627E-02	-0.421E-02	0.571E-02	-0.337E-02
c = 0.17F + 20	10000	0.3555-01	-0.358F-02	0.6665-02	-0 474F-02	0.5985-02	-0 381F-02
0- 0.111120	20000	0.4085-01	-0 111E-02	0.713E-02	-0 533E-02	0.631E-02	-0 428F-02
	20000.	0.4305-01	-0.114E-02	0.7152-02	-0 5718-02	0.6548-02	-0 450F-02
	30000.	0.4592-01	-0.114E-02	0.7456-02	-0.571E-02	0.7105-02	-0.5125-02
	80000.	0.0000-01	0.4105-03	0.03/1-02	-0.074£-02	0.7196-02	-0.5420-02
3D - 5F	2500	0.235	0.286E-01	0.839E-01*	0.681E-01*	0.674E-01*	0.527E-01*
11022.3A	5000	0.215	0.118E-01	0.948E-01*	0.808E-01*	0.756E-01*	0.636E-01*
c = 0.14F + 18	10000	0.196	0.6878-02	0 108*	0.940E-01*	0.851E-01*	0.745E-01*
0.0.141110	20000	0.180	-0.200F-02	0.125.4	0 109*	0.962E-01*	0.8575-01*
	30000	0.160	-0.2005-02	0.124	0.122	0.104*	0.9278-01*
	20000.	0.147	-0.0752-02	0.126	0 151	0 127	0 113
	80000.	0.241	-0.9735-03	0.100	U . Lala	V . 12 /	0.440
45 - 4P	2500	0.448E-03	0.339E-03	0.277E-03	0.938E-04	0-273E-03	0.753E-04
7676.24	5000	0.509E-03	0.401E-03	0.280E-03	0.106E-03	0.275E-03	0.848E-04
c = 0.47E + 20	10000	0.624E-03	0.454E-03	0.284E-03	0.119E-03	0.277E-03	0.953E-04
• •••••	20000	0.8258-03	0.461E-03	0 290E-03	0 133E-03	0.281E-03	0.107E-03
	30000	0.9735-03	0.4105-03	0 294E-03	0.143E-03	0.283E-03	0.115E-03
	80000	0 1395-02	0.285E-03	0.306E-03	0.168E-03	0.291E-03	0.135E-03
			012002 00	019002 00	011000 00	0143224 00	0120020 00
4S - 5P	2500.	0.963E-03	0.604E-03	0.406E-03	0.164E-03	0.397E-03	0.131E-03
4045.2A	5000.	0.110E-02	0.719E-03	0.414E-03	0.185E-03	0.401E-03	0.148E-03
c = 0.44E + 19	10000.	0.126E-02	0.777E-03	0.424E-03	0.208E-03	0.407E-03	0.167E-03
	20000	0.148E-02	0.763E-03	0.436E-03	0.234E-03	0.415E-03	0.188E-03
	30000	0 1645-02	0.6708-03	0.455-03	0 2518-03	0 4205-03	0 202E-03
	80000	0.2065-02	0.4925-03	0 472E-03	0.2055-03	0 4385-03	0.2385-03
	00000.	0.2001-02	0.4525-05	0.4721-05	0.2902-03	0.4300-03	0.2000 00
45 - 6P	2500	0.233E-02	0.151E-02	0.919E-03	0.400E-03	0.891E-03	0.319E-03
3446.78	5000.	0.271E-02	0.175E-02	0.941E-03	0.454E-03	0.905E-03	0.363E-03
c = 0.14E + 19	10000.	0.315E-02	0.183E-02	0.969E-03	0.514E-03	0.922E-03	0.412E-03
	20000	0.373E-02	0.171E-02	0.100E-02	0.579E-03	0.944E-03	0.465E-03
	30000	0 4145-02	0 1505-02	0 1038-02	0 6218-03	0.9605-03	0 4985-03
	80000	0.5055-02	0.1078-02	0.1105-02	0.7335-03	0.1015-02	0.5805-03
	00000.	0.0002-02	0.10/1-02	0.1100-02	0.7336-03	0.1015-02	0.0090-00
45 - 7P	2500	0.526E-02	0.343E-02	0.193E-02	0.877E-03	0.186E-02	0.696E-03
3217.34	5000	0.615E-02	0.394E-02	0.198E-02	0.100E-02	0.189E-02	0.801E-03
C= 0 648418	10000	0 7235-02	0 3845-02	0 2058-02	0 1145-02	0 1945-02	0 9128-03
0. 0.041.10	20000	0.8645-02	0.333E-02	0 214E-02	0 1298-02	0.1995-02	0 1035-02
	30000.	0.0612-02	0.2825-02	0.2202-02	0 1395-02	0.203E-02	0 1118-02
	80000	0.11/12-01	0 1845-02	0.2200-02	0.1647-02	0 2158-02	0 1318-02
	00000.	0.1140-01	0.1040-02	0.2312-02	0.1040-02	0.2100-02	0.1010-02

NE = 0.1E + 15							
TRANSPITON	T(K)	ELECTRONS 2WE(A)	DE(A)	PROTONS 2WI (A)	DI(A)	IONIZED HEI 2WI(A) I	LUM DI(A)
49 - 9D	2500	0.1075-01	0 6928-02	0.3678-02	0 1715-02	0.351F-02*	0 1358-02*
45 - 6P	5000	0.107E-01	0.092E-02	0.3795-02	0.1712-02	0.3511-02*	0.157E-02*
$-0.36E \pm 19$	10000	0.125E-01	0.739E-02	0.3796-02	0.1365-02	0.3695-02	0.1972-02*
0-0.30LF10	20000	0.1492-01	0.5798-02	0.1394E-02	0.2565-02	0.381E-02	0.2055-02
	30000.	0.1005-01	0.3795-02	0.412E-02	0.276E-02	0.3905-02	0.2015-02
	80000.	0.232E-01	0.277E-02	0.461E-02	0.326E-02	0.415E-02	0.262E-02
4S - 9P	2500.	0.199E-01	0.126E-01	0.646E-02*	0.305E-02*		
3034.8A	5000.	0.235E-01	0.133E-01	0.671E-02*	0.356E-02*	0.632E-02*	0.282E-02*
c = 0.22E + 18	10000.	0.282E-01	0.124E-01	0.700E-02	0.410E-02	0.652E-02*	0.326E-02*
	20000.	0.344E-01	0.930E-02	0.734E-02	0.467E-02	0.675E-02*	0.373E-02*
	30000.	0.380E-01	0.760E-02	0.758E-02	0.503E-02	0.691E-02	0.403E-02
	80000.	0.431E-01	0.3956-02	0.8286-02	0.5998-02	0.7396-02	0.480E-02
4P - 5S	2500.	0.584E-02	0.411E-02	0.136E-02	0.113E-02	0.116E-02	0.903E-03
12492.0A	5000.	0.672E-02	0.489E-02	0.150E-02	0.127E-02	0.126E-02	0.102E-02
œ= 0.58E+20	10000.	0.748E-02	0.573E-02	0.165E-02	0.143E-02	0.138E-02	0.115E-02
	20000.	0.844E-02	0.566E-02	0.182E-02	0.161E02	0.151E-02	0.129E-02
	30000.	0.900E-02	0.513E-02	0.193E-02	0.172E-02	0.160E-02	0.139E-02
	80000.	0.115E-01	0.361E-02	0.224E-02	0.203E-02	0.184E-02	0.163E-02
4P - 65	2500	0 6658-02	0 4865-02	0 1435-02	0 1318-02	0 116E-02	0.104E-02
6929.5A	5000	0.765E-02	0.571E-02	0.161E-02	0.1310 02	0.130E-02	0.119E-02
c = 0.75E+19	10000.	0.824E-02	0.625E-02	0.180E-02	0.168E-02	0.145E-02	0.135E-02
0 01/02/20	20000.	0.916E-02	0.619E-02	0.202E-02	0.189E-02	0.163E-02	0.152E-02
	30000.	0.950E-02	0.554E-02	0.216E-02	0.202E-02	0.174E-02	0.162E-02
	80000.	0.117E-01	0.413E-02	0.254E-02	0.239E-02	0.204E-02	0.192E-02
4P - 7S	2500.	0.126E-01	0.930E-02	0.264E-02	0.239E-02	0.213E-02	0.190E-02
5795.3A	5000.	0.151E-01	0.110E-01	0.297E-02	0.273E-02	0.239E-02	0.218E-02
C = 0.2/E + 19	10000.	0.154E-01	0.110E-01	0.333E-02	0.310E-02	0.268E-02	0.248E-02
	20000.	0.170E-01	0.103E-01	0.3/4E-02	0.3505-02	0.301E-02	0.281E-02
	20000.	0.184E-01	0.8955-02	0.4006-02	0.375E-02	0.3222-02	0.3016-02
	50000.	0.2246-01	0.042E-02	0.4716-02	0.4446-02	0.3792-02	0.3305-02
4P - 8S	2500.	0.232E-01	0.166E-01	0.468E-02	0.414E-02	0.376E-02	0.327E-02
5334.3A	5000.	0.260E-01	0.190E-01	0.525E-02	0.477E-02	0.423E-02	0.379E-02
c= 0.13E+19	10000.	0.298E-01	0.189E-01	0.590E-02	0.544E-02	0.474E-02	0.435E-02
	20000.	0.323E-01	0.153E-01	0.662E-02	0.617E-02	0.533E-02	0.494E-02
	30000.	0.360E-01	0.127E-01	0.709E-02	0.663E-02	0.570E-02	0.531E-02
	80000.	0.425E-01	0.762E-02	0.835E-02	0.785E-02	0.671E-02	0.630E-02
AD - 00	2500	0 4315-01	0 3145-01	0 2705-02	0 7475-02	0 7008-02+	0 5855-02
5094 33	5000	0.475F-01	0.3455-01	0.9775-02	0.8705-02	0.785F-02*	0.6895-024
C = 0.76E + 18	10000	0.537E-01	0.318F-01	0.110F-01	0.100E-01	0.882E-02	0.796E-02
0.70D/10	20000	0.623E-01	0.243E-01	0.123E-01	0.114E-01	0.990E-02	0.910E-02
	30000.	0.695E-01	0.189E-01	0.132E-01	0.123E-01	0.106E-01	0.981E-02
	80000.	0.796E-01	0.907E-02	0.155E-01	0.145E-01	0.125E-01	0.117E-01

NE= 0.1E+15		ET ECTEXING		DOCTONS		TONT VED LET	TTIN
TRANSITION	T(K)	2WE(A)	DE(A)	2WI (A)	DI(A)	2WI (A)	DI (A)
4P -10S 4951.4A c= 0.48E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.730E-01 0.807E-01 0.924E-01 0.111 0.123 0.138	0.512E-01 0.540E-01 0.497E-01 0.357E-01 0.260E-01 0.105E-01	0.146E-01* 0.164E-01* 0.184E-01 0.207E-01 0.221E-01 0.261E-01	0.121E-01* 0.143E-01* 0.166E-01 0.190E-01 0.205E-01 0.244E-01	0.118E-01* 0.132E-01* 0.148E-01* 0.166E-01* 0.178E-01* 0.210E-01	0.940E-02* 0.113E-01* 0.132E-01* 0.151E-01* 0.164E-01* 0.196E-01
4P -11S 4859.0A c= 0.33E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.119 0.131 0.152 0.187 0.206 0.228	0.840E-01 0.809E-01 0.705E-01 0.490E-01 0.364E-01 0.124E-01	0.230E-01* 0.255E-01* 0.290E-01* 0.326E-01* 0.349E-01* 0.412E-01	0.183E-01* 0.220E-01* 0.257E-01* 0.296E-01* 0.320E-01* 0.383E-01	0.233E-01* 0.262E-01* 0.280E-01* 0.331E-01*	0.204E+01* 0.236E-01* 0.255E+01* 0.307E-01*
4P -12S 4795.7A c= 0.24E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.173 0.206 0.238 0.298 0.327 0.358	0.116 0.116 0.914E-01 0.622E-01 0.465E-01 0.144E-01	0.421E01* 0.472E-01* 0.506E-01* 0.598E-01*	0.368E-01* 0.425E-01* 0.461E-01* 0.553E-01*	0.380E-01* 0.406E-01* 0.479E-01*	0.338E-01* 0.367E-01* 0.442E-01*
4P - 3D 11745.0A C= 0.44E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.253E-02 0.271E-02 0.312E-02 0.394E-02 0.464E-02 0.639E-02	0.131E-02 0.144E-02 0.142E-02 0.111E-02 0.944E-03 0.673E-03	0.873E-03 0.888E-03 0.908E-03 0.933E-03 0.952E-03 0.101E-02	0.346E-03 0.389E-03 0.438E-03 0.492E-03 0.526E-03 0.620E-03	0.854E-03 0.863E-03 0.875E-03 0.890E-03 0.901E-03 0.937E-03	0.278E-03 0.313E-03 0.352E-03 0.395E-03 0.423E-03 0.498E-03
4P - 4D 6955.2A C= 0.35E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.766E-02 0.839E-02 0.914E-02 0.101E-01 0.109E-01 0.120E-01	0.560E-02 0.604E-02 0.579E-C2 0.457E-02 0.406E-02 0.282E-02	0.199E-02 0.215E-02 0.232E-02 0.253E-02 0.267E-02 0.305E-02	0.144E-02 0.164E-02 0.185E-02 0.209E-02 0.224E-02 0.264E-02	0.177E-02 0.188E-02 0.201E-02 0.217E-02 0.227E-02 0.256E-02	0.115E-02 0.131E-02 0.149E-02 0.167E-02 0.180E-02 0.212E-02
4P - 5D 5825.3A c= 0.14E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.166E-01 0.181E-01 0.197E-01 0.221E-01 0.236E-01 0.254E-01	0.123E-01 0.128E-01 0.122E-01 0.922E-02 0.775E-02 0.453E-02	0.422E-02 0.455E-02 0.494E-02 0.540E-02 0.570E-02 0.654E-02	0.304E-02 0.348E-02 0.396E-02 0.448E-02 0.480E-02 0.568E-02	0.372E-02 0.397E-02 0.425E-02 0.460E-02 0.482E-02 0.546E-02	0.241E-02 0.278E-02 0.316E-02 0.359E-02 0.386E-02 0.456E-02
4P - 6D 5354.1A C= 0.74E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.333E-01 0.364E-01 0.398E-01 0.452E-01 0.483E-01 0.512E-01	0.247E-01 0.252E-01 0.225E-01 0.164E-01 0.128E-01 0.581E-02	0.831E-02 0.900E-02 0.980E-02 0.107E-01 0.113E-01 0.130E-01	0.591E-02 0.685E-02 0.783E-02 0.890E-02 0.958E-02 0.114E-01	0.729E-02* 0.780E-02 0.839E-02 0.909E-02 0.955E-02 0.108E-01	0.466E-02* 0.544E-02 0.625E-02 0.712E-02 0.767E-02 0.911E-02

NE= 0.1E+15							
TRANSITION	T(K)	ELECTRONS 2WE (A)	DE(A)	PROTONS 2WI (A)	DI(A)	IONIZED HEI 2WI (A) I	LIUM DI (A)
4P - 7D 5107.2A c= 0.43E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.624E-01 0.683E-01 0.752E-01 0.863E-01 0.917E-01 0.960E-01	0.466E-01 0.441E-01 0.384E-01 0.273E-01 0.204E-01 0.736E-02	0.153E-01* 0.166E-01* 0.181E-01 0.199E-01 0.210E-01 0.242E-01	0.106E-01* 0.125E-01* 0.144E-01 0.165E-01 0.178E-01 0.212E-01	0.133E-01* 0.143E-01* 0.155E-01* 0.168E-01* 0.176E-01 0.201E-01	0.830E-02* 0.988E-02* 0.115E-01* 0.132E-01* 0.142E-01 0.170E-01
4P - 8D 4960.2A c= 0.28E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.109 0.120 0.134 0.154 0.162 0.168	0.778E-01 0.776E-01 0.615E-01 0.428E-01 0.314E-01 0.986E-02	0.264E-01* 0.287E-01* 0.314E-01* 0.345E-01* 0.366E-01* 0.423E-01	0.178E-01* 0.213E-01* 0.249E-01* 0.286E-01* 0.309E-01* 0.370E-01	0.267E-01* 0.291E-01* 0.306E-01* 0.349E-01*	0.197E-01* 0.228E-01* 0.247E-01* 0.296E-01*
4P - 9D 4865.2A c= 0.19E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.180 0.199 0.224 0.258 0.270 0.277	0.127 0.122 0.923E-01 0.642E-01 0.461E-01 0.134E-01	0.515E-01* 0.566E-01* 0.600E-01* 0.695E-01*	0.403E-01* 0.467E-01* 0.506E-01* 0.607E-01*	0.573E-01*	0.486E-01*
4D - 6P 62191.0A C= 0.28E+21	2500. 5000. 10000. 20000. 30000. 80000.	0.675 0.935 1.27 1.66 1.89 2.32	0.173 0.218 0.235 0.206 0.184 0.154	0.231 0.231 0.232 0.233 0.233 0.235	0.390E-01 0.441E-01 0.497E-01 0.559E-01 0.599E-01 0.707E-01	0.230 0.231 0.231 0.231 0.232 0.233	0.312E-01 0.354E-01 0.399E-01 0.449E-01 0.481E-01 0.567E-01
4D - 7P 27199.0A C= 0.46E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.369 0.451 0.561 0.701 0.790 0.941	0.213 0.231 0.225 0.178 0.154 0.945E-01	0.124 0.127 0.131 0.136 0.139 0.150	0.541E-01 0.618E-01 0.701E-01 0.794E-01 0.850E-01 0.101	0.119 0.121 0.124 0.127 0.129 0.136	0.430E-01 0.493E-01 0.561E-01 0.636E-01 0.683E-01 0.807E-01
4D - 8P 20691.0A C= 0.16E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.477 0.569 0.690 0.852 0.951 1.10	0.293 0.315 0.293 0.212 0.171 0.868E-01	0.156 0.161 0.167 0.175 0.180 0.196	0.729E-01 0.842E-01 0.961E-01 0.109 0.117 0.139	0.149* 0.152* 0.156 0.162 0.165 0.176	0.575E-01* 0.669E-01* 0.768E-01 0.873E-01 0.940E-01 0.112
4D - 4F 136923.A c= 0.14E+22	2500. 5000. 10000. 20000. 30000. 80000.	4.41 4.84 5.27 6.17 6.70 7.37	-2.62 -2.76 -2.28 -1.72 -1.56 -0.953	0.802 0.889 0.987 1.10 1.17 1.37	-0.687 -0.781 -0.885 -0.996 -1.07 -1.26	0.668 0.735 0.812 0.900 0.956 1.11	-0.548 -0.625 -0.708 -0.800 -0.858 -1.01

42

NE= 0.1E+15							
		ELECTRONS		PROTONS		IONIZED HE	MULI
TRANSITION	T(K)	2WE(A)	DE(A)	2WI(A)	DI(A)	2WI(A)	DI (A)
4D - 5F	2500.	1.98	0.142	0.665*	0.541*	0.533*	0.419*
31162.0A	5000.	1.84	-0.352E-02	0.752*	0.642*	0.599*	0.505*
c= 0.11E+19	10000.	1.68	-0.107	0.860*	0.746*	0.674*	0.591*
	20000.	1.57	-0.963E-01	0.991	0.866	0.763*	0.681*
	30000.	1.51	-0.100	1.06	0.952	0.825*	0.736*
	80000.	1.33	-0.642E-01	1.07	1.20	1.01	0.897
55 - 5P	2500	0 3505-01	0 127F-01	0 1745-01	0 3605-02	0 1745-01	0 2885-02
27114-0A	5000.	0.416E-01	0.120E-01	0.175E-01	0.405E-02	0.174E-01	0.325E-02
c = 0.20E + 21	10000.	0.550E-01	0.767E-02	0.176E-01	0.455E-02	0.175E-01	0.366E-02
	20000.	0.767E-01	0.485E-02	0.177E-01	0.512E-02	0.175E-01	0.411E-02
	30000.	0.913E-01	0.402E-02	0.177E-01	0.548E-02	0.175E-01	0.441E-02
	80000.	0.123	0.272E-02	0.180E-01	0.646E-02	0.177E-01	0.519E-02
59 - 6D	2500	0 2025-01	0 1005-01	0 1208-01	0 4015-02	0 1175-01	0 2025-02
12531 OA	5000	0.352E-01	0.2158-01	0.123E-01	0.4916-02	0.119E-01	0.1465-02
c = 0.19E + 20	10000.	0.420E-01	0.217E-01	0.126E-01	0.632E-02	0.120E-01	0.506E-02
	20000.	0.514E-01	0.176E-01	0.130E-01	0.711E-02	0.123E-01	0.571E-02
	30000.	0.585E-01	0.153E-01	0.133E-01	0.762E-02	0.125E-01	0.612E-02
	80000.	0.732E-01	0.116E-01	0.141E-01	0.900E-02	0.130E-01	0.723E-02
5S - 7P	2500.	0.503E-01	0.327E-01	0.184E-01	0.825E-02	0.177E-01	0.655E-02
9951.3A	5000.	0.588E-01	0.367E-01	0.189E-01	0.944E-02	0.181E-01	0.753E-02
c= 0.62E+19	10000.	0.699E-01	0.369E-01	0.195E-01	0.107E-01	0.185E-01	0.858E-02
	20000.	0.844E-01	0.299E-01	0.203E-01	0.121E-01	0.190E-01	0.973E-02
	30000.	0.946E-01	0.247E-01	0.209E-01	0.130E-01	0.193E-01	0.105E-01
	80000.	0.113	0.160E-01	0.225E-01	0.154E-01	0.204E-01	0.124E-01
55 - 8P	2500.	0.886E-01	0.584E-01	0.304E-01	0.141E-01	0.290E-01*	0.111E-01*
8924.4A	5000.	0.104	0.620E-01	0.314E-01	0.163E-01	0.298E-01*	0.129E-01*
c= 0.29E+19	10000.	0.124	0.598E-01	0.326E-01	0.186E-01	0.305E-01	0.148E-01
	20000.	0.151	0.432E-01	0.340E-01	0.211E-01	0.315E-01	0.169E-01
	30000.	0.168	0.351E-01	0.351E-01	0.227E-01	0.322E-01	0.182E-01
	80000.	0.195	0.183E-01	0.381E-01	0.269E-01	0.342E-01	0.216E-01
50 00	2500	0 152	0.0075.01	O ACAT OIL	0 2228 014		
55 - 9P	2500.	0.153	0.997E-01	0.494E-01*	0.232E-01*	0 4025 014	0 0155 014
0390.7A	10000	0.180	0.104	0.5136-01*	0.212E-01*	0.4000-01*	0.210E-01*
C= 0.1/E+19	20000.	0.210	0.905E-01	0.5346-01	0.313E-01	0.4966-01*	0.2496-01*
	20000.	0.205	0.5966-01	0.5012-01	0.3506-01	0.5105-01*	0.2055-01*
	80000.	0.332	0.210E-01	0.632E-01	0.457E-01	0.564E-01	0.367E-01
5P - 6S	2500.	0.180	0.120	0.441E-01	0.312E-01	0.395E-01	0.249E-01
36529.0A	5000.	0.209	0.142	0.473E-01	0.353E-01	0.418E-01	0.283E-01
C= 0.21E+21	10000.	0.247	0.146	0.511E-01	0.399E-01	0.445E-01	0.320E-01
	20000.	0.299	0.126	0.554E-01	0.449E-01	0.477E-01	0.361E-01
	30000.	0.344	0.110	0.583E-01	0.482E-01	0.499E-01	0.387E-01
	80000.	0.445	0.868E-01	0.664E-01	0.568E-01	0.560E-01	0.457E-01

NE= 0.1E+15							
TRANSITION	T(K)	ELECTRONS 2WE (A)	DE(A)	PROTONS 2WI (A)	DI(A)	IONIZED HEI 2WI (A) I	LIUM DI (A)
5P - 75 17979.0A C= 0.26E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.122 0.139 0.154 0.175 0.197 0.243	0.875E-01 0.104 0.984E-01 0.896E-01 0.775E-01 0.543E-01	0.255E-01 0.284E-01 0.317E-01 0.355E-01 0.378E-01 0.444E-01	0.223E-01 0.254E-01 0.289E-01 0.326E-01 0.350E-01 0.413E-01	0.209E-01 0.232E-01 0.258E-01 0.288E-01 0.307E-01 0.359E-01	0.177E-01 0.203E-01 0.231E-01 0.262E-01 0.281E-01 0.332E-01
5P - 8S 14178.0A c= 0.93E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.169 0.188 0.217 0.242 0.272 0.322	0.122 0.138 0.137 0.107 0.868E-01 0.509E-01	0.345E-01 0.387E-01 0.434E-01 0.487E-01 0.521E-01 0.613E-01	0.303E-01 0.349E-01 0.398E-01 0.452E-01 0.486E-01 0.575E-01	0.279E-01 0.312E-01 0.350E-01 0.392E-01 0.419E-01 0.493E-01	0.239E-01 0.278E-01 0.318E-01 0.362E-01 0.389E-01 0.462E-01
5P - 9S 12600.0A c= 0.46E+19	2500, 5000, 10000, 20000, 30000, 80000,	0.263 0.290 0.332 0.389 0.436 0.501	0.193 0.208 0.192 0.133 0.109 0.509E-01	0.531E-01 0.596E-01 0.669E-01 0.751E-01 0.804E-01 0.948E-01	0.455E-01 0.530E-01 0.609E-01 0.694E-01 0.747E-01 0.887E-01	0.428E-01* 0.480E-01* 0.538E-01 0.604E-01 0.646E-01 0.761E-01	0.357E-01* 0.420E-01* 0.485E-01 0.555E-01 0.598E-01 0.713E-01
5P -10S 11761.0A c= 0.27E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.412 0.456 0.523 0.635 0.706 0.794	0.288 0.301 0.268 0.174 0.141 0.557E-01	0.824E-01* 0.925E-01* 0.104 0.117 0.125 0.147	0.683E-01* 0.807E-01* 0.934E-01 0.107 0.115 0.138	0.663E-01* 0.744E-01* C.835E-01* 0.938E-01* 0.100* 0.118	0.530E-01* 0.635E-01* 0.742E-01* 0.853E-01* 0.921E01* 0.110
5P -11S 11253.0A c= 0.18E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.639 0.702 0.817 1.01 1.12 1.24	0.455 0.430 0.362 0.220 0.186 0.641E-01	0.123* 0.139* 0.156* 0.175* 0.187* 0.221	0.982E-01* 0.118* 0.138* 0.159* 0.172* 0.205	0.125* 0.140* 0.150* 0.177*	0.109* 0.126* 0.137* 0.164*
5P - 4D 37255.0A c= 0.10E+21	2500. 5000. 10000. 20000. 30000. 80000.	0.201 0.232 0.271 0.341 0.379 0.446	0.137 0.135 0.101 0.787E-01 0.673E-01 0.391E-01	0.505E-01 0.543E-01 0.587E-01 0.639E-01 0.673E-01 0.769E-01	0.362E-01 0.411E-01 0.464E-01 0.523E-01 0.560E-01 0.661E-01	0.450E-01 0.477E-01 0.509E-01 0.548E-01 0.573E-01 0.645E-01	0.289E-01 0.329E-01 0.373E-01 0.420E-01 0.450E-01 0.532E-01
5P - 5D 18272.0A c= 0.14E+20	2500. 5000. 10000. 20000. 30000.	0.161 0.176 0.195 0.227 0.247 0.247	0.114 0.121 0.106 0.791E-01 0.670E-01	0.393E-01 0.426E-01 0.465E-01 0.509E-01 0.539E-01	0.292E-01 0.335E-01 0.380E-01 0.431E-01 0.461E-01	0.343E-01 0.368E-01 0.397E-01 0.430E-01 0.453E-01 0.515E-03	0.232E-01 0.267E-01 0.304E-01 0.345E-01 0.371E-01 0.439E-0

M. S. Dimitrijević, S. Sahal-Bréchot

NE= 0.1E+15							
		ELECTRONS		PROTONS		IONIZED HEI	LIUM
TRANSITION	T(K)	2WE(A)	DE(A)	2WI(A)	DI(A)	2WI(A) I	OI (A)
5P - 6D	2500.	0.238	0.169	0.581E-01	0.420E-01	0.507E-01*	0.331E-01*
14319.0A	5000.	0.260	0.171	0.631E-01	0.486E-01	0.544E-01	0.386E-01
c= 0.53E+19	10000.	0.286	0.151	0.688E-01	0.557E-01	0.587E-01	0.444E-01
	20000.	0.330	0.104	0.754E-01	0.632E-01	0.637E-01	0.506E-01
	30000	0.354	0.838E-01	0.798E-01	0.680E-01	0.670E-01	0.545E-01
	80000	0 380	0.366F-01	0.9198-01	0.8065-01	0 7625-01	0 647E-01
	00000.	0.500	0.0001 01	0.0100 01	0.0001 01	OFFICED OF	0.0172 01
5P - 7D	2500.	0.385	0.287	0.932E-01*	0.655E-01*	0.810E-01*	0.511E-01*
12679.0A	5000.	0.422	0.268	0.101*	0.770E-01*	0.872E-01*	0.608E-01*
c = 0.27E + 19	10000.	0.466	0.224	0.111	0.889E-01	0.943E-01*	0.707E-01*
	20000.	0.537	0.141	0.122	0.102	0.102*	0.811E-01*
	30000	0.572	0.118	0.129	0.109	0.108	0.875E-01
	80000.	0.603	0.424E-01	0.149	0.130	0.123	0.105
5P - 8D	2500.	0.620	0.439	0.149*	0.101*		
11811.0A	5000.	0.682	0.438	0.162*	0.121*		
C= 0.16E+19	10000.	0.760	0.334	0.178*	0.141*	0.151*	0.112*
	20000.	0.876	0.199	0.195*	0.162*	0.164*	0.129*
	30000.	0.926	0.176	0.207*	0.175*	0.173*	0.140*
	80000.	0.962	0.540E-01	0.239	0.210	0.197*	0.168*
5P - 9D	2500.	0.968	0.661				
11286.0A	5000.	1.07	0.653				
C= 0.10E+19	10000.	1.21	0.478	0.276*	0.217*		
	20000.	1.39	0.294	0.304*	0.251*		
	30000.	1.46	0.250	0.322*	0.272*		
	80000.	1.50	0.715E-01	0.373*	0.327*	0.308*	0.261*
NE= 0.1E+16							
3D - 5P	2500.	0.573	0.330	0.210	0.843E-01	0.204	0.669E-01
31453.0A	5000.	0.655	0.396	0.214	0.964E-01	0.207	0.769E-01
c= 0.27E+21	10000.	0.770	0.404	0.220	0.110	0.211	0.877E-01
	20000.	0.942	0.363	0.227	0.124	0.215	0.994E-01
	30000.	1.07	0.311	0.232	0.133	0.218	0.107
	80000.	1.40	0.240	0.247	0.157	0.228	0.126
20 (0	2500	0.252	0.005	0 121	0 5515 01	0.106+	0 1228-01+
3D - 6P	2500.	0.352	0.225	0.131	0.5516-01	0.120*	0.4326-01*
13384.UA	5000.	0.410	0.269	0.135	0.643E-01	0.129*	0.5096-01*
C= 0.21E+20	10000.	0.480	0.262	0.139	0.740E-01	0.132	0.5892-01
	20000.	0.572	0.243	0.145	0.843E-01	0.135	0.674E-01
	30000.	0.640	0.218	0.149	0.907E-01	0.138	0.726E-01
	80000.	0.788	0.167	0.160	0.108	0.146	0.866E-01
3D - 7D	2500	0 560	0 357	0 197*	0 8225-01+		
10402 03	5000	0.500	0.337	0.2054	0.0220 01*	0 1044	0 7725-01*
10402. UA	10000.	0.000	0.417	0.205*	0.300E-U1*	0.194*	0.0120-014
C= 0.68E+19	10000.	0.772	0.41/	0.213*	0.110*	0.200*	0.9126-01*
	20000.	0.925	0.342	0.223*	0.133*	0.20/*	0.106*
	30000.	1.03	0.297	0.229	0.143	0.211	0.114
	80000.	1.23	0.197	0.248	0.171	0.224	0.137

NE = 0.1E + 16							
		ELECTRONS		PROTONS		IONIZED HEI	LIUM
TRANSITION	T (K)	2WE(A)	DE(A)	2WI (A)	DI(A)	2WI (A) I	DI(A)
3D - 8P	2500.	0.974	0.618				
9348.6A	5000.	1.14	0.676				
c = 0.32E + 19	10000.	1.36	0.641	0.354*	0.192*		
• • • • • • • • • • • • • • • •	20000	1.64	0.503	0 371*	0.223*		
	30000	1 83	0.410	0.323*	0.223*	0 350*	0 103*
	80000	2 12	0.410	0.117+	0.292*	0.374+	0.233*
	00000.	he o La	0.220	0.41/**	0.292.	0.574"	0.200
20 00	2500	2.55	0.000				
3D - 9P	2500.	1.66	0.990				
8/64.8A	5000.	1.96	1.07				
C = 0.18E + 19	10000.	2.36	1.01				
	20000.	2.88	0.740	0 (00)			
	30000.	3.18	0.554	0.629*	0.402*		
	80000.	3.61	0.247	0.688*	0.488*		
20.45		0.04					
3D - 4F	2500.	0.264	-0.108	0.594E-01	-0.353E-01	0.548E-01 -	-0.279E-01
15165.0A	5000.	0.295	-0.6958-01	0.627E-01	-0.407E-01	0.5/1E-01 ·	-0.324E-01
C = 0.1/E + 20	10000.	0.355	-0.354E-01	0.666E-01	-0.465E-01	0.598E-01 ·	-0.371E-01
	20000.	0.408	-0.110E-01	0.713E-01	-0.527E-01	0.631E-01 ·	-0.422E-01
	30000.	0.439	-0.114E-01	0.745E-01	-0.567E-01	0.654E-01 -	-0.454E-01
	80000.	0.508	0.416E-02	0.837E-01	-0.671E-01	0.719E-01 -	-0.539E-01
3D - 5F	2500.	2.12	0.949E-01				
11022.3A	5000.	1.99	0.295E-01	•			
C = 0.14E + 18	10000.	1.85	0.475E-02				
	20000.	1.72	-0.303E-01				
	30000.	1.63	-0.278E-01				
	80000.	1.43	-0.975E-02	1.36*	1.47*		
						2	
4S - 4P	2500.	0.448E-02	0.338E-02	0.277E-02	0.924E-03	0.273E-02	0.739E-03
7676.2A	5000.	0.509E-02	0.400E-02	0.280E-02	0.105E-02	0.275E-02	0.839E-03
C = 0.47E + 20	10000.	0.624E-02	0.453E-02	0.284E-02	0.118E-02	0.277E-02	0.948E-03
	20000.	0.825E-02	0.461E - 02	0.290E-02	0.133E-02	0.28CE-02	0.107E-02
	30000.	0.973E-02	0.410E-02	0.294E-02	0.142E-02	0.283E-02	0.114E-02
	80000.	0.139E-01	0.285E-02	0.306E-02	0.168E-02	0.291E-02	0.135E-02
		201 - 1000 J.C. 19 Tange - 19		olis 3). Staroni moto guna	606 SI 20(5)000000000 00000000000000000000000000	COR JANES APPEnnent out	Anne ISCA SER SCREEDING IN 1999
4S - 5P	2500.	0.964E-02	0.599E-02	0.405E-02	0.157E-02	0.395E-02	0.125E-02
4045.2A	5000.	0.110E-01	0.718E-02	0.413E-02	0.180E-02	0.401E-02	0.144E-02
c = 0.44E + 19	10000.	0.126E-01	0.776E-02	0.424E-02	0.205E-02	0.407E-02	0.164E-02
	20000.	0.148E-01	0.763E-02	0.436E-02	0.232E-02	0.415E-02	0.186E-02
	30000.	0.164E-01	0.670E-02	0.445E-02	0.249E-02	0.420E-02	0.200E-02
	80000.	0.206E-01	0.492E-02	0.472E-02	0.295E-02	0.438E-02	0.237E-02
4S - 6P	2500.	0.233E-01	0.149E-01	0.913E-02	0.372E-02	0.879E-02*	0.291E-02*
3446.7A	5000.	0.271E-01	0.174E-01	0.939E-02	0.434E-02	0.901E-02*	0.344E-02*
C = 0.14E + 19	10000.	0.315E-01	0.182E-01	0.968E-02	0.500E-02	0.921E-02	0.398E-02
	20000.	0.373E-01	0.171E-01	0.100E-01	0.569E-02	0.944E-02	0.455E-02
	30000.	0.414E-01	0.149E-01	0.103E-01	0.613E-02	0.960E-02	0.490E-02
	80000.	0.505E-01	0.107E-01	0.110E-01	0.728E-02	0.101E-01	0.585E-02

NE= 0.1E+10				00000101		*	***
TRANSITION	T(K)	ELECTRONS 2WE (A)	DE(A)	2WI (A)	DI(A)	2WI(A) E	LIUM DI (A)
4S - 7P 3217.3A ☞ 0.64E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.526E-01 0.615E-01 0.723E-01 0.864E-01 0.961E-01 0.114	0.333E-01 0.391E-01 0.382E-01 0.332E-01 0.282E-01 0.184E-01	0.190E-01* 0.197E-01* 0.205E-01* 0.214E-01 0.219E-01 0.237E-01	0.778E-02* 0.933E-02* 0.109E-01* 0.125E-01 0.135E-01 0.162E-01	0.187E-01* 0.193E-01* 0.199E-01* 0.203E-01 0.215E-01	0.730E-02* 0.863E-02* 0.998E-02* 0.108E-01 0.130E-01
4S - 8P 3101.9A c= 0.36E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.107 0.125 0.149 0.180 0.200 0.232	0.664E-01 0.748E-01 0.736E-01 0.578E-01 0.478E-01 0.277E-01	0.393E-01* 0.412E-01* 0.424E-01* 0.461E-01*	0.211E-01* 0.246E-01* 0.267E-01* 0.321E-01*	0.389E-01* 0.414E-01*	0.212E-01* 0.257E-01*
4S - 9P 3034.8A C= 0.22E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.199 0.235 0.282 0.344 0.380 0.431	0.119 0.129 0.123 0.927E-01 0.757E-01 0.395E-01	0.757E-01* 0.828E-01*	0.482E-01* 0.585E-01*		
4P - 5S 12492.0A C= 0.58E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.584E-01 0.672E-01 0.748E-01 0.844E-01 0.900E-01 0.115	0.409E-01 0.488E-01 0.573E-01 0.566E-01 0.513E-01 0.361E-01	0.136E-01 0.149E-01 0.165E-01 0.182E-01 0.193E-01 0.224E-01	0.109E-01 0.125E-01 0.141E-01 0.160E-01 0.171E-01 0.203E-01	0.116E-01 0.126E-01 0.138E-01 0.151E-01 0.160E-01 0.184E-01	0.868E-02 0.995E-02 0.113E-01 0.128E-01 0.138E-01 0.163E-01
4P - 6S 6929.5A ☞ 0.75E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.665E-01 0.765E-01 0.824E-01 0.916E-01 0.950E-01 0.117	0.477E-01 0.566E-01 0.623E-01 0.618E-01 0.553E-01 0.413E-01	0.143E-01 0.160E-01 0.180E-01 0.202E-01 0.216E-01 0.254E-01	0.123E-01 0.142E-01 0.163E-01 0.186E-01 0.200E-01 0.237E-01	0.116E-01 0.130E-01 0.145E-01 0.163E-01 0.174E-01 0.204E-01	0.962E-02 0.113E-01 0.130E-01 0.149E-01 0.160E-01 0.191E-01
4P - 7S 5795.3A c= 0.27E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.126 0.151 0.154 0.170 0.184 0.224	0.907E-01 0.109 0.109 0.103 0.895E-01 0.642E-01	0.264E-01 0.297E-01 0.333E-01 0.374E-01 0.400E-01 0.471E-01	0.214E-01 0.255E-01 0.297E-01 0.341E-01 0.368E-01 0.440E-01	0.213E-01* 0.239E-01* 0.268E-01 0.301E-01 0.322E-01 0.379E-01	0.165E-01* 0.200E-01* 0.235E-01 0.272E-01 0.294E-01 0.352E-01
4P - 8S 5334.3A C= 0.13E+19	2500. 5000. 10000. 20000. 30000.	0.232 0.260 0.298 0.323 0.360 0.425	0.160 0.186 0.188 0.152 0.127 0.762E-01	0.468E-01* 0.525E-01* 0.590E-01* 0.662E-01 0.708E-01 0.835E-01	0.351E-01* 0.432E-01* 0.512E-01* 0.594E-01 0.644E-01 0.774E-01	0.422E-01* 0.474E-01* 0.532E-01* 0.570E-01* 0.671E-01	0.335E-01* 0.403E-01* 0.471E-01* 0.513E-01* 0.619E-01

NE= 0.1E+16				DECOROLIC		TONT TET LIET	
TRANSITION	T(K)	2WE(A)	DE(A)	2WI (A)	DI (A)	2WI(A)	DI (A)
4P - 9S 5094.3A c= 0.76E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.431 0.475 0.537 0.623 0.695 0.796	0.299 0.338 0.313 0.243 0.189 0.907E-01	0.110* 0.123* 0.132* 0.155*	0.916E-01* 0.108* 0.118* 0.142*	0.106* 0.125*	0.932E-01 0.114*
4P -10S 4951.4A C= 0.48E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.730 0.807 0.924 1.11 1.23 1.38	0.475 0.517 0.491 0.357 0.259 0.105	0.261*	0.237*		
4P -11S 4859.0A C= 0.33E+18	2500. 5000. 10000. 20000. 30000. 80000.	1.19 1.31 1.52 1.87 2.06 2.28	0.771 0.763 0.690 0.487 0.364 0.124				
4P -12S 4795.7A ∝= 0.24E+18	2500. 5000. 10000. 20000. 30000. 80000.	1.73 2.06 2.38 2.98 3.27 3.58	1.02 1.08 0.885 0.616 0.465 0.144				
4P - 3D 11745.0A ☞ 0.44E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.253E-01 0.271E-01 0.312E-01 0.394E-01 0.464E-01 0.639E-01	0.130E-01 0.143E-01 0.142E-01 0.111E-01 0.944E-02 0.673E-02	0.872E-02 0.888E-02 0.908E-02 0.933E-02 0.952E-02 0.101E-01	0.339E-02 0.385E-02 0.435E-02 0.490E-02 0.525E-02 0.619E-02	0.853E-02 0.862E-02 0.874E-02 0.890E-02 0.901E-02 0.937E-02	0.271E-02 0.308E-02 0.349E-02 0.393E-02 0.421E-02 0.498E-02
4P - 4D 6955.2A c= 0.35E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.766E-01 0.839E-01 0.914E-01 0.101 0.109 0.120	0.551E-01 0.599E-01 0.579E-01 0.457E-01 0.405E-01 0.282E-01	0.199E-01 0.214E-01 0.232E-01 0.253E-01 0.267E-01 0.305E-01	0.135E-01 0.157E-01 0.180E-01 0.205E-01 0.221E-01 0.262E-01	0.176E-01 0.188E-01 0.201E-01 0.217E-01 0.227E-01 0.256E-01	0.106E-01 0.124E-01 0.144E-01 0.164E-01 0.177E-01 0.211E-01
4P - 5D 5825.3A c= 0.14E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.166 0.181 0.197 0.221 0.236 0.254	0.120 0.126 0.122 0.921E-01 0.774E-01 0.453E-01	0.419E-01* 0.454E-01* 0.494E-01 0.540E-01 0.570E-01 0.654E-01	0.268E-01* 0.323E-01* 0.378E-01 0.435E-01 0.470E-01 0.562E-01	0.367E-01* 0.395E-01* 0.425E-01* 0.459E-01* 0.482E-01 0.546E-01	0.206 E-0 0.253 E-0 0.346 E-0 0.375 E-0 0.450 E-0

....

NE= 0.1E+16)						
	datan	ELECTRONS		PROTONS		IONIZED HE	ELTUM
TRANSITION	T (K)	2WE(A)	DE(A)	2WI(A)	DI (A)	2WI(A)	DI(A)
4P - 6D	2500.	0.333	0.237				
5354.1A	5000.	0.364	0.247	0 896F-01+	0 6078-01+		
c= 0.74E+18	10000	0.398	0 224	0.070E-01+	0.00/1-01*		
	20000	0.452	0.164	0.3766-01*	0.7292-01*	1000	
	20000.	0.402	0.104	0.10/*	0.851E-01*	0.908E-01*	0.673E-01*
	30000.	0.483	0.128	0.113	0.925E-01	0.954E-01*	0.735E-01*
	80000.	0.512	0.581E-01	0.130	0.112	0.108*	0.891E-01*
4P - 7D	2500	0 624	0.440				
5107 28	2000.	0.024	0.440				
- 0 12E110	10000.	0.682	0.424				
0- 0.436718	10000.	0.752	0.378				
	20000.	0.863	0.272	212.0			
	30000.	0.917	0.204	0.210*	0.169*		
	80000.	0.960	0.736E-01	0.242*	0.206*		
4D - 0D	2500						
42 - 80	2500.	1.09	0.707				
4960.2A	5000.	1.20	0.737				
C= 0.28E+18	10000.	1.34	0.600				
	20000.	1.54	0.424				
	30000.	1.62	0.314				
ante C	80000.	1.68	0.986E-01				
10 00	0500		1.16				
4P - 90	2500.	1.80	1.11				
4865.2A	5000.	1.99	1.12	N. C. 308.0			
C= 0.19E+18	10000.	2.24	0.886				
	20000.	2.58	0.640				
	30000.	2.70	0.460				
	80000.	2.77	0.134	0.75 10			
10 00	Sec.	10.51					
4D - 7P	2500.	3.69	2.08	1.22*	0.484*		
27199.0A	5000.	4.51	2.29	1.26*	0.578*	1.20*	0.453*
c= 0.46E+20	10000.	5.61	2.25	1.30*	0.673*	1.24*	0.533*
	20000.	7.01	1.78	1.36	0.772	1.27*	0.615*
	30000.	7.90	1.54	1.39	0.834	1 20+	0.666*
	80000.	9.41	0.945	1.50	0.996	1.36	0.798
4D - 8P	2500.	4.77	2.81				
20691.0A	5000.	5.69	3.12				
c = 0.16E + 20	10000	6.90	2 02	1 66+	0.001+		
	20000	8 52	2.12	1.00*	0.901*		
	20000.	0.52	2.22	1.74*	1.05*		
	30000.	9.51	1./1	1.80*	1.14*	1.65*	0.904*
	80000.	11.0	0.868	1.96	1.37	1.76*	1.09*
55 - 5P	2500	0.350	0 126	0 174	0 2505 02	0 172	
27114 02	5000	0.116	0.110	0.174	0.350E-01	0.173	0.278E-01
- 0 20EL23	10000.	0.410	0.119	0.1/5	0.398E-01	0.174	0.318E-01
0.206721	10000.	0.550	U. 766E-01	0.176	0.451E-01	0.174	0.361E-01
	20000.	0.767	0.485E-01	0.177	0.509E-01	0.175	0.409E-01
	30000.	0.913	0.402E-01	0.177	0.545E-01	0.175	0.438E-01
	80000.	1.23	0.272E-01	0.180	0.645E-01	0.177	0.518E-01

NE= 0.1E+16		ET ECTRONIC		TROTONS		TONTZED HE	אוזד ד
TRANSTITON	T(K)	2WE(A)	DE(A)	2WI (A)	DI(A)	2WI (A)	DI (A)
55 - 6P 12531.0A Œ 0.19E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.302 0.352 0.420 0.514 0.585 0.732	0.186 0.213 0.217 0.176 0.153 0.116	0.119 0.122 0.126 0.130 0.132 0.141	0.458E-01 0.535E-01 0.614E-01 0.699E-01 0.753E-01 0.894E-01	0.115* 0.118* 0.120 0.123 0.125 0.130	0.359E-01* 0.423E-01* 0.489E-01 0.559E-01 0.603E-01 0.719E-01
5S - 7P 9951.3A c= 0.62E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.503 0.588 0.699 0.844 0.946 1.13	0.317 0.361 0.367 0.298 0.247 0.160	0.181* 0.188* 0.195* 0.203 0.208 0.225	0.732E-01* 0.878E-01* 0.103* 0.118 0.127 0.152	0.178* 0.184* 0.189* 0.193* 0.204	0.688E-01* 0.812E-01* 0.939E-01* 0.102* 0.122
55 - 8P 8924.4A c= 0.29E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.886 1.04 1.24 1.51 1.68 1.95	0.560 0.604 0.592 0.430 0.350 0.183	0.324* 0.340* 0.350* 0.381*	0.174* 0.202* 0.220* 0.264*	0.321* 0.342*	0.175* 0.211*
5S - 9P 8390.7A ∝ 0.17E+19	2500. 5000. 10000. 20000. 30000. 80000.	1.53 1.80 2.16 2.65 2.92 3.32	0.940 0.998 0.887 0.591 0.505 0.210	0.578* 0.632*	0.367* 0.446*		
5P - 6S 36529.0A ∝ 0.21E+21	2500. 5000. 10000. 20000. 30000. 80000.	1.80 2.09 2.47 2.99 3.44 4.45	1.19 1.41 1.46 1.26 1.09 0.868	0.441 0.473 0.510 0.554 0.583 0.664	0.294 0.340 0.390 0.443 0.477 0.565	0.394 0.417 0.445 0.477 0.499 0.560	0.231 0.270 0.311 0.354 0.382 0.454
5P - 7S 17979.0A c= 0.26E+20	2500. 5000. 10000. 20000. 30000. 80000.	1.22 1.39 1.54 1.75 1.97 2.43	0.853 1.03 0.977 0.895 0.775 0.543	0.255 0.284 0.317 0.354 0.378 0.444	0.200 0.238 0.277 0.318 0.343 0.410	0.209* 0.232* 0.258 0.288 0.307 0.359	0.154* 0.187* 0.220 0.253 0.274 0.328
5P - 3S 14178.0A c= 0.93E+19	2500. 5000. 10000. 20000. 30000.	1.69 1.88 2.17 2.42 2.72	1.17 1.35 1.36 1.07 0.866 0.509	0.345* 0.387* 0.434* 0.487* 0.521 0.613	0.256* 0.316* 0.375* 0.435* 0.471 0.566	0.312* 0.350* 0.392* 0.419* 0.493	0.244* 0.295* 0.345* 0.375* 0.453

M. S. Dimitrijević, S. Sahal--Bréchot

NE= 0.1E+16							
		ELECTRONS		PROTONS		IONIZED	HELIUM
TRANSITION	T(K)	2WE(A)	DE(A)	2WI (A)	DI(A)	2WI(A)	DI(A)
5P - 95	2500.	2.63	1.83				
12600 DA	5000	2.90	2.01				
= 0.46F+19	10000	3 32	1 89	0.669*	0 558*		
0- 0.401 15	20000	3 00	1.22	0.751*	0.659*		
	20000.	1.26	1.00	0.751*	0.000*	O EAC+	0 5604
	30000.	4.30	1.09	0.803*	0.7174	0.040*	0.000*
	80000.	5.01	0.509	0.94/*	0.869*	0.761*	0.693*
5P -105	2500	4 12	2 67				
11761 03	5000	1 56	2.07				
~ 0 27E+10	10000	4.00	2.07				
C- 0.2/E+19	20000.	5.25	2.02				
	20000.	6.35	1.12				
	30000.	7.06	1.41				
	80000.	7.94	0.557	1.4/*	1.34*		
5D -11C	2500	6 30	4 14				
11253 03	5000	7 02	4.14				
- 0 10F110	10000	0 17	2 10				
C- 0.10E+13	20000	0.1/	3.40				
	20000.	10.1	2.15				
	30000.	11.2	1.84				
	80000.	12.4	0.641				
5P - 4D	2500	2.01	1.35	0.504	0.340	0 448	0.267
37255 04	5000	2.01	1 34	0.542	0.395	0 476	0 313
C= 0 10F+21	10000	2.52	1.01	0.597	0.453	0.500	0.313
0- 0.101721	20000.	2.11	0.706	0.507	0.400	0.509	0.301
	20000.	3.41	0.786	0.639	0.515	0.547	0.412
	30000.	3.19	0.6/3	0.673	0.554	0.5/3	0.444
	80000.	4.46	0.391	0.769	0.658	0.645	0.528
5P - 5D	2500	1 61	1 11	0 391*	0 259\$	0 339*	0 198*
18272 03	5000	1.76	1 10	0.425*	0.311*	0.366*	0.243*
= 0.14F+20	10000	1 95	1 05	0 464	0.363	0.396*	0.245*
0- 0.146120	20000	2.27	0.700	0.404	0.303	0.330*	0.207-
	20000.	2.21	0.790	0.509	0.410	0.450*	0.333*
	80000.	2.47	0.352	0.539	0.452	0.452	0.360
5P - 6D	2500.	2.38	1.61	194			
14319.0A	5000.	2.60	1.66	0.628*	0.432*		
⊂ 0.53E+19	10000.	2.86	1.48	0.687*	0.518*		
	20000.	3.30	1.04	0.754*	0.605*	0.636*	0.479*
	30000.	3.54	0.836	0.797*	0.657*	0.669*	0.522*
	80000.	3.80	0.366	0.919	0.792	0.762*	0.633*
	0500	2.05	0.00				
5P - 7D	2500.	3.85	2.69				
12679.0A	5000.	4.22	2.56				
c= 0.27E+19	10000.	4.66	2.18				
	20000.	5.37	1.39				
	30000.	5.72	1.17	1.29*	1.04*		
	80000.	6.03	0.424	1.48*	1.27*		

NE = 0.1E + 16							
TRANSTITION	T(K)	ELECTRONS 2WE(A)	DE(A)	PROTONS 2WT (A)	DT (A)	IONIZED HE	LIUM DI (A)
	- ()	202(11)		2.1.2 (21)	DI(II)		
5P - 8D	2500.	6.20	3.99				
11811.OA	5000.	6.81	4.11				
C = 0.16E + 19	10000.	7.60	3.21				
	20000.	8.76	1.95				
	30000.	9.25	1.75				
	80000.	9.62	0.540				
5P - 9D	2500	9 67	5 77				
11286.0A	5000	10.7	5.96				
c = 0.10E + 19	10000.	12.1	4 48				
0.100.15	20000	13.9	2 85				
	30000	14 6	2.00				
	80000.	15.0	0.715				
		2010	0.710				
NE= 0.1E+17	3500	5 70	2.20	2 0.6 h	0.747	1 0 4 1	
3D = 3P	2500.	5.73	3.20	2.06*	0./4/*	1.96*	0.5/3*
51455.UA	5000.	0.55	3.90	2.13	0.897	2.04*	0.702*
C = 0.2/c+21	10000.	7.69	4.02	2.19	1.05	2.10*	0.829*
	20000.	9.42	3.63	2.27	1.20	2.15	0.959
	30000.	10.7	3.11	2.32	1.30	2.18	1.04
	80000.	14.0	2.40	2,4/	1.56	2.28	1.25
3D - 6P	2500.	3.52	2.13				
13384.UA	5000.	4.10	2.59	1.32*	0.552*		
C = 0.21E + 20	10000.	4.80	2.57	1.38*	0.675*		
	20000.	5.72	2.42	1.44*	0.797*	1.35*	0.628*
	30000.	6.40	2.18	1.48*	0.870*	1.38*	0.689*
	80000.	7.88	1.67	1.60	1.05	1.45*	0.842*
3D - 4F	2500.	2.64	-1.03	0.583*	-0.298*	0.527*	-0.224*
15165.0A	5000.	2.95	-0.658	0.623*	-0.368*	0.563*	-0:285*
$\simeq 0.17E+20$	10000.	3.55	-0.334	0.665	-0.437	0.595*	-0.344*
	20000.	4.08	-0.107	0.713	-0.507	0.630*	-0.402*
	30000.	4.39	-0.111	0.745	-0.550	0.653	-0.438
	80000.	5,08	0.416E-01	0.837	-0.661	0.719	-0.529
4S - 4P	2500.	0.448E-01	0.334E-01	0.276E-01	0.881E-02	0.270E-01*	0.696E-02*
7676.2A	5000.	0.509E-01	0.398E-01	0.280E-01	0.101E-01	0.274E01*	0.808E-02*
C = 0.47E + 20	10000.	0.624E-01	0.453E-01	0.284E-01	0.116E-01	0.277E-01*	0.925E-02*
	20000.	0.825E-01	0.461E-01	0.290E-01	0.131E-01	0.280E-01	0.105E-01
	30000.	0.973E-01	0.409E-01	0.294E-01	0.141E-01	0.283E-01	0.113E-01
	80000.	0.139	0.285E-01	0.306E-01	0.167E-01	0.291E-01	0.134E-01
4S - 5P	2500.	0.962E-01	0.580E-01	0.396E-01:	* 0.138E-01*	0.377E-01*	0.106E-01*
4045.2A	5000.	0.110	0.704E-01	0.410E-01	0.167E-01	0.394E-01*	0.130E-01*
c = 0.44E + 19	10000.	0.126	0.768E-01	0.422E-01	0.195E-01	0.405E-01*	0.154E-01*
	20000.	0.148	0.761E-01	0.436E-01	0.225E-01	0.414E-01	0.179E-01
	30000.	0.164	0.669E-01	0.445E-01	0.243E-01	0.420E-01	0.194E-01
	80000.	0.206	0.492E-01	0.472E-01	0.292E-01	0.438E-01	0.233E-01

NE= 0.1E+17							
		ELECTRONS		PROTONS		IONIZED HE	LIUM
TRANSITION	T(K)	2WE(A)	DE(A)	2WI(A)	DI(A)	2WI (A)	DI (A)
4S - 6P	2500.	0.233	0.140				
3446.7A	5000.	0.271	0.167				
c= 0.14E+19	10000.	0.315	0.179	0.960E-01*	0.456E-01*		
	20000.	0.373	0.169	0.100*	0.538E-01*		
	30000	0.414	0.149	0.103*	0.5875-01*	0 9575-01*	0 4658-01*
	80000	0 505	0 107	0.110	0.7125-01	0.101+	0.560E-01*
	00000.	0.505	0.107	0.110	0.7121-01	0.101~	0.3092-01*
4S - 7P	2500.	0.525	0.301				
3217.3A	5000.	0.614	0.369				
C = 0.64E + 18	10000.	0.723	0.367				
	20000.	0.864	0.326				
	30000.	0.961	0.279				
	80000.	1.14	0.184	0.237*	0.156*		
45 - 8P	2500.	1.07	0.571				
3101.9A	5000.	1.25	0.681				
c= 0.36E+18	10000.	1.49	0.694				
	20000.	1.80	0.559				
	30000.	2.00	0.468				
	80000.	2.32	0.277				
45 - 9P	2500.	1.98*	0.945*				
3034.8A	5000.	2.34*	1.12*	v			
o= 0.22E+18	10000.	2.82	1.12				
	20000.	3.44	0.874				
	30000.	3.80	0.732				
	80000.	4.31	0.395				
4D - 55	2500	0 583	0 397	0 136	0 9805-01	0 115	0 756F-01
12/02 03	5000	0.672	0.481	0 1/9	0.117	0 126	0.916F-01
- 0 50F120	10000	0.749	0.572	0.165	0.136	0 139	0.102
0-0.30ET20	10000.	0.740	0.572	0.100	0.156	0.153	0.108
	20000.	0.844	0.500	0.182	0.150	0.151	0.124
	30000.	0.900	0.513	0.193	0.168	0.160	0.134
	80000.	1.15	0.361	0.224	0.201	0.184	0.161
						10.00	
4P - 6S	2500.	0.665	0.452	0.143*	0.969E-01*	0.115*	0.706E-01*
6929.5A	5000.	0.765	0.548	0.160*	0.124*	0.129*	0.948E-01*
c= 0.75E+19	10000.	0.823	0.612	0.180*	0.151*	0.145*	0.117*
	20000.	0.916	0.615	0.202	0.177	0.163*	0.140*
	30000.	0.950	0.552	0.216	0.193	0.174*	0.153*
	80000.	1.17	0.413	0.254	0.233	0.204	0.186
4P - 75	2500	1.26	0.828				
5795.34	5000	1.51	1.03				
C= 0 27E+10	10000	1 54	1.05	0.333*	0.258*		
0-0.2/1119	20000.	1 70	1.00	0.3744	0 2124		
	20000.	1.70	1.02	0.3/4*	0.313*		
	30000.	1.84	0.888	0.400*	0.346*	0.0701	0.000+
	80000.	2.24	0.642	0.4/1*	0.425*	0.379*	0.338*

NE= 0.1E+17							
TRANSITION 4P - 85 5334.3A \simeq 0.13E+19	T(K) 2500. 5000. 10000. 20000. 30000.	ELECTRONS 2WE (A) 2.32 2.60 2.98 3.23 3.60	DE(A) 1.40 1.72 1.79 1.49 1.25	PROTONS 2WI (A)	DI (A)	IONIZED HE 2WI (A)	ELIUM DI (A)
	80000.	4.25	0.761	0.835*	0.738*		
4P - 9S 5094.3A ☞ 0.76E+18	2500. 5000. 10000. 20000. 30000. 80000.	4.30* 4.75 5.37 6.23 6.95 7.96	2.45* 3.00 2.88 2.31 1.83 0.903				
4P -10S 4951.4A ∝ 0.48E+18	2500. 5000. 10000. 20000. 30000. 80000.	7.21* 8.03* 9.21 11.1 12.3 13.8	3.49* 4.29* 4.32 3.37 2.45 1.04				
4P - 3D 11745.0A ∝ 0.44E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.253 0.271 0.312 0.394 0.464 0.639	0.128 0.142 0.142 0.111 0.943E-01 0.673E-01	0.867E-01 0.886E-01 0.907E-01 0.933E-01 0.952E-01 0.101	0.319E-01 0.370E-01 0.424E-01 0.483E-01 0.519E-01 0.616E-01	0.843E-01 0.859E-01 0.873E-01 0.890E-01 0.901E-01 0.937E-01	0.251E-01 0.294E-01 0.338E-01 0.386E-01 0.416E-01 0.495E-01
4P - 4D 6955.2A ☞ 0.35E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.766 0.839 0.914 1.01 1.09 1.20	0.522 0.578 0.567 0.453 0.403 0.282	0.195* 0.213* 0.232* 0.253* 0.267 0.305	0.105* 0.136* 0.165* 0.195* 0.212 0.257	0.185* 0.200* 0.216* 0.227* 0.256	0.103* 0.129* 0.154* 0.168* 0.205
4P - 5D 5825.3A c= 0.14E+19	2500. 5000. 10000. 20000. 30000. 80000.	1.66 1.81 1.97 2.21 2.36 2.54	1.09 1.18 1.17 0.903 0.763 0.452	0.569 * 0.653*	0.437* 0.542*		
4P - 6D 5354.1A c= 0.74E+18	2500. 5000. 10000. 20000. 30000.	3.33 3.63 3.98 4.52 4.83 5.12	2.02 2.22 2.07 1.58 1.25 0.578				

NE= 0.1E+17	1						
TONICTOTION	(TE)	ELECTRONS		PROTONS		IONIZED H	TELIUM
TRANSITION	.T.(K)	ZWE(A)	DE(A)	2WI(A)	DI(A)	2WI(A)	DI(A)
4P - 7D	2500.	6.16	3.41				
5107.2A	5000.	6.78	3.54				
c= 0.43E+18	10000.	7.49	3.32				
	20000	8.61	2 55				
	30000	9.15	1 93				
	80000	9 59	0 725				
	00000.	5.55	0.725				
55 - 5D	2500	3 50	1 22	1 704	0.220+	2 (5)	0.0101
27114 02	5000	1 16	1.23	1.70*	0.320*	1.65*	0.249*
2/114.0A	10000.	4.10	1.1/	1.73	0.377	1.71*	0.298*
C= 0.20E+21	10000.	5.50	0.756	1.75	0.436	1.73*	0.347*
	20000.	1.6/	0.480	1.76	0.498	1.75	0.398
	30000.	9.13	0.401	1.77	0.537	1.75	0.429
	80000.	12.3	0.271	1.80	0.641	1.77	0.513
55 - 6P	2500.	3.02	1.76				
12531.0A	5000.	3.52	2.06				
c= 0.19E+20	10000.	4.20	2.12	1.24*	0.562*		
	20000.	5.14	1.74	1.29*	0.663*	1.22*	0.522*
	30000.	5.85	1.52	1.32*	0.723*	1.24*	0.572*
	80000.	7.32	1.16	1.41	0.876	1.30*	0.699*
55 - 7P	2500.	5.02	2.87				
9951.3A	5000.	5.88	3.40	-			
c= 0.62E+19	10000.	6.99	3.55				
	20000.	8.44	2.93				
	30000.	9.46	2.43				
	80000.	11.3	1.59	2.25*	1.47*		
NE= 0.1E+18							
4S - 4P	2500.	0.448	0.320	0.263*	0.745E-01*	0.246*	0.560E-01
7676.2A	5000.	0.509	0.388	0.275	0.919E-01	0.265*	0.711E-01
c = 0.47E + 20	10000.	0.624	0.447	0.282	0.109	0.274*	0.857F-01
	20000.	0.825	0.459	0.289	0 126	0 279	0.100
	30000	0 973	0 409	0.203	0.127	0.202	0.100
	80000	1 30	0.205	0.295	0.165	0.202	0.109
	00000.	1.33	0.205	0.000	0.105	0.290	0.132
45 - 5D	2500	0.960	0 510				
10/15 22	5000	1 10	0.513				
4043.2A	10000.	1.10	100.0				
G- 0.446+19	10000.	1.20	0.738				
	20000.	1.48	0.743	0.432*	0.204*		
	30000.	1.64	0.655	0.443*	0.226*		
	80000.	2.06	0.491	0.472*	0.281*	0.437*	0.223*
10	0500	0.07					
45 - 6P	2500.	2.31	1.12				
3446.7A	5000.	2.70	1.48				
c= 0.14E+19	10000.	3.15	1.64				
	20000.	3.73	1.60				
	30000.	4.14	1.42				
	80000	5 04	1 06				

M. S. 1	Dimitrij	ević, S	S. Sahal	-Bréchot
---------	----------	---------	----------	----------

NE = 0.1E + 18							
		ELECTRON	5	PROTONS		IONIZED I	1ELIUM
TRANSITION	T(K)	2WE(A)	DE(A)	2WI (A)	DI (A)	2WI (A)	DI (A)
49 - 7D	2500	5 09*	1.97*				
40 - 75	5000	6.08*	2 95*				
321/.JA	10000	7.20	2.55				
C= 0.641+10	10000.	7.20	3.13				
	20000.	0.62	2.90				
	30000.	9.00	2.55				
	80000.	11.4	1.01				
		5.00	0.60	1 214	0 (07+		
4P - 5S	2500.	5.83	3.62	1.31*	0.62/*	1 22+	0 667+
12492.OA	5000.	6.72	4.57	1.48*	0.918*	1.23*	0.00/*
c = 0.58E + 20	10000.	7.48	5.56	1.64*	1.18*	1.3/*	0.900*
	20000.	8.44	5.59	1.82*	1.43*	1.51*	1.12*
	30000.	9.00	5.08	1.93	1.58	1.60*	1.24*
	80000.	11.5	3.60	2.24	1.95	1.84*	1.55*
4P - 6S	2500.	6.64	3.70				
6929.5A	5000.	7.65	4.90				
C = 0.75E + 19	10000.	8.23	5.72				
	20000.	9.16	5.91				
	30000.	9.50	5.40				
	80000.	11.7	4.11	2.54*	2.18*		
				0.0111	0.0561	0 7425	0 100+
4P - 3D	2500.	2.53	1.22	0.814*	0.256*	0.742*	0.100*
11745.0A	5000.	2.71	1.38	0.867*	0.326*	0.823*	0.249*
= 0.44E+20	10000.	3.12	1.41	0.900	0.393	0.860*	0.30/#
	20000.	3.94	1.11	0.931	0.460	0.885*	0.364*
	30000.	4.64	0.940	0.950	0.501	0.899	0.397
	80000.	6.39	0.673	1.01	0.605	0.936	0.483
4P - 4D	2500.	7.63	4.25				
6955.2A	5000.	8.38	5.10				
C = 0.35E + 19	10000.	9.13	5.19				
	20000.	10.1	4.25				
	30000.	10.9	3.89				
	80000.	12.0	2.80	3.05*	2.40*		
NE= 0.1E+19)						
4S - 4P	2500.	4.44	2.76				
7676.2A	5000.	5.08	3.57				
C = 0.47E + 20	10000.	6.24	4.25	2.66*	0.874*		
	20000.	8.25	4.45	2.83*	1.11*		
	30000.	9.72	4.01	2.90*	1.25*		
	80000.	13.9	2.84	3.06*	1.57*	2.89*	1.24*

ШТАРКОВО ШИРЕЊЕ ЛИНИЈА К І

Милан С. Димитријевић¹ и Sylvie Sahal-Bréchot²

¹ Астрономска опсерваторија, Волгина 7, 11050 Београд, Југославија ² Departement "Atomes et molecules en astrophysique", Unité associée au C. N. R. S. No 812, Observatoire de Paris Meudon, France

УДК 52-355.3

Претходно саопштење

Користећи семикласичан прилаз, у раду су израчунате ширине и помаци за 51 мултиплет неутралног калијума, проузроковане сударима са електронима, протонима и јонизованим хелијумом. Резултати су дати у функцији електронске температуре и густине.

Milan S. Dimitrijević¹ and Sylvie Sahal-Bréchot²

¹Astronomical Observatory, Volgina 7, 11050 Beograd, Yugoslavie ²Department "Atomes et molecules en astrophysique", Unité associée au C. N. R. S. No 812, Observatoire de Paris, 92195 Meudon, France

(Received: August 4, 1989)

SUMMARY: A semiclassical approach has been used to evaluate electron-, proton-, and ionized-helium-impact line widths and shifts for 61 neutral sodium multiplets as a function of electron temperature and electron density.

Reliable Stark broadening parameters for Na I lines are useful for a number of problems in astrophysics (e.g. Caccin, Gomez and Roberti, 1980; Vince, Dimitrijević and Kršljanin, 1985), plasma diagnostics (Griem, 1974), technology of high pressure discharge lamps (Stormberg, 1980; Wharmby, 1980) etc. Using a semiclassical-perturbational approach (Sahal-Bréchot, 1969, a,b) we have calculated recently (Dimitrijević and Sahal--Bréchot, 1989) electron-, proton-, and ionized helium-impact broadening parameters for 46 neutral sodium multiplets with the principal quantum number (n) of the upper state between 6 and 10, at perturber density $N = .10^{13}$ cm⁻³ and electron impact broadening parameters at $N = 10^{16}$ cm⁻³. For higher densities the departure from the linear density law due to Debye screening influences on the accuracy of the method (this is especially serious in the case of the shift) making that extrapolation to higher densities is sometimes difficult and inaccurate.

In order to enable such extrapolation, we calculated Stark broadening data for 61 Na I multiplets for perturber densities $10^{13} - 10^{19}$ cm⁻³, when validity conditions of the theory are satysfied. Data at 10^{13} and 10^{16} cm⁻³ for $n \ge 6$, can be found in Dimitrijević and Sahal-Bréchot (1989), where all details of the calculations are given. For the discussion and the comparison with experimental data see also Dimitrijević and Sahal-Bréchot (1985). Energy level data were taken from Bashkin and Stoner (1975). The calculated values are presented in Table 1. We checked that for each value given in the Table, the collision volume (V) multiplied by the perturber density (NE) is much less than one. In such a case the impact approximation is valid (Sahal-Bréchot, 1969). The values for which NE \cdot V > 0.5 are not given in the Table, while values where $0.1 < \text{NE} \cdot \text{V} \leq 0.5$ are denoted with an asterisk and are given in order to enable interpolation to lower densities. In the case when the impact approximation is not valid, the ion broadening contribution may be estimated by the quasistatic ion-broadening parameter (Griem, 1974).

Table 1. This table lists electron—, proton— and ionized helium—impact broadening parameters for Na I lines for perturber densities from 10^{13} to 10^{18} cm⁻³ and temperatures from 2500 to 80,000 K. Transitions and averaged wavelengths for the multiplet (in Å) are also given. Under 2W are given full halfwidths, while D denotes corresponding shifts. Using c (sce Eq. (4) in the preceeding article), we obtain an estimate for maximum perturber density for which the line may be treated as isolated and the tabulated values may be used. Asterisk denotes cases when the colision volume multipled by the electron denisity (condition for the validity of the impact approximation) lies between 0.1 and 0.5. M. S. Dimitrijević, S. Sahal-Bréchot

NE = 0.1E + 14							
		ELECTRONS		PROTONS		IONIZED HE	LIUM
TRANSITION	T(K)	$2WE(\Lambda)$	DE(A)	2WI(A)	DI(A)	2WI (A)	DI(A)
3S - 3P	2500.	0.191E - 04	0.132E - 04	0.126E - 04	0.372E - 05	0.1255-04	0.301E-05
5891.8A	5000.	0.211E-04	0.155E - 04	0.127E - 04	0.417E - 05	0.126E-04	0.338E-05
c = 0.30E + 20	10000.	0.249E - 04	0.178E - 04	0.129E-04	0.469E - 05	0.127E - 04	0.380E-05
	20000.	0.322E - 04	0.182E - 04	0.130E - 04	0.526E-05	0.128E-04	0.426E-05
	30000.	0.381E-04	0.183E - 04	0.132E - 04	0.563E-05	0.128E-04	0.456E-05
	80000.	0.5512 - 04	0.129E - 04	0.136E - 04	0.663E-05	0.131E - 04	0.537E-05
3S - 42	2500.	0.649E-04	-0.241E-04	0.224E - 04	-0.797E - 05	0.220E - 04	-0.645E-05
3302.6A	5000.	0.725E - 04	-0.148E-04	0.227E-04	-0.896E-05	G.222E-04	-0.725E-05
c = 0.12E + 19	10000.	0.864E-04	-0.448E-05	0.2316 - 04	-0.101E - 04	0.2242-04	-0.815E-05
	20000.	0.100E - 03	0.232E-05	0.236E04	-0.113E-04	0.227E - 04	-0.915E-05
	30000.	0.108E-03	0.579E - 05	0.239E - 04	-0.121E-04	$0.230\Sigma - 04$	-0.979E-05
	80000.	0.126E - 03	0.634E-05	0.251E - 04	-0.142E-04	0.237E - 04	-0.115E-04
30 50	35.05						
35 - 5P	2500.	0.202E-03	-0.114E-03	0.599E - 04	-0.341E-04	0.565E-04	-0.2768-04
2852.8A	5000.	0.221E-03	-0.100E-03	0.624E - 04	-0.384E-04	0.582E - 04	-0.3105-04
C= 0.406+18	10000.	0.254E-03	-0.668E-04	0.656E - 04	-0.432E-04	0.603E - 04	-0.3492-04
	20000.	0.295E-03	-0.465E-04	0.695E - 04	-0.485E-04	0.630E-04	-0.393E-04
	30000.	0.313E-03	-0.344E-04	0.721E - 04	-0.520E - 04	0.648E - 04	-0.421E-04
	80000.	0.347E-03	-0.115E-04	0.799E - 04	-0.609E-04	0.703 ± 04	~0.496E-04
T N	25.20	0 3635 05					
3P - 45	2500.	0.367E-03	0.2528-03	0.85/2-04	0.708E - 04	0.737E-04	0.573E-04
11397.UA	5000.	0.4202-03	0.301E-03	0.9385-04	0.795E-04	0.7996-04	0.644E-04
c = 0.598+20	10000.	0.4668-03	0.356E-03	0.1035-03	0.893E-04	0.871E-04	0.724E-04
	20000.	0.5156-03	0.334E - 03	0.114E-03	0.100E - 03	0.9548-04	0.812E-04
	30000.	0.5526-03	0.3298-03	0.121E-03	0.10/E - 03	0.101E-03	0.869E-04
	80000.	U. /02E-03	0.2282-03	0.140E-03	0.126E - 03	0.116E - 03	0.102E-03
17 E.C	7500	0 4050 03	0 2047 02	0.0675.04	0 0075 04	0 7060 04	0 (5) 0 01
3F - 35 (159 (1	2500.	0.4056-03	0.2945-03	0.8675-04	0.807E-04	0.7068-04	U.653E-04
010c.0A	10000.	0.4000-03	0.3516-03	0.9716-04	0.908E-04	0.7905-04	0.7356-04
C= 0.705#19	20000	0.5002-03	0.3636-03	0.1096-03	0.1026-03	0.8852-04	0.8275-04
	30000.	0.5056-03	0.3066-03	0.1226-03	0.1136-03	0.9916-04	0.9298-04
	80000	0.3032~03	0.3396-03	0.1506-03	0.1450-03	0.1055-03	0.33352-05
	80000.	0.7322-03	0.2046-03	0.1342-03	0.1456-03	0.1236-03	0.11/E-03
3P - 3D	2500	0 3128-03	0 2285-03	0 8148-04	0 6175-04	0 7215-04	0 5008-04
8191 14	5000	0 3558-03	0.2475-03	0.8795-04	0 6948-04	0.7595-04	0.5628-04
c = 0.74F + 19	10000	0 3855-03	0 247E-03	0 9558-04	0.7808-04	0.8755-04	0 632E-04
• • • • • • • • • • • •	20000.	0.413E-03	0 2278-03	C 104d-03	0 8768-04	0 8928-04	0 7105-04
	30000.	0.4288-03	0.201E-03	0.1108-03	0 937E-04	0.9368-04	0.7598-04
	80000.	0.4745-03	0 1372-03	0 1268-03	0 1108-03	0 1065-03	0 3948-04
			0.13.4 0.5	1.1202 00	V.1100 05	9.1002 05	0.0040-04
3P - 4D	2500.	0.255E-02	0.126E-02	0.699E-03	0.638E - 03	0.5698-03	0.514E-03
5686.4A	5000	0.243E-02	0.107E-02	0.784E - 03	0.7238-03	0.6375-03	0 5848-03
c= 0.13E+18	10000.	0.226E-02	0.836E-03	0.883E-03	0.816E-03	0.713E-03	0.6618-03
	20000.	0.208E02	0.598E-03	0.100E-02	0.919E-03	0.800E-03	0.7438-02
	30000.	0.197E-02	0.479E-03	0.109E-02	0.986E-03	0.858E-03	0.7975-0
	30000.	0.170E-02	0.262E-03	0.130E-02	0.120E-02	0.103E-02	0.941E-03
		1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -					
3P - 5D	2500.	0.672E-02	0.321E-02	0.189E - 02	0.170E-02	0.154E-02	0.136E-02
4981.4A	5000.	0.633E-02	0.249E-02	0.212E-02	0.194E-02	0.172E-02	0.156E-02
c = 0.52E + 17	10000.	0.585E-02	0.189E-02	0.239E-02	0.220E-02	0.193E-02	0.177E-02
	20000.	0.532E-02	0.121E-02	0.272E-02	0.249E-02	0.217E-02	0.201E-02
	30000.	0.500E-02	0.9455-03	0.2955-02	0.267E-02	0.233E-02	0.216E-02
	30000.	0.419E-02	0.426E-03	0.354E-02	0.325E-02	0.279E-02	0.255E-02

NE= 0.1E+14						
TRANSITION	Т(К)	ELECTRONS 2WE(A)	DE(A)	PROTONS 2WI(A)	DI(A)	IONIZED HELIUM 2WI(A) DI(A)
3D - 4P	2500.	0.734E-01	-0.424E-01	0.169E-01	-0.110E-01	0.156E-01 -0.892E-02
91050.0A	5000.	0.814E-01	-0.428E-01	0.179E-01	-0.124E-01	0.162E-01 -0.100E-01
c= 0.91E+21	10000.	0.901E-01	-0.336E-01	0.191E-01	-0.139E-01	0.171E-01 -0.113E-01
	20000.	0.105	-0.252E-01	0.205E-01	-0.156E-01	0.181E-01 -0.127E-01
	30000.	0.114	-0.221E-01	0.214E-01	-0.167E-01	0.188E-01 -0.136E-01
	80000.	0.131	-0.1296-01	0.2416-01	-0.19/6-01	0.20/E-01 -0.160E-01
3D - 5P	2500.	0.785E-02	-0.463E-02	0.208E-02	-0.130E-02	0.193E-02 -0.105E-02
17038.7A	5000.	0.874E-02	-0.441E-02	0.219E-02	-0.146E-02	0.200E-02 -0.118E-02
c = 0.14E + 20	10000.	0.986E-02	-0.328E-02	0.232E-02	-0.165E-02	0.209E-02 -0.133E-02
	20000.	0.115E-01	-0.260E-02	0.248E-02	-0.185E-02	0.221E-02 -0.150E-02
	80000.	0.136E-01	-0.104E-02	0.299E-02	-0.233E-02	0.229E-02 = 0.180E-02 0.251E-02 = 0.189E-02
3D - 4F	2500.	0.188E-01	-0.586E-02	0.552E-02	-0.508E-02	0.448E-02 - 0.410E-02
18465.3A	5000.	0.177E-01	-0.359E-02	0.621E-02	-0.576E-02	0.502E-02 -0.465E-02
c= 0.14E+19	10000.	0.164E-01	-0.180E-02	0.701E-02	-0.648E-02	0.564E-02 -0.525E-02
	20000.	0.149E-01	-0.785E-03	0.801E-02	-0.730E-02	0.634E-02 -0.591E-02
	30000.	0.142E-01	-0.445E-03	0.870E-02	-0.787E-02	0.681E-02 -0.633E-02
	80000.	0.1266-01	0.2216-03	0.1032-01	-0.9746-02	0.821E-02 -0.748E-02
45 - 4P	2500	0.3568-02	-0.1895-02	0.105E-02	-0.504E-03	0.102E-02 -0 408E-03
22070.0A	5000.	0.385E-02	-0.189E-02	0.108E-02	-0.567E-03	0.103E-02 -0.459E-03
c= 0.53E+20	10000.	0.440E-02	-0.165E-02	0.112E-02	-0.637E-03	0.106E-02 -0.516E-03
	20000.	0.529E-02	-0.124E-02	0.117E-02	-0.715E-03	0.109E-02 -0.579E-03
	30000.	0.589E-02	-0.105E-02	0.120E-02	-0.765E-03	0.111E-02 -0.620E-03
	80000.	0.723E-02	-0.658E-03	0.130E-02	-0.901E-03	0.118E-02 -0.730E-03
45 - 5P	2500	0.298E-02	-0.171E-02	0.859E-03	-0.4995-03	0.8085-03 -0.4045-03
10747.0A	5000.	0.325E-02	-0.162E-02	0.898E-03	-0.562E-03	0.833E-03 -0.455E-03
c= 0.57E+19	10000.	0.372E-02	-0.124E-02	0.945E-03	-0.633E-03	0.866E-03 -0.512E-03
	20000.	0.438E-02	-0.103E-02	0.100E-02	-0.711E-03	0.906E-03 -0.576E-03
	30000.	0.470E-02	-0.800E-03	0.104E-02	-0.762E-03	0.933E-03 -0.617E-03
	80000.	0.531E-02	-0.387E-03	0.116E-02	-0.897E-03	0.101E-02 -0.727E-03
4P - 4D	2500.	0.451E-01	0.216E-01	0.118E-01	0.108E-01	0.961E-02 0.872E-02
23370.0A	5000.	0.433E-01	0.187E-01	0.133E-01	0.123E-01	0.108E-01 0.991E-02
c= 0.22E+19	10000.	0.408E-01	0.148E-01	0.149E-01	0.138E-01	0.121E-01 0.112E-01
	20000.	0.381E-01	0.105E-01	0.170E-01	0.156E-01	0.136E-01 0.126E-01
	30000.	0.367E-01	0.824E-02	0.184E-01	0.167E-01	0.145E-01 0.135E-01
	80000.	0.329E-01	0.432E-02	0.221E-01	0.203E-01	0.1/4E-01 0.160E-01
4P - 5D	2500.	0.599E-01	0.282E-01	0.166E-01	0.149E-01	0.135E-01 0.120E-01
14776.0A	5000.	0.566E-01	0.229E-01	0.187E-01	0.171E-01	0.151E-01 0.137E-01
c= 0.45E+18	10000.	0.525E-01	0.174E-01	0.211E-01	0.194E-01	0.170E-01 0.156E-01
	20000.	0.481E-01	0.116E-01	0.239E-01	0.219E-01	0.191E-01 0.177E-01
	80000.	0.385E-01	0.408E-02	0.311E-01	0.286E-01	0.245E-01 0.225E-01
55 - 5P	2500.	0.948E-01	-0.576E-01	0.235E-01	-0.152E-01	0.217E-01 -0.123E-01
54318.3A	5000.	0.106	-0.610E-01	0.249E-01	-0.171E-01	0.226E-01 -0.138E-01
c = 0.15E + 21	10000.	0.120	-0.572E-01	0.265E-01	-0.192E-01	0.237E-01 -0.156E-01
	20000.	0.139	-0.463E-01	0.284E-01	-0.216E-01	0.251E-01 -0.175E-01
	80000.	0.152	-0.255E-01	0.297E-01 0.334E-01	-0.273E-01	0.288E-01 -0.221E-01
NE= 0.1E+15	5					
35 - 3P	2500.	0.191E-03	0.132E-03	0.126E-03	0.371E-04	0.125E-03 0.300E-04
0091.8A	10000	0.211E-03	0.1555-03	0.1276-03	0.41/6-04	0.120E-03 0.338E-04
0.306720	20000	0.322E-03	0.182E-03	0.130E-03	0.526E-04	0.128E-03 0.426E-04
	30000.	0.381E-03	0.183E-03	0.132E-03	0.563E-04	0.128E-03 0.456E-04
	80000.	0.551E-03	0.129E-03	0.136E-03	0.663E-04	0.131E-03 0.537E-04

NE= 0.1E+15					
TRANSITION	Т(К)	ELECTRONS 2WE(A)	r:(A)	PROTONS 2WI(A) DI(A)	IONIZED HELIUM 2WI(A) DI(A)
35 - 4P 3302.6A c= 0.12E+19	2500. 5000. 10000. 20000. 30000.	0.649E-03 0.725E-03 0.864E-03 0.100E-02 0.108E-02	-0.241E-03 -0.148E-03 -0.448E-04 0.232E-04 0.579E-04	0.224E-03 -0.790E-04 0.227E-03 -0.890E-04 0.231E-03 -0.100E-03 0.236E-03 -0.113E-03 0.239E-03 -0.121E-03	$\begin{array}{c} 0.220E-03 & -0.637E-04 \\ 0.222E-03 & -0.721E-04 \\ 0.224E-03 & -0.811E-04 \\ 0.227E-03 & -0.913E-04 \\ 0.230E-03 & -0.978E-04 \\ 0.230E-03 & -0$
3S - 5P 2852.8A c= 0.40E+18	2500. 5000. 10000. 20000.	0.202E-02 0.221E-02 0.254E-02 0.295E-02	-0.113E-02 -0.998E-03 -0.668E-03 -0.465E-03	0.251E-03 -0.142E-03 0.598E-03 -0.332E-03 0.624E-03 -0.378E-03 0.656E-03 -0.428E-03 0.695E-03 -0.483E-03	0.564E-03 -0.267E-03 0.581E-03 -0.305E-03 0.603E-03 -0.346E-03 0.630E-03 -0.391E-03
	30000. 80000.	0.313E-02 0.347E-02	-0.344E-03 -0.115E-03	0.721E-03 -0.517E-03 0.799E-03 -0.608E-03	0.648E-03 -0.419E-03 0.703E-03 -0.4952-03
35 - 6P 2680.4A c= 0.19E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.528E-02 0.573E-02 0.653E-02 0.749E-02 0.785E-02 0.843E-02	-0.337E-02 -0.286E-02 -0.206E-02 -0.145E-02 -0.110E-02 -0.366E-03	0.143E-02 -C.909E-03 0.152E-02 -0.105E-02 0.163E-02 -0.119E-02 0.176E-02 -0.135E-02 0.184E-02 -0.145E-02 0.208E-02 -0.172E-02	C.131E-02 -0.726E-03 O.137E-02 -0.839E-03 O.145E-02 -0.959E-03 O.154E-02 -0.109E-02 O.160E-02 -0.117E-02 C.178E-02 -0.139E-02
35 - 7P 2593.9A c= 0.10E+18	2500. 5000. 10000. 20000. 30000. 80000.	$\begin{array}{c} 0.118 \pm -01 \\ 0.127 \pm -01 \\ 0.145 \pm -01 \\ 0.164 \pm -01 \\ 0.170 \pm -01 \\ 0.178 \pm -01 \end{array}$	-0.732E-02 -0.662E-02 -0.470E-02 -0.334E-02 -0.247E-02 -0.749E-03	0.304E-02*-0.202E-02* 0.327E-02 -0.236E-02 0.354E-02 -0.271E-02 0.385E-02 -0.309E-02 0.406E-02 -0.332E-02 0.464E-02 -0.395E-02	0.272E-02*-0.160E-02* 0.289E-02*-0.188E-02* 0.308E-02*-0.218E-02* 0.332E-02 -0.249E-02 0.347E-02 -0.268E-02 0.391E-02 -0.320E-02
35 - 8P 2543.8A c= 0.63E+17	2500. 5000. 10000. 20000. 30000. 80000.	0.235E-01 0.252E-01 0.288E-01 0.321E-01 0.331E-01 0.340E-01	-0.153E-01 -0.125E-01 -0.913E-02 -0.675E-02 -0.455E-02 -0.126E-02	0.588E-02*-0.393E-02* 0.638E-02*-0.468E-02* 0.695E-02*-0.544E-02* 0.761E-02*-0.624E-02* 0.805E-02 -0.673E-02 0.929E-02 -0.804E-02	0.554E-02*-0.371E-02* 0.598E-02*-0.435E-02* 0.648E-02*-0.501E-02* 0.681E-02*-0.542E-02* 0.775E-02*-0.649E-02*
35 - 9F 2512.1A c= 0.425+17	2500. 5000. 10000. 20000. 30000. 80000.	$\begin{array}{c} C.431E-01\\ 0.461E-01\\ 0.526E-01\\ 0.578E-01\\ 0.593E-01\\ 0.600E-01 \end{array}$	-0.262E-01 -0.227E-01 -0.144E-01 -0.104E-01 -0.743E-02 -0.234E-02	0.126E-01*-0.991E-02* 0.139E-01*-0.115E-01* 0.147E-01*-0.124E-01* 0.171E-01*-0.149E-01*	0.124E-01*-0.997E-02* 0.141E-01*-0.120E-01*
35 -10P 2490.7A c= 0.29E+17	2500. 5000. 10000. 20000. 30000. 80000.	$\begin{array}{c} 0.739 \pm -01 \\ 0.789 \pm -01 \\ 0.898 \pm -01 \\ 0.974 \pm -01 \\ 0.994 \pm -01 \\ 0.990 \pm -01 \end{array}$	-0.445E-01 -0.372E-01 -0.257E-01 -0.161E-01 -0.113E-01 -0.270E-02	0.294E-01*-0.257E-01*	
3P - 4S 11397.0A c= 0.59E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.367E-02 0.420E-02 0.466E-02 0.515E-02 0.552E-02 0.702E-02	0.262E-02 0.301E-02 0.356E-02 0.334E-02 0.329E-02 0.228E-02	0.857E-03 0.703E-03 0.103E-02 0.103E-02 0.114E-02 0.107E-02 0.121E-02 0.126E-02 0.126E-02	$\begin{array}{cccccc} C.737E-03 & 0.567E-03 \\ 0.799E-03 & 0.640E-03 \\ 0.871E-03 & 0.721E-03 \\ 0.954E-03 & 0.811E-03 \\ 0.101E-02 & 0.863E-03 \\ 0.116E-02 & 0.102E-02 \end{array}$
3P - 55 6158.6A c= 0.70E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.405E-02 0.468E-02 0.508E-02 0.563E-02 0.563E-02 0.589E-02 0.732E-02	0.293E-02 0.350E-02 0.383E-02 0.366E-02 0.339E-02 0.254E-02	0.867E-03 0.971E-03 0.109E-02 0.122E-02 0.122E-02 0.122E-02 0.122E-02 0.122E-02 0.122E-02 0.122E-02 0.122E-02 0.122E-02	0.706E-03 0.639E-03 0.790E-03 0.726E-03 0.885E-03 0.822E-03 0.991E-03 0.925E-03 0.106E-02 0.991E-03 0.125E-02 0.117E-02

NE= 0.1E+15							
		ELECTRONS		PROTONS	A	IONIZED HEL	IUM
TRANSITION	T(K)	2WE(A)	DE(A)	2WI(A)	DI(A)	2W1(A) D	1 (A)
						0 1010 00	0 1100 00
3P - 65	2500.	0.780E-02	0.571E - 02	0.162E-02	0.1476-02	0.1316-02	0.1265-02
5151.9A	5000.	0.892E-02	0.648E-02	0.182E - 02	0.168E-02	0.14/E-02	0.1356-02
c= 0.25E+19	10000.	0.974E-02	0.676E-02	0.204E - 02	0.190E-02	0.165E - 02	0.153E-02
	20000.	0.110E-01	0.640E-02	0.229E-02	0.215E-02	0.186E-02	0.174E - 02
	30000.	0.119E-01	0.546E-02	0.245E-02	0.230E-02	0.199E-02	0.186E-02
	80000.	0.146E-01	0.375E-02	0.289E-02	0.272E-02	0.234E-02	0.220E-02
3P - 75	2500.	0.152E-01	0.107E-01	0.302E-02	0.269E-02	0.245E-02	0.215E-02
4750.6A	5000.	0.173E-01	0.122E-01	0.339E-02	0.309E-02	0.275E-02	0.248E-02
c = 0.12E + 19	10000.	0.190E-01	0.118E-01	0.381E-02	0.352E-02	0.309E-02	0.284E-02
	20000.	0.219E-01	0.101E-01	0.428E-02	0.399E-02	0.347E-02	0.322E-02
	30000.	0.245E-01	0.844E-02	0.458E-02	0.429E-02	0.371E-02	0.347E-02
	80000.	0.293E-01	0.528E-02	0.540E-02	0.507E-02	0.437E-02	0.410E-02
	1.63 - 5	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
3P - 85	2500.	0.271E-01	0.189E - 01	0.533E-02	0.464E - 02	0.432E-02	0.368E-02
4544.2A	5000.	0.307E-01	0.206E-01	0.599E-02	0.538E-02	0.485E-02	0.430E-02
c= 0.68E+18	10000.	0.361E-01	0.198E-01	0.672E-02	0.616E-02	0.544E-02	0.495E-02
	20000.	0.423E-01	0.151E-01	0.755E-02	0.700E-02	0.611E-02	0.564E-02
	30000.	0.475E-01	0.126E-01	0.808E-02	0.753E-02	0.654E-02	0.608E-02
	80000.	0.555E-01	0.692E-02	0.952E-02	0.893E-02	0.771E-02	0.723E-02
3P - 95	2500.	0.460E-01	0.310E-01	0.886E-02*	0.748E-02*	0.718E-02*	0.589E-02*
4423.5A	5000.	0.526E-01	0.325E-01	0.995E-02	0.878E-02	0.806E-02*	0.699E-02*
c= 0.43E+18	10000.	0.627E-01	0.299E-01	0.112E-01	0.101E-01	0.905E-02*	0.811E-02*
	20000.	0.770E-01	0.218E-01	0.125E-01	0.115E-01	0.102E-01	0.930E-02
	30000.	0.861E-01	0.178E-01	0.134E-01	0.124E-01	0.109E-01	0.100E-01
	80000.	0.986E-01	0.694E-02	0.158E-01	0.148E-01	0.128E-01	0.120E-01
3P - 3D	2500.	0.312E-02	0.228E-02	0.814E-03	0.611E-03	0.721E-03	0.493E-03
8191.1A	5000.	0.355E-02	0.247E-02	0.879E-03	0.691E-03	0.768E-03	0.558E-03
c = 0.74E + 19	10000	0.385E-02	0.247E-02	0.9555-03	0.777E-03	0 825E-03	0.629E-03
	20000	0 413E-02	0.227E-02	0.104E - 02	0 874E-03	0.8925-03	0.708E-03
	30000	0 4285-02	0 2015-02	0 110E-02	0 9365-03	0 9365-03	0 7585-03
	80000	0 4745-02	0 1375-02	0 1265-02	0.1105-02	0 1068-03	0.8945-03
	00000.	0.4/42-02	0.1375-02	0.1201-02	0.1101-02	0.1001-02	0,0342-05
3P - 4D	2500	0.255E-01	0.123E-01	0.698E-02	0.605E-02	0.5698-02	0.481E - 02
5686 44	5000	0 2438-01	0 106E-01	0 784E-02	0 6998-02	0 636E-02	0 560E-02
C= 0 125+19	10000.	0.2365-01	0 9335-03	0.9975-02	0.7095-02	0.7125-02	0.5005-02
C= 0.150+10	20000.	0.2205-01	0.5078-02	0.1005-01	0.0075-02	0.9005-02	0.7378-02
	20000.	0.2006-01	0.3976-02	0.1002-01	0.9072-02	0.8006-02	0.7525-02
	30000.	0.19/6-01	0.4/96-02	0.109E-01	0.9786-02	0.858E-02	0.7886-02
	80000.	0.1702-01	0.2026-02	0.1306-01	0.1196-01	0.1036-01	0.9366-02
3P - 5D	2500	0 6728-01	0 3045-01	0 1805-01*	0 1538-01*		
10.01 43	2500.	0 6335 01	0.3032-01	0 2125 01*	0.1038 014	0 1725 01+	0 1445 014
4901.4A	5000.	0.0336-01	0.2436-01	0.2126-01*	0.102E-01*	0.1726-01*	0.1446-01*
C= 0.52E+17	10000.	U.585E-01	0.18/8-01	0.2398-01*	0.2115-01*	0.1936-01*	0.1096-01*
	20000.	0.532E-01	0.120E-01	0.272E-01	0.2426-01	0.2176-01*	0.195E-01*
	30000.	0.500E-01	0.942E-02	0.295E-01	0.2625-01	0.2328-01*	0.210E-01*
	80000.	0.419E-01	0.426E-02	0.354E-01	0.3226-01	0.2796-01	0.252E-01
30 60	2500	0 144	0 6010 01				
JF - OD	2500.	0.144	0.0015-01				
4007.5A	10000.	0.135	0.4/25-01				
C= 0.28E+17	10000.	0.124	0.3165-01	0 5005 000			
	20000.	0.113	0.213E-01	0.5985-014	0.521E-01*		
	30000.	0.106	0.166E-01	0.648E-01*	0.500E-01*	0 (120 011	0 5475 0411
	80000.	0.875E-01	0.630E-02	0.//6E-01*	0.703E-01*	0.612E-01*	U.54/E-01**
20 20	2500	0 272	0 0007 01				
3P - 10	2500.	0.272	0.9995-01				
4496.6A	5000.	0.255	0.012E-01				
c= 0.1/E+17	10000.	0.236	0.455E-01				
	20000.	0.213	0.347E-01				
	30000.	0.199	0.265E-01				
	80000	0 164	0 851E-02				

NE = 0.1E + 15							
TRANSITION	T (K)	ELECTRONS 2WE(A)	DE(A)	PROTONS 2WI(A)	DI(A)	IONIZED HE 2WI(A)	DI(A)
3P - 8D 4392.3A c= 0.96E+16	2500. 5000. 10000. 20000. 30000. 80000.	0.477 0.448 0.414 0.374 0.348 0.284	0.160 0.125 0.789E-01 0.428E-01 0.395E-01 0.108E-01				
3P 9D 4323.5A c= 0.67E+16	$\begin{array}{c} 2500 \\ 5000 \\ 2000 \\ 30000 \\ 80000 \\ \end{array}$	0.739 0.705 0.658 0.596 0.555 0.454	0.230 0.176 0.116 0.651E-01 0.454E-01 0.138E-01				
3D - 4P 91050.0A c= 0.91E+21	2500. 5000. 10000. 20000. 30000. 80000.	0.734 0.814 0.901 1.05 1.14 1.31	-0.423 -0.428 -0.336 -0.252 -0.221 -0.129	0.169 0.179 0.191 0.205 0.214 0.241	-0.109 -0.123 -0.139 -0.156 -0.167 -0.197	0.156 0.162 0.171 0.181 0.188 0.207	-0.877E-01 -0.994E-01 -0.112 -0.126 -0.135 -0.160
3D - 5P 17038.7A c= 0.14E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.785E-01 0.874E-01 0.986E-01 0.115 0.123 0.136	-0.462E-01 -0.441E-01 -0.328E-01 -0.260E-01 -0.26E-01 -0.104E-01	0.207E-01 0.219E-01 0.232E-01 0.248E-01 0.259E-01 0.290E-01	-0.127E-01 -0.144E-01 -0.163E-01 -0.184E-01 -0.197E-01 -0.233E-01	$\begin{array}{c} 0.192E-01\\ 0.200E-01\\ 0.209E-01\\ 0.221E-01\\ 0.229E-01\\ 0.251E-01 \end{array}$	-0.102E-01 -0.116E-01 -0.132E-01 -0.149E-01 -0.160E-01 -0.189E-01
3D - 6P 12309.2A c= 0.39E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.114 0.125 0.142 0.163 0.171 0.184	$\begin{array}{c} -0.696E-01\\ -0.638E-01\\ -0.447E-01\\ -0.309E-01\\ -0.229E-01\\ -0.564E-02 \end{array}$	0.299E-01 0.318E-01 0.341E-01 0.369E-01 0.387E-01 0.439E-01	$\begin{array}{c} -0.194 \mbox{\boldmath${\rm E}$} -01 \\ -0.23 \mbox{\boldmath${\rm E}$} -01 \\ -0.254 \mbox{\boldmath${\rm E}$} -01 \\ -0.288 \mbox{\boldmath${\rm E}$} -01 \\ -0.310 \mbox{\boldmath${\rm E}$} -01 \\ -0.366 \mbox{\boldmath${\rm E}$} -01 \end{array}$	0.271E-01 0.285E-01 0.302E-01 0.322E-01 0.336E-01 0.374E-01	-0.155E-01 -0.179E-01 -0.205E-01 -0.233E-01 -0.250E-01 -0.296E-01
3D - 7P 10674.6A c= 0.18E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.201 0.218 0.248 0.281 0.292 0.307	-0.125 -0.112 -0.752E-01 -0.471E-01 -0.359E-01 -0.537E-02	0.512E-01 0.552E-01 0.597E-01 0.650E-01 0.686E-01 0.786E-01	*-0.344E-01* -0.401E-01 -0.461E-01 -0.525E-01 -0.565E-01 -0.669E-01	0.456R-01 0.486E-01 0.520E-01 0.560E-01 0.586E-01 0.661E-01	*-0.271E-01* *-0.320E-01* *-0.370E-01* -0.423E-01 -0.455E-01 -0.543E-01
3D - 8P 9875.6A c= 0.96£+18	2500. 5000. 10000. 20000. 30000. 80000.	0.356 0.382 0.436 0.487 0.503 0.517	-0.232 -0.193 -0.127 -0.762E-01 -0.592E-01 -0.881E-02	0.883E-01 0.959E-01 0.105* 0.115* 0.121 0.140	*-0.593E-01* *-0.706E-01* -0.820E-01* -0.941E-01* -0.102 -0.121	0.833E-01 0.899E-01 0.975E-01 0.103* 0.117*	*0.559£-01* *-0.656E-01* *-0.756E-01* -0.817E-01* -0.979E-01*
3D - 9P 9414.4A c= 0.58E+18	2500. 5000. 10000. 20000. 30000.	0.607 0.649 0.741 0.815 0.836	- 0.363 - 0.322 - 0.218 - 0.125 - 0.975E-01	0.177* 0.195* 0.207*	-0.139* -0.161* -0.174*	0.173*	-0.140*
3D10F 9120.8A c= 0.39E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.992 1.06 1.21 1.31 1.34 1.33	-0.627 -0.480 -0.355 -0.200 -0.155 -0.332E-01	0.394*	-0.344*	0.198*	-0.169*

NE= 0.1E+15					
TRANSITION	T(K)	ELECTRONS 2WE(A)	DE(A)	PROTONS 2WI(A) DI(A)	IONIZED HELIUM 2WI(A) DI(A)
30 - 48	2500	0 188	-0 5715-01	0 5525-01 -0 4855-0	1 0 4485-01 -0 3875-01
18465.3A	5000.	0.177	-0.355E-01	0.620E-01 -0.558E-0	0.502E-01 - 0.448E-01
c = 0.14E + 19	10000.	0.164	-0.180E-01	0.701E-01 = 0.636E-0	1 0.563E - 01 - 0.513E - 01
	20000.	0.149	-0.785E-02	0.801E-01 - 0.723E-0	1 0.634E - 01 -0.583E - 01
	30000.	0.142	-0.445E-02	0.870E-01 -0.783E-0	1 0.681E-01 -0.627E-01
	80000.	0.126	0.221E-02	0.103 -0.971E-0	1 0.821E-01 -0.744E-01
45 - 4P	2500.	0.356E-01	-0.188E-01	0.105E-01 -0.498E-0	2 0.101E-01 -0.402E-02
22070.0A	5000.	0.385E-01	-0.189E-01	0.108E-01 -0.563E-0	0.103E-01 -0.455E-02
c = 0.53E + 20	10000.	0.440E-01	-0.165E-01	0.112E-01 - 0.634E-0	0.106E-01 -0.513E-02
	20000.	0.529E-01	-0.124E-01	0.117E-01 -0.713E-0	02 0.109E-01 -0.577E-02
	30000.	0.5896-01	-0.105E-01	0.120E-01 -0.764E-0	0.111E-01 - 0.619E-02
	50000.	0.7256-01	-0.0302-02	0.1502-01 -0.9016-0	12 0.1105-01 -0.7305-02
45 - 5P	2500.	0.298E-01	-0.170E-01	0.859E-02 -0.487E-0	02 0.807E-02 -0.391E-02
10747.0A	5000.	0.325E-01	-0.161E-01	0.898E-02 -0.554E-0	0.833E-02 -0.446E-02
c= 0.57E+19	10000.	0.3728-01	-0.124E-01	0.945E-02 -0.628E-0	0.865E-02 -0.507E-02
	20000.	0.438E-01	-0.103E-01	0.100E-01 -0.707E-0	0.906E-02 -0.573E-02
	30000.	0.470E-01	-0.800E-02	0.104E-01 -0.758E-0	0.933E-02 -0.614E-02
	.0000.	0.531E-01	-0.387E-02	0.116E-01 -0.896E-0	02 0.101E-01 -0.725E-02
45 - 6P	2500.	0.556E-01	-0.353E-01	0.150E-01 -0.952E-0	0.137E-01 -0.760E-02
8650.3A	5000.	0.604E-01	-0.310E-01	0.159E-01 -0.109E-0	0.143E-01 -0.879E-02
c= 0.19E+19	10000.	0.687E-01	-0.217E-01	0.170E-01 -0.125E-0	0.151E-01 -0.100E-01
	20000.	0.793E-01	-0.156E-01	0.184E-01 -0.141E-0	0.161E-01 -0.114E-01
	30000.	0.834E-01	-0.116E-01	0.192E-01 -0.152E-0	0.168E-01 -0.123E-01
	80000.	0.902E-01	-0.292E-02	0.218E-01 -0.180E-0	0.186E-01 -0.145E-01
4S - 7P	2500.	0.107	-0.664E-01	0.276E-01*-0.184E-0	0.246E-01*-0.145E-01
7810.0A	5000.	0.116	-0.598E-01	0.297E-01 -0.214E-0	0.262E-01*-0.171E-01
c = 0.94E + 18	10000.	0.132	-0.423E-01	0.321E-01 -0.246E-0	0.280E-01*-0.198E-01*
	20000.	0.150	-0.301E-01	0.349E-01 -0.280E-0	01 0.301E-01 -0.226E-01
	30000.	0.156	-0.197E-01	0.368E-01 -0.302E-0	01 0.315E-01 -0.243E-01
	80000.	0.164	-0.312E-02	0.421E-01 -0.358E-0	01 0.355E-01 -0.290E-01
10 90	2500	0 108	0 1 3 0	0 4045 01+ 0 3305 4	
45 - 08	2500.	0.190	-0.129	0.494E-01*-0.330E-0	
r= 0 53F+18	10000	0.213	-0.110	0.584E-01*-0.457E-0	1 * 0 5025 01 * 0 3655 01 *
0- 0.000410	20000.	0 271	0. 5025 01	0.0048-01 -0.4078-0	0.5022-01-0.5052-01
	30000	0 280	-0.323E-01	0.6775-01 -0.5245-0	11° 0.545E-01*-0.421E-01
	80000.	0.288	-0.523E-02	0.781E-01 = 0.576E-0	0.5756-01*-0.4556-01*
					· · · · · · · · · · · · · · · · · · ·
45 - 9P	2500.	0.346	-0.210		
7113.0A	5000.	0.370	-0.177		
c= 0.33E+18	10000.	0.422	-0.132	0.101* -0.794E-0	1 *
	20000.	0.465	-0.853E-01	0.111* -0.919E-0)1*
	30000.	0.477	-0.548E-01	0.118* -0.995E-0	1* 0.990E-01*-0.779E-01
	80000.	0.483	-0.103E-01	0.137* -0.119*	0.113* -0.963E-01*
10 100					
45 -10P	2500.	0.575	-0.364		
0944.UA	10000.	0.614	-0.290		
C- V.225+10	20000.	0.090	-0.202		
	30000	0.774	-0.918F-01		
	80000.	0.771	-0.197E-01	0.229* -0.200*	
4P - 65	2500.	0.890E-01	0.582E-01	0.175E-01 0.153E-0	0.145E-01 0.123E-01
16384.0A	5000.	0.103	0.672E-01	0.195E-01 0.175E-0	01 0.160E-01 0.141E-01
c= 0.25E+20	10000.	0.114	0.691E-01	0.218E-01 0.198E-0	01 0.179E-01 0.160E-01
	20000.	0.129	0.634E-01	0.243E-01 0.224E-0	01 0.199E-01 0.181E-01
	30000.	0.142	0.544E-01	U.260E-01 0.240E-0	0.212E-01 0.194E-01
	00000.	0.1/4	U.302E-01	U.3U5E-U1 0.284E-0	U.248E-01 0.230E-01

M. S. Dimitrijević, S. Sahal-Bréchot

NE= 0.1E+15							
		ELECTRONS		PROTONS		IONIZED HE	LIUM
TRANSITION	T(K)	ZWE(A)	DE(A)	ZWI(A)	DI(A)	ZWI(A)	DI (A)
4P - 7S	2500.	0.117	0.801E-01	0.227E-01	0.201E-01	0.185E-01	0.160E-01
12915.0A	5000.	0.133	0.935E-01	0.255E-01	0.231E-01	0.207E-01	0.185E-01
c = 0.88E + 19	10000.	0.151	0.877E-01	0.286E-01	0.263E-01	0.232E-01	0.212E-01
	20000.	0.174	0.751E-01	0.321E-01	0.298E-01	0.260E-01	0.240E-01
	30000.	0.195	0.629E-01	0.343E-01	0.320E-01	0.278E-01	0.2596-01
	80000.	0.233	0.394E-01	0.404E-01	0.379E-01	0.327E-01	0.306E-01
4P - 85	2500.	0.178	0.121	0.343E-01	0.298E-01	0.278E-01*	0.236E-01*
11495.0A	5000.	0.203	0.133	0.385E-01	0.345E-01	0.312E-01	0.276E-01
c = 0.44E + 19	10000.	0.235	0.129	0.432E-01	0.395E-01	0.350E-01	0.318E-01
	20000.	0.281	0.100	0.4855-01	0.4495-01	0.3936-01	0.3025-01
	80000.	0.315	0.0256-01	0.5196-01	0.4046-01	0.4216-01	0.4648-01
	00000.	0.500	0.4056-01	0.0125-01	0.5756-01	0.4556-01	0.4046-01
4P - 95	2500.	0.277	0.185	0.528E-01*	0.445E-01*	0.428E-01*	0.351E-01*
10745.0A	5000.	0.317	0.195	0.593E-01	0.523E-01	0.481E-01*	0.416E-01*
c= 0.25E+19	10000.	0.379	0.181	0.666E-01	0.603E-01	0.539E-01*	0.483E-01*
	20000.	0.464	0.136	0.747E-01	0.688E-01	0.605E-01	0.554E-01
	30000.	0.519	0.111	0.800E-01	0.741E-01	0.648E-01	0.597E-01
	80000.	0.594	0.572E-01	0.944E-01	0.882E-01	0.763E-01	0.714E-01
4P - 4D	2500	0 451	0 213	0 118	0 103	0 9615-01	0 8165-01
23370 0A	5000	0 433	0 185	0 133	0 119	0 108	0 950E-01
c = 0.22E + 19	10000.	0.408	0.147	0.149	0.136	0.121	0.109
	20000	0 3 9 1	0 105	0.170			
	20000.	0.381	0.105	0.170	0.154	0.136	0.124
	80000	0.329	0.0246-01	0.104	0.100	0.145	0.134
	00000.	0.525	0.4225-01	0.221	0.202	0.1/4	0.159
4P - 5D	2500.	0.599	0.269	0.166*	0.134*		
14776.0A	5000.	0.566	0.224	0.187*	0.160*	0.151*	0.127*
c = 0.45E + 18	10000.	0.525	0.171	0.210*	0.186*	0.170*	0.149*
	20000.	0.481	0.115	0.239	0.213	0.191*	0.171*
	30000.	0.453	0.891E-01	0.259	0.231	0.204*	0.185*
	80000.	0.385	0.4085-01	0.311	0.283	0.245	0.222
4P - 6D	2500.	0.998	0.423				
12318.0A	5000.	0.939	0.341				
c = 0.20E + 18	10000.	0.869	0.236				
	20000.	0.791	0.144	0.410*	0.358*		
	30000.	0.742	0.111	0.444*	0.389*		
	80000.	0.618	0.414E-01	0.533*	0.482*	0.420*	0.376*
4P - 7D	2500	1.69	0 654				
11195.0A	5000	1.59	0.522				
c = 0.10E + 18	10000.	1.47	0.349				
	20000.	1.33	0.220				
	30000.	1.24	0.158				
	80000.	1.02	0.493E-01				
10 00	3500	2.76	0.020				
10570 02	2500.	2.10	0.938				
C= 0 56F117	10000.	2.00	0./43				
J- 0.00071/	20000	2.40	0 301				
	30000	2.02	0.185				
	80000.	1.65	0.587E-01				
15			and a second second				
4D - 6P	2500.	1.95	-0.997	0.410 -	-0.327	0.345*	-0.259*
30390.LA	5000.	1.99	-0.921	0.454 -	-0.380	0.379 .	-0.304
C= 0.32E+19	20000.	2.03	-0.6/3	0.504	-0.436	0.418 .	-0.350
	30000.	2.19	-0.343	0.504 -	0.534	0.462 .	-0.400
	80000.	2.15	-0.129	0.718	-0.641	0.492 -	-0.431
					~ • ~ 3 .4	v /	0.713

NE= 0.1E+15							
TRANSITION	т(к)	ELECTRONS 2WE(A)	DE(A)	PROTONS 2WI(A)	DI(A)	IONIZED H 2WI(A)	ELIUM DI(A)
4D 7P	2500	1 5 5	-0.851	0 330*	-0 241*	0.284*	-0.190*
25050.1A	5000.	1.62	-0.758	0.361*	-0.283*	0.308*	-0.225*
c= 0.25E+19	10000.	1.74	-0.507	0.396	-0.326	0.335*	-0.261*
	20000.	1.88	-0.287	0.438	-0.372	0.367	-0.300
	30000.	1.93	-0.217	0.465	-0.401	0.388	-0.323
	80000.	1.95	-0.626E-01	0.544	-0.479	0.446	-0.386
4D - 8P	2500.	1.93	-1.05	0.425*	-0.294*		
21052.6A	5000.	2.03	-0.854	0.464*	-0.351*		2 5 X
c = 0.18E + 19	10000.	2.24	-0.471	0.509*	-0.409*	0.433*	-0.326*
	20000.	2.45	-0.294	0.560*	-0.469*	0.472*	-0.377*
	30000. 80000.	2.51 2.53	-0.205 -0.297E-01	0.594 0.691	-0.506 -0.606	0.498* 0.571*	-0.408* -0.488*
4D - 9P	2500.	2.74	-1.50				
c = 0.14E + 19	10000.	3.25	-0.693	0.746*	-0 591*		
	20000.	3.54	-0.320	0.823*	-0.685*		
	30000.	3.61	-0.204	0.873*	-0.741*	0.730*	-0.595*
	80000.	3.62	-0.853E-02	1.02*	-0.890*	0.838*	-0.717*
4D -10P	2500.	4.04	-2.43				
17895.5A	5000.	4.29	-1.84				
c= 0.13E+19	10000.	4.83	-0.981				
	20000.	5.21	-0.375				
	30000.	5.30	-0.279				
	80000.	5.25	-0.136	1.54*	-1.35*		
55 - 5P	2500.	0.948	-0.573	0.235	-0.148	0.217	-0.118
54318.3A	5000.	1.06	-0.608	0.249	-0.168	0.226	-0.135
C= 0.15E+21	20000.	1.20	-0.5/2	0.265	-0.191	0.237	-0.154
	20000.	1.59	-0.485	0.204	-0.215	0.251	-0.186
	80000.	1.76	-0.255	0.334	-0.272	0.288	-0.220
55 - 60	2500	0 470	-0 301	0 121	-0 7858-01	0.110	-0 6268-01
24414.18	5000.	0.515	-0.291	0.129	-0.903E-01	0.116	-0.725E-01
c= 0.15E+20	10000.	0.584	-0.223	0.139	-0.103	0.123	-0.829E-01
	20000.	0.680	-0.162	0.150	-0.117	0.131	-0.9412-01
	30000.	0.725	-0.128	0.157	-0.125	0.136	-0.101
	80000.	0.796	-0.560E-01	0.178	-0.148	0.152	-0.120
55 - 7P	2500.	0.628	-0.406	0.160*	-0.107*	0.142*	-0.842E-01*
18726.6A	5000.	0.681	-0.349	0.172	-0.124	0.151*	-0.992E-01*
c= 0.54E+19	10000.	0.776	-0.228	0.186	-0.143	0.162*	-0.115*
	20000.	0.887	-0.158	0.202	-0.163	0.1/4	0.131
	80000.	0.929	-0.102	0.213	-0.175	0.182	-0.141
	00000.	0.300		0.234	-0.200	0.200	-0.105
55 - 8P	2500.	0.987	-0.642	0.245*	-0.164*		
16398.8A	5000.	1.06	-0.534	0.266*	-0.195*	0.231*	-0.155*
c = 0.26E + 19	10000.	1.21	-0.348	0.290*	-0.227*	0.249*	-0.181*
	20000.	1.36	-0.220	0.31/*	-0.260*	0.270*	-0.209*
	80000.	1.41	-0.369E-01	0.335	-0.336	0.323*	-0.271*
50 00	25.00	1 6 0	0.057				
55 - 9P	2500.	1.58	-0.956				
c = 0.15F + 10	10000	1.93	-0.546	0.460*	-0 361*		
	20000.	2.13	-0.335	0.507*	-0.418*		
	30000.	2.19	-0.124	0.537*	-0.453*	0.451*	-0.364*
	80000.	2.22	-0.587E-01	0.623*	-0.543*	0.516*	-0.438*

•

NE= 0.1E+15						
TRANSITION	T(K)	ELECTRONS 2WE(A)	DE(A)	PROTONS 2WI (A)	DI(A)	IONIZED HELIUM 2WI(A) DI(A)
55 -10P 14417.5A c= 0.97E+18	2500. 5000. 10000. 20000. 30000. 80000.	2.48 2.65 3.02 3.28 3.36 3.35	-1.57 -1.26 -0.850 -0.515 -0.348 -0.986E-01	0.986*	-0.861*	
5P - 6S 75075.1A c= 0.28E+21	2500. 5000. 10000. 20000. 30000. 80000.	2.80 3.24 3.67 4.17 4.58 5.38	1.73 1.95 1.96 1.67 1.42 0.986	0.574 0.623 0.680 0.745 0.788 0.908	0.430 0.492 0.558 0.632 0.677 0.801	0.502 0.345 0.539 0.396 0.582 0.450 0.632 0.511 0.665 0.548 0.758 0.648
5P - 7S 33658.7A c= 0.56E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.969 1.13 1.29 1.48 1.64 1.93	0.605 0.694 0.702 0.569 0.467 0.288	0.182 0.202 0.224 0.250 0.266 0.311	0.152 0.174 0.199 0.225 0.242 0.286	0.152 0.121 0.168 0.140 0.186 0.160 0.206 0.182 0.219 0.196 0.255 0.232
5D - 7P 66489.4A c= 0.91E+19	2500. 5000. 10000. 20000. 30000. 80000.	11.5 11.0 10.3 9.47 8.92 7.56	-3.51 -2.39 -1.41 -0.584 -0.267 0.174	3.37* 3.76* 4.21* 4.76 5.15 6.14	-2.62* -3.11* -3.61* -4.14 -4.48 -5.53	3.10* -2.4* 3.44* -2.8* 3.83* -3.3* 4.09* -3.6* 4.88 -4.31
5D - 8P 44208.7A c= 0.40E+19	2500. 5000. 10000. 20000. 30000. 80000.	12.1 12.5 13.0 13.6 13.7 13.2	-5.79 -4.35 -2.23 -1.63 -1.01 -0.113	2.78* 3.09* 3.45* 3.69* 4.39*	-2.21* -2.59* -2.99* -3.23* -3.91*	2.83* -2.40* 3.01* -2.60* 3.52* -3.12*
5D - 9P 36258.2A c= 0.27E+19	2500. 5000. 10000. 20000. 30000. 80000.	12.4 12.8 13.8 14.7 14.8 14.5	-6.45 -4.36 -2.31 -1.20 -0.914 -0.299E-01	3.48* 3.71* 4.37*	-2.96* -3.20* -3.86*	3.55* -3.10*
35 - 3P 5891.8A c= 0.30E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.191E-02 0.211E-02 0.249E-02 0.322E-02 0.381E-02 0.551E-02	0.132E-02 0.155E-02 0.178E-02 0.182E-02 0.183E-02 0.129E-02	0.126E-02 0.127E-02 0.129E-02 0.130E-02 0.132E-02 0.136E-02	0.366E-03 0.414E-03 0.466E-03 0.525E-03 0.562E-03 0.663E-03	0.125E-02 0.296E-0 0.126E-02 0.335E-0 0.127E-02 0.377E-0 0.128E-02 0.425E-0 0.128E-02 0.455E-0 0.131E-02 0.537E-0
35 - 4P 3302.6A c= 0.12E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.649E-02 0.725E-02 0.864E-02 0.100E-01 0.108E-01 0.126E-01	-0.239E-02 -0.146E-02 -0.442E-03 0.234E-03 0.579E-03 0.634E-03	0.223E-02 0.226E-02 0.230E-02 0.239E-02 0.239E-02 0.251E-02	-0.764E-03 -0.873E-03 -0.991E-03 -0.112E-02 -0.120E-02 -0.142E-02	0.219E-02 -0.612E-0 0.222E-02 -0.702E-0 0.224E-02 -0.799E-0 0.227E-02 -0.906E-0 0.230E-02 -0.972E-0 0.237E-02 -0.115E-0
35 - 5P 2852.8A c= 0.40E+18	2500. 5000. 10000. 20000. 30000.	0.202E-01 0.221E-01 0.254E-01 0.295E-01 0.313E-01 0.347E-01	$\begin{array}{c} -0.110E-01 \\ -0.983E-02 \\ -0.662E-02 \\ -0.464E-02 \\ -0.344E-02 \\ -0.115E-02 \end{array}$	0.595E-02 0.623E-02 0.655E-02 0.695E-02 0.721E-02 0.799E-02	$\begin{array}{c} -0.307E-02\\ -0.360E-02\\ -0.415E-02\\ -0.474E-02\\ -0.510E-02\\ -0.510E-02\\ -0.605E-02 \end{array}$	0.558E-02*-0.242E-0 0.579E-02*-0.287E-0 0.602E-02 -0.333E-0 0.629E-02 -0.331E-0 0.648E-02 -0.411E-0 0.703E-02 -0.491E-0

「「「「

「「「「「たい」」という

No. Contraction of the second s

Harrison and a second

NE= 0.1E+16			×		
TRANSITION	Т(К)	ELECTRONS 2WE(A)	DE(A)	PROTONS 2WI(A) DI(A)	IONIZED HELIUM 2WI(A) DI(A)
35 - 6P 2680.4A c= 0.19E+18	2500. 5000. 10000. 20000. 30000. 80000.	$\begin{array}{c} 0.528 \pm -01 \\ 0.573 \pm -01 \\ 0.653 \pm -01 \\ 0.749 \pm -01 \\ 0.785 \pm -01 \\ 0.843 \pm -01 \end{array}$	$\begin{array}{c} -0 & .325E-01 \\ -0 & .281E-01 \\ -0 & .202E-01 \\ -0 & .145E-01 \\ -0 & .109E-01 \\ -0 & .365E-02 \end{array}$	0.141E-01*-0.782E- 0.152E-01*-0.955E- 0.163E-01*-0.113E- 0.175E-01*-0.130E- 0.184E-01 -0.141E- 0.208E-01 -0.169E-	02* 02* 01* 0.145E-01*-0.895E-02* 01* 0.154E-01*-0.104E-01* 01 0.160E-01*-0.113E-01* 01 0.178E-01*-0.137E-01*
35 - 7p 2593.9A c= 0.10E+18	2500, 5000, 10000, 20000, 30000, 80000,	0.118 0.127 0.145 0.164 0.170 0.178	$\begin{array}{c} -0 \ . \ 68\ 7E \ -0\ 1 \\ -0 \ . \ 63\ 4E \ -0\ 1 \\ -0 \ . \ 45\ 8E \ -0\ 1 \\ -0 \ . \ 33\ 2E \ -0\ 1 \\ -0 \ . \ 24\ 5E \ -0\ 1 \\ -0 \ . \ 74\ 9E \ -0\ 2 \end{array}$	0.384E-01*-0.292E- 0.405E-01*-0.319E- 0.464E-01*-0.387E-	01* 01* 01* 0.391E-01*-0.311E-01*
35 - 89 2543.8A c= 0.63E+17	2500. 5000. 10000. 20000. 30000. 80000.	0.235 0.252 0.288 0.321 0.331 0.331	$\begin{array}{c} -0.141 \\ -0.119 \\ -0.877E-01 \\ -0.656E-01 \\ -0.450E-01 \\ -0.126E-01 \end{array}$		
35 - 9P 2512.1A c= 0.42E+17	2500. 5000. 10000. 20000. 30000. 80000.	0.430 0.460 0.525 0.578 0.593 0.600	-0.225 -0.205 -0.142 -0.103 -0.730E-01 -0.230E-01		
3S -10P 2490.7A c= 0.29E+17	2500. 5000. 10000. 20000. 30000. 80000.	0.730* 0.783 0.894 0.971 0.992 0.989	-0.388* -0.320 -0.235 -0.158 -0.110 -0.270E-01		
3P - 4S 11397.0A c= 0.59E+20	2500. 500G. 10000. 20000. 30000. 80000.	0.367E-01 C.420E-01 O.466E-01 O.515E-01 O.552E-01 O.702E-01	0.262E-01 0.300E-01 0.356E-01 0.334E-01 0.329E-01 0.228E-01	0.856E-02 0.683E- 0.936E-02 0.778E- 0.103E-01 0.882E- 0.114E-01 0.995E- 0.121E-01 0.107E- 0.140E-01 0.126E-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3P - 5S 6158.6A c= 0.70E+19	2500. 5000. 10000. 20000. 30000.	0.405E-01 0.468E-01 0.508E-01 0.563E-01 0.589E-01 0.732E-01	0.289E-01 0.349E-01 0.382E-01 0.365E-01 0.339E-01 0.254E-01	0.866E-02 0.750E- 0.971E-02 0.868E- 0.109E-01 0.993E- 0.122E-01 0.113E- 0.130E-01 0.121E- 0.154E-01 0.144E-	-02 0.705E-02 0.596E-02 -02 0.790E-02 0.695E-02 -02 0.884E-02 0.799E-02 -01 0.991E-02 0.910E-02 -01 0.106E-01 0.979E-02 -01 0.125E-01 0.116E-01
3P - 65 5151.9A c= 0.25E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.780E-01 0.892E-01 0.974E-01 0.110 0.119 0.146	0.562E-01 0.640E-01 0.673E-01 0.640E-01 0.545E-01 0.375E-01	0.162E-01 0.134E- 0.182E-01 0.158E 0.204E-01 0.183E- 0.229E-01 0.210E- 0.245E-01 0.226E- 0.289E-01 0.270E-	-01 0.131E-01* 0.105E-01* -01 0.147E-01 0.126E-01 -01 0.165E-01 0.147E-01 -01 0.186E-01 0.169E-01 -01 0.199E-01 0.182E-01 -01 0.234E-01 0.218E-01
3P - 78 4750.6A c= 0.12E+19	2500. 5000. 10000. 20000. 30000.	0.152 0.173 0.190 0.219 0.245 0.293	0.104 0.121 0.117 0.101 0.843E-01 0.528E-01	0.302E-01* 0.233E 0.339E-01* 0.284E 0.381E-01 0.334E 0.428E-01 0.326E 0.458E-01 0.418E 0.540E-01 0.501E	-01* 0.245E-01* 0.178E-01* -01* 0.275E-01* 0.223E-01* -01 0.309E-01* 0.26E-01* -01 0.347E-01* 0.309E-01* -01 0.37E-01* 0.336E-01* -01 0.437E-01 0.3404E-01

NE= 0.1E+16							
TRANSITION	T (K)	ELECTRONS 2WE(A)	DE(A)	PROTONS 2WI(A)	DI(A)	IONIZED HE 2WI(A)	LIUM DI(A)
3P - 8S 4544.2A c= 0.68E+18	2500. 5000. 10000. 20000. 30000. 83000.	0.271 0.307 0.361 0.423 0.475 0.555	0.180 0.202 0.198 0.151 0.125 0.692E-01	0.598E-01* 0.672E-01* 0.754E-01* 0.807E-01* 0.952E-01	0.474E-01* 0.571E-01* 0.668E-01* 0.726E-01* 0.877E-01	0.544E-01* 0.611E-01* 0.654E-01* 0.770E-01*	C.450E-01* O.532E-01* O.581E-01* O.706E-01*
3P - 9S 4423.5A c= 0.43E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.460 0.526 0.627 0.770 0.861 0.986	0.291 0.315 0.298 0.217 0.177 0.694E-01	0.125* 0.134* 0.158*	0.108* 0.119* 0.144*	0.128*	0.116*
3P - 3D 8191.1A c= 0.74E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.312E-01 0.355E-01 0.385E-01 0.413E-01 0.428E-01 0.474E-01	0.226E-01 0.246E-01 0.246E-01 0.227E-01 0.201E-01 0.137E-01	0.814E-02 0.879E-02 0.955E-02 0.104E-01 0.110E-01 0.125E-01	0.589E-02 0.674E-02 0.766E-02 0.868E-02 0.930E-02 0.110E-01	0.720E-02 0.768E-02 0.825E-02 0.892E-02 0.936E-02 0.106E-01	0.472E-02 0.542E-02 0.618E-02 0.701E-02 0.753E-02 0.891E-02
3F - 4D 5686.4A c= 0.13E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.253 0.242 0.225 0.207 0.196 0.170	0.112 0.993E-01 0.804E-01 0.593E-01 0.475E-01 0.262E-01	0.697E-01* 0.783E-01* 0.882E-01* 0.100* 0.108* 0.130	0.499E-01* 0.624E-01* 0.746E-01* 0.869E-01* 0.945E-01* 0.117	0.713E-01* 0.800E-01* 0.857E-01* 0.103*	0.590E-01* 0.694E-01* 0.757E-01* 0.916E-01*
3P - 5D 4981.4A c= 0.52£+17	2500. 5000. 10000. 20000. 30000. 80000.	0.644 0.613 0.571 0.523 0.492 0.414	0.246 0.221 0.171 0.117 0.922E-01 0.426E-01				
3P - 6D 4667.5A c= 0.28E+17	2500. 5000. 10009. 20000. 30000. 80000.	1.27 1.23 1.16 1.07 1.01 0.846	0.434 0.387 0.302 0.204 0.158 0.630E-01				
3P - 7D 4496.6A c= 0.17E+17	2500. 5000. 10000. 20000. 30000. 80000.	2.15 2.15 2.07 1.93 1.83 1.54	0.670 0.602 0.455 0.319 0.242 0.851E-01				
3P - 8D 4392.3A c= 0.96E+16	2500. 5000. 10000. 20000. 30000. 80000.	3.20 3.39 3.37 3.19 3.03 2.57	0.910 0.833 0.663 0.428 0.336 0.108				
3P - 9D 4323.5A c= 0.67E+16	2500. 5000. 10000. 20000. 30000. 80000.	4.30* 4.89 5.05 4.88 4.67 4.00	1.21* 1.14 0.901 0.624 0.454 0.138				

NE= 0.1E+16							
		ELECTRONS		PROTONS		IONIZED	HELIUM
TRANSITION	T(K)	2WE(A)	DE(A)	2WI(A)	DI(A)	2WI(A)	DI(A)
3D - 4D	2500	7 24	4 1 0	1 60	1 04		
91050.0A	5000	8 1 4	-4.19	1 70	-1.04	1.55	-0.831
c = 0.91E + 21	10000.	9.01	-3.35	1 91	-1.36	1 71	-0.960
	20000.	10.5	-2.52	2.05	-1.55	1 81	-1.10
	30000.	11.4	-2.21	2.14	-1.66	1.88	-1 34
	80000.	13.1	-1.29	2.41	-1.96	2.07	-1.59
3D - 5P	2500.	0.785	-0.457	0.206	-0.117	0.190*	-0.917E-01*
17038.7A	5000.	0.874	-0.440	0.218	-0.137	0.199*	-0.109*
c= 0.14E+20	10000.	0.986	-0.327	0.232	-0.158	0.209	-0.127
	20000.	1.15	-0.260	0.248	-0.180	0.221	-0.145
	30000.	1.23	-0.226	0.259	-0.194	0.229	-0.157
	80000.	1.36	-0.104	0.290	-0.231	0.251	-0.187
3D - 6P	2500.	1.14	-0.670	0 295*	-0 167*		
12309.2A	5000.	1.25	-0.627	0.317*	-0.204*		
c= 0.39E+19	10000.	1.42	-0.446	0.341*	-0.240*	0 301*	-0 191*
	20000.	1.63	-0.309	0.369*	-0.278*	0.322*	-0.223*
	30000.	1.71	-0.229	0.387	-0.301	0.336*	-0.242*
	80000.	1.84	-0.564E-01	0.439	-0.361	0.374	-0.291
10 70	2500	2 01					
3D - 7P	2500.	2.01	-1.1/				
C= 0 185+10	10000.	2.10	-1.09				
C- 0.106+19	20000.	2.40	-0.147	0 650*	-0 497*		
	30000	2 92	-0.356	0.685*	-0.542*		
	80000.	3.07	-0.537E-01	0.786*	-0.656*	0.661*	-0.528*
				104800-14			01000
3D - 8P	2500.	3.56	-2.12				
9875.6A	5000.	3.82	-1.82				
c= 0.96E+18	10000.	4.36	-1.26				
	20000.	4.87	-0.752				
	30000.	5.03	-0.584				
	80000.	5.17	~0.0016-01				
3D - 9P	2500.	6.05	-3.16				
9414.4A	5000.	6.48	-2.89				
c= 0.58E+18	10000.	7.40	-2.05				
	20000.	8.15	-1.23				
	30000.	8.36	-0.957				
	80000.	8.46	-0.175				
3D -10P	2500.	9.80*	-5.10*				
9120.8A	5000.	10.5	-4.27				
c= 0.39E+18	10000.	12.0	-3.21				
	20000.	13.0	-1.95				
	30000.	13.3	-1.51				
	80000.	13.3	-0.332				
30 - 45	2500	1 9.6	0 106	0 651*	0 412*	0 447+	0 214+
18465 34	5000.	1.77	-0.317	0.551*	-0.412*	0.44/*	-0.314*
c = 0.14E + 19	10000	1 64	-0.176	0.701*	-0.600*	0.563*	-0.397*
	20000.	1.49	-0.755E-01	0.800	-0.701	0.634*	-0.557*
	30000.	1.41	-0.425E-01	0.870	-0.759	0.681*	-0.605*
	80000.	1.26	0.221E-01	1.03	-0.960	0.821	-0.731
10 10	2500	0.357	0 1 8 5	0 105	0 4705 01	0 101	0.000-01
45 - 4P	2500.	0.356	-0.186	0.105	-U.4/9E-01	0.101	-0.383E-01
C= 0 535+20	10000.	0.305	-0.165	0 112	-0.5496-01	0.105	-0.441E-01
- 0.356720	20000.	0.529	-0.124	0.117	-0.708E-01	0.109	-0.571E-01
	30000	0 589	-0.105	0.120	-0.760E-01	0.111	-0.6148-01
	80000.	0.723	-0.658E-01	0.130	-0.898E-01	0.118	-0.727E-01

NE = 0.1E + 16							
TRANSITION	T (K)	ELECTRONS 2WE(A)	DE(A)	PROTONS 2WI(A)	DI(A)	IONIZED HE 2WI(A)	LIUM DI(A)
45 - 5P	2500.	0.298	-0.167	0.854E-01	-0.449E-01	0.798E-01*	-0.353E-01*
10747.0A	5000.	0.325	-0.160	0.896E-01	-0.527E-01	0.830E-01*	-0.420E-01*
c = 0.57E + 19	10000.	0.372	-0.124	0.944E-01	-0.603E-01	0.864E - 01 0.905E - 01	-0.487E-01
	30000.	0.430	-0.800E-01	0.104	-0.747E-01	0.933E-01	-0.602E-01
	80000.	0.531	-0.387E-01	0.116	-0.890E-01	0.101	-0.720E-01
45 - 6P	2500.	0.556	-0.340	0.148*	-0.818E-01*		
8650.3A	5000.	0.604	-0.303	0.158*	-0.100*		
c = 0.19E + 19	10000.	0.687	-0.217	0.170*	-0.118*	0.151*	-0.938E-01*
	20000.	0.793	~0.155	0.183*	-0.137*	0.151*	-0.109*
	80000.	0.902	-0.292E-01	0.218	-0.177	0.186	-0.143
45 - 79	2500	1 07	-0.623				
7810.0A	5000.	1.16	-0.576				
c = 0.94E + 18	10000.	1.32	-0.420				
	20000.	1.50	-0.299	0.349*	-0.265*		
	30000.	1.64	-0.312E-01	0.308*	~0.351*	0.355*	-0.282*
45 - 8P	2500	1.98	-1.18				
7373.3A	5000.	2.12	-1.02				
c = 0.53E + 18	10000.	2.42	-0.751				
	20000.	2.71	-0.517				
	80000.	2.88	~0.523E-01				
4S - 91	2500.	3.45	-1.81				
7113.0A	5000.	3.70	-1.64				
c = 0.33E + 18	10000.	4.22	-1.23				
	20000.	4.64	-0.840				
	80000.	4.82	-0.103				
45 -10P	2500.	5.68*	-2.96*				
6944.0A	5000.	6.09	-2.48				
c = 0.22E + 18	10000.	6.95	-1.88				
	20000.	7.56	-1.30				
	80000.	7.70	-0.197				
4P - 6S	2500.	0,890	0.568	0.175	0.139	0.144*	0.109*
16384.0A	5000.	1.03	0.663	0.195	0.165	0.160	0.131
c = 0.25E + 20	10000.	1.14	0.686	0.218	0.191	0.179	0.153
	20000.	1.29	0.634	0.243	0.219	0.199	0.176
	80000.	1.74	0.382	0.200	0.236	0.212	0.190
				P (6) - 4 (7)			
4P - 7s	2500.	1.17	0.773	0.227*	0.173*	0.185*	0.133*
12915.0A	5000.	1.33	0.922	0.255*	0.211*	0.207*	0.166*
c = 0.88E + 19	10000.	1.51	0.868	0.286*	0.249*	0.232*	0.198*
	30000.	1.74	0.750	0.320	0.288	0.260*	0.231*
	80000.	2.33	0.394	0.404	0.374	0.327	0.301
4P - 85	2500.	1.78	1.15				
11495.0A	5000.	2.03	1.29	0.385*	0.304*		
c = 0.44E + 19	20000.	2.35	1.28	0.432*	0.366*	0 2024	0.2424
	30000.	3.15	0.823	0.519*	0.429*	0.393*	0.342*
	80000.	3.68	0.465	0.612	0.563	0.495*	0.453*

NE= 0.1E+16							
TRANSITION	т(к)	ELECTRONS 2WE(A)	DE(A)	PROTONS 2WI(A)	DI(A)	IONIZED HI 2WI(A)	ELIUM DI(A)
4P - 9S 10745.0A c= 0.25E+19	2500. 5000. 10000. 20000. 30000.	2.77 3.17 3.79 4.64 5.19 5.94	1.73 1.88 1.78 1.35 1.11 0.572	C.747* O.800⊁ O.943*	0.646* 0.707* 0.860*	0.763*	0.691*
4P - 4D 23370.0A c= 0.22E+19	2500. 5000. 10000. 20000. 30000. 80000.	4.49 4.32 4.07 3.80 3.66 3.29	1.95 1.74 1.42 1.04 0.824 0.432	1.18* 1.33* 1.49* 1.70* 1.84* 2.21	0.847* 1.06* 1.27* 1.48* 1.60* 1.99	1.21* 1.35* 1.45* 1.74*	1.00* 1.18* 1.28* 1.56*
4P - 5D 14776.0A c= 0.45E+18	2500. 5000. 10000. 20000. 30000. 80000.	5.75 5.49 5.13 4.72 4.46 3.80	2.18 1.93 1.55 1.13 0.873 0.408				
4P - 6D 12318.0A c= 0.20E+18	2500. 5000. 10000. 20000. 30000. 80000.	8.88 8.62 8.14 7.52 7.10 5.99	3.04 2.71 2.18 1.44 1.06 0.414				
55 - 5₽ 54318.3A c≈ 0.15E+21	2500. 5000. 10000. 20000. 30000. 80000.	9.48 10.6 12.0 13.9 15.2 17.6	-5.62 -6.04 -5.71 -4.63 -3.88 -2.55	2.34 2.48 2.65 2.84 2.97 3.34	-1.35 -1.59 -1.84 -2.10 -2.27 -2.71	2.14* 2.25* 2.37 2.51 2.61 2.88	-1.06* -1.27* -1.47 -1.69 -1.83 -2.19
55 - 6P 24414.1A c= 0.15E+20	2500. 5000. 10000. 20000. 30000. 80000.	4.70 5.15 5.84 6.80 7.25 7.96	-2.96 -2.90 -2.23 -1.62 -1.28 -0.560	1.20* 1.29* 1.38* 1.50* 1.57 1.78	-0.672* -0.823* -0.973* -1.13* -1.22 -1.46	1.22* 1.31* 1.36* 1.52	-0.772* -0.901* -0.979* -1.18
55 - 7p 18726.6A c= 0.54E+19	2500. 5000. 10000. 20000. 30000. 80000.	6.28 6.81 7.75 8.87 9.29 9.86	-3.85 -3.42 -2.26 -1.58 -1.02 -0.329	2.02* 2.13* 2.44*	-1.54* -1.68* -2.04*	2.05*	-1.64*
55 - 8P 16398.8A c= 0.26E+19	2500. 5000. 10000. 20000. 30000. 80000.	9.87 10.6 12.1 13.6 14.1 14.6	-5.87 -5.06 -3.45 -2.17 -1.02 -0.369				
NE= 0.1E+17 3S - 3P 5891.8A c= 0.30E+20	2500. 5000. 10000. 20000. 30000. 80000.	$\begin{array}{c} 0.191E-01\\ 0.211E-01\\ 0.249E-01\\ 0.322E-01\\ 0.381E-01\\ 0.551E-01 \end{array}$	0.130E-01 0.154E-01 0.177E-01 0.181E-01 0.183E-01 0.129E-01	0.126E-01 0.127E-01 0.129E-01 0.130E-01 0.132E-01 0.136E-01	0.352E-02 0.404E-02 0.459E-02 0.521E-02 0.559E-02 0.660E-02	0.124E-01 0.126E-01 0.127E-01 0.128E-01 0.128E-01 0.131E-01	0.282E-02 0.325E-02 0.370E-02 0.420E-02 0.452E-02 0.534E-02

73

.

NE = 0.1E + 17				DDOGONS		TONIZED HEL	IUM
TRANSITION	T (K)	ELECTRONS 2WE(A)	DE(A)	2WI(A)	DI(A)	2WI(A) D	(A) I
35 - 4P 3302.6A c= 0.12E+19	2500. 5000. 10000. 20000. 30000. 80000.	C.649E-C1 O.725E-O1 O.864E-O1 O.100 O.108 O.126	-0.231E-01 -0.141E-01 -0.422E-02 0.248E-02 0.582E-02 0.635E-02	0.219E-01*- 0.225E-01 - 0.230E-01 - 0.235E-01 - 0.239E-01 - 0.251E-01 -	-0.686E-02* -0.818E-02 -0.951E-02 -0.109E-01 -0.118E-01 -0.141E-01	0.211E-01*- 0.219E-01*- 0.223E-01*- 0.227E-01 - 0.229E-01 - 0.237E-01 -	0.535E-02* 0.647E-02* 0.760E-02* 0.877E-02 0.948E-02 0.114E-01
35 - 5P 2852.8A c≖ 0.40E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.202 0.221 0.254 0.295 0.313 0.347	-0.102 -0.928E-01 -0.631E-01 -0.460E-01 -0.340E-01 -0.114E-01	0.611E-01*- 0.651E-01*- 0.693E-01*- 0.720E-01*- 0.798E-01 -	-0.303E-01* -0.375E+01* -0.445E-01* -0.487E-01* -0.590E-01	0.626E-01*- 0.646E-01*- 0.702E-01*-	-0.353E-01* -0.388E-01* -0.476E-01*
3S - 6P 2680.4A c≠ 0.19E+18	2500. 5000. 10000. 20000. 30000. 80000.	0.527 0.573 0.653 0.749 0.785 0.842	-0.283 -0.257 -0.186 -0.143 -0.108 -0.356E-01	0.208*	-0.162*		
3P - 4S 11397.0A c= 0.59E+20	2500. 5000. 10000. 20000. 30000. 80000.	0.367 0.420 0.466 0.515 0.552 0.702	0.258 0.296 0.355 0.333 0.329 0.228	0.855E-01 0.937E-01 0.103 0.114 0.121 0.140	0.623E-01 0.735E-01 0.851E-01 0.974E-01 0.105 0.125	0.733E-01 0.797E-01 0.870E-01 0.953E-01 0.101 0.116	0.488E-01 0.584E-01 0.681E-01 0.783E-01 0.846E-01 0.101
3P - 5S 6158.6A c= 0.70E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.405 0.468 0.508 0.563 0.589 0.732	0.276 0.339 0.376 0.363 0.339 0.254	0.865E-01* 0.970E-01 0.109 0.122 0.130 0.154	0.615E-01* 0.773E-01 0.925E-01 0.108 0.117 0.141	0.702E-01* 0.789E-01* 0.884E-01* 0.991E-01 0.106 0.125	0.461E-01* 0.600E-01* 0.731E-01* 0.862E-01 0.940E-01 0.114
3P - 6S 5151.9A c= 0.25E+19	2500. 5000. 10000. 20000. 30000. 80000.	0.780 0.891 0.974 1.10 1.19 1.46	0.519 0.611 0.654 0.634 0.542 0.374	0.181* 0.204* 0.229* 0.245* 0.289*	0.129* 0.162* 0.195* 0.214* 0.262*	0.186* 0.198* 0.234*	0.154* 0.170* 0.210*
3P - 7S 4750.6A c= 0.12E+19	2500. 5000. 10000. 20000. 30000. 80000.	1.52 1.73 1.90 2.19 2.45 2.93	0.920 1.12 1.12 0.986 0.832 0.528	0.539*	0.480*		
3P - 3D 8191.1A c= 0.74E+19	2500. 5000. 10000. 20009. 30000. 80000.	0.312 0.355 C.385 0.413 0.428 0.474	0.219 0.241 0.244 0.227 0.200 0.136	0.809E-01 0.877E-01 0.954E-01 0.104 0.110 0.126	0.521E-01 0.626E-01 0.732E-01 0.843E-01 0.910E-01 0.109	0.711E-01* 0.765E-01 0.824E-C1 0.891E-01 0.936E-01 0.106	0.404E-01* 0.494E-01 0.584E-01 0.676E-01 0.732E-01 0.879E-01
3P - 4D 5686.4A c= 0.13E+18	2500. 5000. 10000. 20000. 30000.	2.25 2.22 2.11 1.97 1.88 1.65	0.809 0.772 0.669 0.550 0.450 0.254				
TABLES FOR NA I LINES STARK BROADENING PARAMETERS

NE= 0.1E+17							
TRANSITION	Т(К)	ELECTRONS 2WE(A)	DE(A)	PROTONS 2WI(A)	DI(A)	IONIZED 2WI(A)	HELIUM DI(A)
3P - 5D	2500.	4.52	1.43				
4981.4A	5000.	4.86	1.45				
c = 0.52E + 17	10000.	4.81	1.24				
	20000.	4.59	0.993				
	80000.	3.82	0.808				
3D - 5P	2500	7 85	-4 29				
17038.7A	5000.	8.74	-4.29	2.14*	-1.14*		
c= 0.14E+20	10000.	9.86	-3.25	2.31*	-1.42*		
	20000.	11.5	-2.58	2.48*	-1.69*	2.20*	-1.34*
	80000.	13.6	-2.28	2.90	-2.26	2.28*	-1.4/*
3D - 6P	2500.	11.4	-5.81				
12309.2A	5000.	12.5	-5.67				
c = 0.39E + 19	10000.	14.2	-4.25				
	20000.	16.3	-3.01				
	80900.	18.4	-0.564	4.39*	-3.46*		
45 - 4P	2500.	3.56	-1.81	1.03*	-0.421*	0 974*	-0 325*
22070.0A	5000.	3.86	-1.84	1.07	-0.508	1.02*	-0.400*
c= 0.53E+20	10000.	4.40	-1.62	1.12	-0.595	1.05*	-0.474*
	20000.	5.29	-1.23	1.16	-0.686	1.09	-0.550
	30000. 80000.	5.89	-1.05 -0.658	1.20	-0.742	1.11	-0.596
45 - 5P	2500.	2.98	-1.55				
10/4/.0A c= 0 57E+19	10000.	3.25	-1.52	0 938*	-0 548*		
C= 0.571719	20000.	4.38	-1.02	1.00*	-0.651*	0.901*	-0.516*
	30000.	4.70	-0.797	1.04*	-0.713*	0.931*	-0.568*
	80000.	5.31	-0.387	1.16	-0.868	1.01*	-0.597*
45 - 6P	2500.	5.55	-2.97				
8650.3A	5000.	6.04	-2.74				
c = 0.19E + 19	20000.	6.8/ 7.97	-2.00				
	30000.	8.34	-1.15				
	80000.	9.02	-0.292	2.17*	-1.70*		
NE= 0.1E+18 35 - 3F	2500.	0.191	0.126	0.121	0.308E-01	0.116*	0.238E-01*
5891.8A	5000.	0.211	0.150	0.126	0.373E-01	0.123*	0.294E-01*
c= 0.30E+20	10000.	0.249	0.176	0.128	0.437E-01	0.125	0.348E - 01
	20000.	0.322	0.180	0.130	0.504E-01	0.127	0.404E-01
	80000.	0.551	0.129	0.136	0.653E-01	0.131	0.527E-01
35 - 19	2500	0 648	-0 206				
3302.6A	5000.	0.724	-0.124				
c= 0.12E+19	10000.	0.863	-0.359E-01	0.224*	-0.828E-01*		
	20000.	1.00	0.293E-01	0.233*	-0.100*	0 0075	0 0775 014
	80000.	1.08	0.591E-01 0.641E-01	0.238*	-0.111*	0.236*	-0.8//E-01* -0.109*
35 - 5P	2500.	1.98	-0.749				
2852.8A	5000.	2.19	-0.734				
c= 0.40E+18	20000.	2.53	-0.494				
	30000.	3.12	-0.281				
	80000	3 47	-0 108				

NE= 0.1E+18							
TRANSITION	Т(К)	ELECTRONS 2WE(A)	DE(A)	2WI(A)	DI(A)	2WI(A)	DI(A)
35 - 6P 2680.4A c= 0.19E+18	2500. 5000. 10000. 20000. 30000. 80000.	4.39* 5.24* 6.21 7.28 7.68 8.32	-1.41* -1.55* -1.14 -0.921 -0.748 -0.326				
3P - 48 11397.0A c= 0.59E+20	$\begin{array}{c} 2500 \\ 5000 \\ 10000 \\ 20000 \\ 30000 \\ 80000 \\ \end{array}$	3.67 4.20 4.66 5.15 5.52 7.02	2.37 2.83 3.45 3.28 3.26 2.27	0.831* 0.930* 1.03* 1.14 1.21 1.40	C 434* C 602* C 757* C 907 C 995 1 22	0.689* 0.784* 0.865* 0.952* 1.01* 1.16	0.300* 0.451* 0.587* 0.716* 0.791* 0.977
3P - 53 6158.6A c= 0.70E+19	2500. 5000. 10000. 20000. 30000. 80000.	4.04 4.68 5.08 5.63 5.89 7.32	2.33 3.09 3.55 3.50 3.32 2.54	1,22* 1.30* 1.53*	0.929* 1.05* 1.34*	1.24*	1.06*
3F - 6S 5151.9A c= 0.25E+19	2500. 5000. 10000. 20000. 30000. 80000.	7.76* 8.90 9.74 11.0 11.9 14.6	3.84* 5.15 5.87 5.92 5.12 3.71				
3P - 3D 8191.1A c= 0.74E+19	2500. 5000. 10000. 20000. 30000. 80000.	3.12 3.55 3.85 4.13 4.28 4.74	1.97 2.26 2.34 2.20 1.97 1.36	0.749* 0.859* 0.943* 1.04* 1.10* 1.26	C.308* O.475* O.625* O.767* O.848* 1.05	0.812* 0.887* 0.934* 1.06*	0.477* C.600* 0.670* 0.841*
3P - 4D 5686.4A c= 0.13E+18	2500. 5000. 10000. 20000. 30000. 80000.	12.8 15.3 16.3 16.3 16.0 14.8	4.00 4.81 4.63 4.08 3.50 2.32				
NE= 0.1E+19	•						
35 ~ 3F 5891.8A c= 0.30E+20	2500. 5000. 10000. 20000. 30000. 80000.	1.90 2.11 2.49 3.22 3.81 5.51	1.12 1.41 1.70 1.78 1.82 1.29	0.796* 1.09* 1.22* 1.28* 1.31* 1.36	0.170* 0.275* 0.368* 0.455* 0.505* 0.628	1.23* 1.26* 1.30*	0.355* 0.398* 0.502*
35 - 49 3302.6A c= 0.12E+19	2500. 5000. 10000. 20000. 30000. 80000.	5.62 6.89 8.45 9.91 10.7 12.5	-1.15 -0.586 0.146 0.593 0.739 0.659				

ACKNOWLEDGEMENTS

This work, supported by C. N. R. S., is a part of French-Yugoslav collaboration through the project "L'élargissement Stark des raies spectrales des plasmas astrophysiques et de la laboratoire". Also this is a part of the project "Atomic, molecular and plasma spectroscopy" supported by SKNTI and RZN of Serbia.

REFERENCES

Bashkin, S. and Stoner, Jr. J. O.: 1975, Atomic Energy Levels and Grotrian Diagrams, Vol. 1, North Holand, Amsterdam. Caccin, B., Gomez, M. T., and Roberti, G.: 1980, Astron. Astrophys. 92, 63.

:

- Dimitrijević, M. S. and Sahal-Bréchot, S.: 1985, JOSRT 34, 149.
- Dimitrijević, M. S. and Sahal-Bréchot, S.: 1990, JOSRT, in press.
- Griem, H.R.: 1974, Spectral Line Broadening by Plasmas, Academic Press, New York.
- Sahal-Bréchot, S.: 1969a, Astron. Astrophys. 1, 91.
- Sahal-Bréchot, S.: 1969b, Astron. Astrophys. 2, 322.
- Stromberg, H. P.: 1980, J. Appl. Phys. 51, 1963.
- Vince, I., Dimitrijević, M. S. and Kršljanin, V.: 1985, in Spectral Line Shapes III, ed. F. Rostas, W. de Gruyter, Berlin, p. 649.
- Wharmby, D. O.: 1980, Proc. IEEE, 127, 165.

ТАБЛИЦЕ ЗА ПАРАМЕТРЕ ШТАРКОВОГ ШИРЕЊА ЛИНИЈА Nai

Милан С. Димитријевић¹ и Sylvie Sahal – Bréchot²

¹ Астрономска опсерваторија, Волгина 7, 11050 Београд, Југославија ² Departement "Atomes et molecules en astrophysique", Unité associée au C. N. R. S. No 812, Observatoire de Paris, 92195 Meudon, France

> УДК 52-355,3 Претходно саопштење

У оквиру семикласичне теорије израчунате су ширине и помаци услед судара са електронима, протонима и јонизованим хелијумом за спектралне линије у оквиру 61 мултиплета неутралног натријума. Резултати су дати у функцији електронске температуре и густине.

BEHAVIOUR OF LEVELS IN THE CONDITIONS OF ASYMMETRICAL HEATING

S. Sadžakov

Astronomical Observatory, Volgina 7, 11050 Beograd, Yugoslavia

(Received: August 1, 1989)

SUMMARY: The subject of the paper is the earlier and present importance of second level examinations. The data of a general analysis are presented. They indicate not only some problems of second levels, but also give informations on level triers whose properties are weakly known at present.

For levels it is very important that the temperature difference at some parts of the tube is not large. According to Drodofski (Drodofski, 1956) in the case of a tube 150 mm long a temperature difference greater than 0.009 C already causes a measurable effect in the position of the bubble. It is difficult to satisfy this requirement. Sardy (Sardy, 1965) measured temperature differences, equal to 0.25 C on the average, on the outer sides of levels in the field conditions and for the levels examined by him a change of 2" in the geographic latitude determined by use of Talcot's method due to a temperature difference of i C at the level ends was found. Drodofski's datum concerns the hydrostatic influences only, whereas Sardy's effect corresponds to a sum of influences both of hydrostatic and mechanical character. The thermomechanical influence is a function of properties of the level-tube housing. The housing can produce a change in the tube's curvature already at a uniform temperature distribution. In the case of a nonuniform temperature distribution its influence is significantly larger and more complicated (Tarczy-Hornoch, A., 1964).

The hydrostatic effects may have a more general character, whereas the mechanical influences are practically different for different levels. This means that one should carefully examine the level behaviour within an inhomogeneous temperature field. This behaviour is usually not taken into account because it is thought that the tube is well isolated from outer influences, but unfortunately this statement is not true.

a) At the geodetico-geophysical Institute in Sopron, in 1964, two levels (in further text level A and level B) were examined with a photo-automatical trier. One level was put on a trier (Tarczy-Hornoch, 1959) and then its ends were heated by lamps. Between the lamps and the levels was a glass wall 10 mm thick. A lamp was at the distance of 1 m from the level's body (position I), i. e. shifted by 40° with respect to position 1 (position II). The heating was carried out with an infralamp (power 250 W), or with a normal lamp (power 300 W). The beam was directed to the part of the level's end containing the correction screws (\leftrightarrow). i. e. to the opposite end ($\leftarrow \rightarrow$). The level was read every minute. The cooling interval between two successive groups of measurements was 4 minutes. When the position of the bubble's middle was determined (expressed in parts of the level constant), a significant difference in heating. between the two kinds of lamps, as well as a prominent influence caused by the heating of the level's ends containing the correction screws, were established. Practically, there was no difference in the effects for positions I and II. After the heating was finished the bubble would come back to its rest position along a logarithmic spiral trajectory. Since the major part of the normal

lamp effects was absorbed by the glass, the shifting of the bubble was in this case about three times smaller.

On the basis of these examinations one can conclude that it is desirable to put a level within a protective shell in such a way that the correction screws should be covered and a glass slab situated in front of the level in order to protect it from the direct influence of observer who radiates like a normal lamp whose power is 100 W (Teleki, 1965).

b) Level A was heated along its length with electric heaters. The heaters (each one having 0.5 kW power) were at the distance of 170 cm from level B. A 0.5 kw heater changed the position of the bubble's middle by a very small amount (0.2 level constants) and the bubble came back to its rest position within 5 minutes. A heater of 1 kW shifted the bubble by 1 level constant and to come back to the rest position the bubble needed 25 minutes.

Level A was permanently under heating and the change in the bubble's position was observed from the moment of turning the heating source off. The time interval necessary to the middle of the bubble to come back to its original position was one hour. Later on, during the cooling process, the level ends were two times, the first time for 5 minutes, the second time for 10 minutes, heated with infralamps. This caused an uncertainty in the bubble's position and a long time interval was necessary for the bubble to come back in the state of equilibrium.

The levels A and B were heated under the conditions mentioned above with electric heaters of 1 kW power. After the bubble had reached its rest position, the positions of the levels were changed by 180° . The position of the bubble of level A had a change of 1.8 level constants after rotation and to reach the state of rest it needed 24 minutes. In the case of level B the rest state of its bubble was already reached after 16 minutes and the change in the bubble's middle position was 1.8 level constants.

The results of these measurements also indicate the different character of the levels on the one side and the necessity of level protection on the other side; in the case of existence of temperature gradients the position of the bubble had significant and long—lasting changes. This fact is especially important for those observations where instruments are rotated and there is no time enough to wait for the bubble to reach its rest state again.

c) The determinations of the constants for level A and level B in the presence of a temperature gradient were performed on a classical level trier of the type "Bamberg" No 5023 which belongs to the Geodetical Institute of Faculty of Civil Engineering of Belgrade University. The levels were heated along their lengths from the distance of 170 cm with an electric heater whose power was 1 kW. The trier was covered so that it suffered no direct radiation. The bubble length for both levels was 25 level constants and the mean external temperature was + 18 C. Wanach's method was used. The examinations began only after the bubble had reached its state of rest.

The levels were examined by two observers in two positions (of the levels). In the first position (I) the screws were opposite the heater and in the second one (II) they were closer to the heater.

Table 1

leve	el	I			П	
	Ν	М	F	Ν	М	F
A	1.12136 1.12276	0.050 0.065	0.056 0.073	1.12123 1.11410	0.060 0.060	0.067 0.068
B	0.80636 0.80949	0.057	0.046 0.096	0.81505 0.81160	0.096 0.109	0.079 0.087

It is seen from Table 1 that there is a systematic difference in the level constant value depending on the rectification screw position. For level A from the mean values of the data concerning both observers one obtains a difference of 0.0438; for level B the difference is -0.001040.

All our examinations concerning the asymmetrical level heating point out that the problem is serious. Since it is very difficult, or perhaps impossible, to satisfy completely Drodofski's condition concerning the temperature difference at the tube's ends (Drodofski, 1956), a better level isolation becomes necessary. If we carry out the isolation, and especially if we do not, it is necessary for any level to know also the characteristics in the case that the level is within a variable temperature field. The results of these examinations indicate that the level constant at almost the same mean temeprature has different values. According to Drodofski as level characteristics in addition to the constant one should also assume the durations of oscillations and damping and the highest possible accuracy of measurements with a given level. These data in Drodafski's opinion sufficiently characterise a level in the course of its using.

It is true that our instruments, including the levels as well, are seldom within a homogeneous temperature field. Knowing this and also that mentioned above one concludes that Drodofski's characteristics give no real picture of a level. Drodofski's opinion should be, certainly, taken into account, however the data proposed by him neither characterise a level sufficiently, nor give a real picture of it and therefore as a level characteristic one should assume the datum concerning its behaviour within an inhomogeneous temperature field. In astrometrical and astrogeodetical praxis these data are necessary, whereas the data concerning the durations of oscillations and damping are of no practical importance because there is time enough for the bubble to reach its rest state. On the basis of the results obtained from the examinations of levels A and B and of other ones (Sadzakov, 1989) one can point out the following.

i) Any level is a problem for itself requiring thus a special examination.

ii) Levels are not sufficiently isolated from temperature influences. The correction screws are the main source of trouble. For this reason it is necessary to put a level within a protective shell and to separate it from the observer with a glass slab.

iii) For every level one should specify the datum describing its behaviour within an inhomogeneous temperature field. This characteristic is necessary to any astrometric and astrogeodetic measurement. iv) Levels should be thoroughly examined at all temperatures at which they are used. A special attention should be paid to the level behaviour at low temperatures.

v) One should verify the constant of the disc belonging to the trier serving for the purpose of level examining. The trier should be well isolated from external effects.

All the examinations and analyses indicate that the levels are very large sources of errors of different kinds. For this reason levels should be examined in detail, comprehensively and with a special care, so that a prior knowledge of them is required.

ПОНАШАЊЕ ЛИБЕЛА ПРИ АСИМЕТРИЧНОМ ГРЕЈАЊУ

С. Саџаков

Астрономска опсерваторија, Београд, Волгина 7, Југославија

УДК 528.541

Претходно саопштење

Говори се о значају испитивања секундних либела пре и сада. Дати су подаци анализе општег карактера, који указују не само на неке проблеме секундних либела, него дају информацију и о испитивању либела, чије су особине за сада мало познаге.

UDC 521.936/.938 Preliminary report

VALUES OF BELGRADE LATITUDE OBTAINED IN THE PERIOD 1969.0–1975.0

R. Grujić, M. Djokić, V. Milovanović, L. Djurović

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

(Received: March 5, 1990)

SUMMARY: The values of Belgrade latitude obtained in the period 1969.0-1975.0 are presented here.

The latitude values presented here (Table 1) are subject of the analysis of the variations in the latitude of Belgrade given in the paper by Grujić, Djokić and lovanović (1989). The observations comprehend a period within which the conditions of deriving the latitude values were the most favourable with regard to the programme characteristics and the number of observations. For this reason the mentioned period has been chosen for the purpose of examining the fine change of the Belgrade latitude and the other nonpolar changes (Z term). The six-year period has been taken in order to obtain the value of the Belgrade mean latitude and its change by applying Orlov's formula which eliminates the Chandlerian annual and semi-annual periods. The latitudes are reduced to the FK4 system. No explanations of the designations appearing in the title are given because they are usual.

REFERENCES

Grujić, R., Djokić, M., Jovanović, B.,: 1989, Bull. Astr. Obs., Beograd, 141, in press.

ВРЕДНОСТИ ШИРИНА БЕОГРАДА ДОБИЈЕНИХ ИЗ ПОСМАТРАЧКОГ ПЕРИОДА 1969.0-1975.0

Р. Грујић, М. Бокић, В. Миловановић, Л. Буровић

Астрономска опсерваторија, Волгина 7, 11050 Београд

УДК 521.936/938 Претходно саопштење

Дате су вредности ширина коришћене код анализе промена ширине Београда у раду Грујић, Ђокић и Јовановић /1989/.

	Date	Julian	Observer	Group	Subgr	oup
		days			φ_{a}	φ_{b}
1969		244C000+				
l l	7	229.250	ĿъD	I		101194
	7	229.395	MD MD	il r	10.176	10.24
	10	292.220	MD MD	ŤŢ	10.411	10,497
	14	236.350	RG	ĪĪ	10.411	-
	21	243.355	RG	ŢŢ	10.250	10.39
	22	244.355	ND ND		10.241	10.21
	27	249.260	HD HD		10,283	(بند یا بند) سب
	31	253.325	MD	II	10.018	10.21
II	8	261.305	RG	ΓI	10.155	10.23
	14	267,285	MD	11 TT	10.510	10.92
	12	208,910	RG	ŤŤ	-	10.19
	18	271,420	RG	ĪĪI	10.312	-
III	9	290.250	RG	II_		10.37
	2	290.395	RG		10.368	10.10
	22	290.565	RG	TTT	10.250	10.10
IV	<u>د د</u>	317.325	RG	III	10.474	10.24
	5	317.490	RG ·	IV	10.315	10.25
	7	319,340	ND		10 610	10.30
	8	520.515 201 210	RG MD	1.1.1 TTT	10.590	10.27
	10	322.315	RG	III	10,558	10,29
	10	322.450	RG	VI	10.182	
	11	323.315	HD		10.674	10.57
		525.450 304 305	PD BC		10.482	10.30
	12	324,450	RG	ĪV	10.236	
	25	337.435	ИD	IV	10.268	10.31
	26	338.435	RG	IV	10,305	10.28
	27	339.400 340 425	RG MD	ŤV	10.345	10.29
	29	341.590	RĞ	v.	10.304	16.24
V	3	345.390	RG	VI	10.321	
	12	354.385	MD	IV	10.355	10.41
	14	<u> ううちょうおう</u> スピク スタミ	5C	TV TV	10,509	10.54
	15	357.545	VE.	, v	10,588	10.5
	16	358.375	HD	Ξ¥	10.443	10.2
	16	358.545	VT-1	V	16,436	10.44
	22	364.360 364.505	KG DC	$\downarrow \vee$	10.283	10.4
	23	365.380	MD	iv		10.5
	24	366.355	RG	TV	10,401	10.34
	24	366,520	VI:	V	16,519	10.4
y۲	29	う71。480 スワロースらの	RG DA	Y TV	10.4/9	16.30
¥ .L	10	383,475	RG	\downarrow	10,380	10.31
	12	385.330	RĞ	ΤΛ		14.44
	12	385.470	RG	V,	16.448	10. <i></i>
	±⇔ r⊂	<u>うなり。4</u> 後0 ネロ1 バドド	1910 173	V M	10.4999 10.479	15.02) 16.02
	10 23	シブエ・4ウン ろ961440	1 1	· /	10,555	- 10.3
	24	<u>дст</u> дэя	4.1	j	1.375	10.4

R. Grujić, M. Djokić, V. Milovanović, L. Djurović

· · · · ·	-	1 NE 516		17	10 671		
V.I.I.	4	405.515	V 1*1	y urr	10.551	10 • 11 01	
	~	405.760	VP.	V L	10.421	10 750	
	2	405.415	RG	V	10.357	10.009	
	2	406.350	RG	V ±	10.491	10 1/18	
	Д	407.410	V1.	V VT	10.550	10.44+C	
	25	408.405	RG	v	10.509	10.487	
	2	410,400	VM	v	10,458	10.474	
	2	410.550	VP:	VI	10.361	-	
	15	418.380	RG	V	10.515	10.488	
	15	418.545	RG	IV	10.535	10.595	
	16	419.380	VI-1	V	10.558	10.494	
	16	419.545	VI-1	VI	10.499	10.491	
	17	420.575	RG	V	10.458	10.518	
	20	420.777	RG	L V	10.547	10.578	
	22	425 340	RG RG	V	10 57/	10.929	
	23	426.340	VM	v	10.551	-	
	23	426.525	VII	vт	10,571	10.320	
	24	427.355	RG	v	10.497	10.619	
	24	427.520	RG	ΓV	10.461	10.459	
	25	428.380	VM	v	-	10.474	
	25	428.515	VM	IV	10.542	10.520	
VIII	1	435.360	MD	V	10 1101	10.581	
	20	420.220	VIM	V	10.464	10.544	
	3	437.350	MD	- V	10.599	10 658	
	ź	437 470	MD	νī	10,503	-	
	5	439.325	MD	v	10.423	10.359	
	7	441.340	MD	v	-	10.419	
	11	445.305	MD	V	10.469	10.387	
		445.450	MD	V L	10.521	-	
	20	447.540	P(D)	V	10-1101	10 500	
	29	463.450	MD	VT	10.494	10.525	
	30	464.400	VM	VĪ	10,541	-	
IX	1	466.415	MD	VI	10.625	10.484	
	1	466.550	MD	I	10.666	~	
	2	467.390	VM	VI	10.513	-	
	S	467.520	ΔM	I	-	10.542	
	0	472.295	PLD VT 1	V L	10.414	10.552	
	a	474•292 474 555	VPI	V L T	10.479	10.439	
	10	475.360	RG	V T	10.663	10.422	
	16	481.350	VM	VĪ	10.589	_	
	21	486.355	Vi∘i	VI	10.562	10.626	
	21	486.525	VM	I	10.518	10.589	
	23	488.355	V14	VI	10.490	10.576	
	23	488.515	VM	1	10.589	10.564	
	24	489.222	RG	¥⊥	10.650	10.696	
	25	409.010	ND	.L.	10,431	10.429	
	25	490.515	MD	T T	10 429	10.605	
	27	492.345	RG	νī	10.596	10.599	
	27	492.505	RG	I	10.551	10.539	
	29	494.335	MD	IV	10.575	10.502	
	29	494.530	MD	I	-	10.681	
X.	1	496.310	RG	IV	10.642	-	
	2	498.000 100 20E	VPI OC	V L VT	10.579	- 	
	4	477•242 499 485		V L T	10.402	エレ・ウエキ コイニムスの	
	4	499.630	RG	TT	10.464	10.490 -	
				the star			

i.

.

7,7	6	501 315	MD	ΥT	10.424	10.411
	6	501.490	FD	Ţ	10.437	-
	b g	501.620	nD ND		10.423	10,446
	11	506.465	RG	I	10.713	10.465
	13	508.440	ing Ing	I	10.469	10.491
	13	508.490	MD	II	10.614	10 000
	16 16	511.620	hD hD	II	10.587	10.544
	17	512.455	VI4 VM	I	10.560	10,588
	20	515.445	FD	Ĭ	10.265	10.387
	21	516.445	VM VM	I TT	10.513 10.529	10,503
	22	517.410	RG	Ī	10.548	-
	23 28	518.435	PLD VM	1. I	10,575	10.464
	28	523.585	VM	II T	10.551	10.445
XI	1	527.415	RG	I	10,444	10.402
	2	528.410 528.600	VM VM	I TT	10.435	10.512
	3	529.405	MD	1	10.462	10.505
	4	530.405 530.565	RG RG	L II	10.451	10.375
	.7	533.395	VM.	I	10.430	10.347
	11	537.545	AN MA	II	10.591	10.479
	16	542.560 543.340	MD VM	II T	10.369	10.404
	19	545.365	RG		10.342	10,422
	20 28	546.365 554.335	VM VM	Ţ	10.386	10.321
200	28	554.505	VM	II	10.199	10.440
70 T	7	E00 270	יזכי	T	10 210	
. 1 .	2 8	595.285	RG	ľ	10,122	10.166
	8 x	595.445 595.615	MD MD	II. TTT	10,166 10,269	10.097
	21	608.440	RG	ŢŢ		10.095
	21 24	608.960 611.405	HG VM		10.316	10.244
	29	616.395	MD	II TT	10,144	10.348
II	2	620.520	MD	11I	10.306	
	12	630.380 635.335	MD VI-I	II TT	10.036	10,260
	17	635.480	VIM	ÎÎI	10.163	
114	2	652,440	VEI	III	10.248	10•961 -
	2	653.625	RG	VI	10,173	10.127
	o 8	654.455	VM	III	10.226	10,177
	9	655.310 664.400	MD RG	II TTT	10.325	10.281
	20	666,425	VIE	III	10.098	10.235
	20 21	666,590 667,450	VH RG	III	10.224	10,301
	24	670,415 670,505	VI I	III		10.19:
	29	675.370	vr. HD	IV	10.202	10.702

VALUES OF BELGRADE LATITUDE OBTAINED IN THE PERIOD 1969.0 1975.0

.

	္ရခ္	675.565	: D	IV	10.347	10.255
	30	076.420	îkă,	1	-	10.244
117	50 Ц	0/(t)•000 avr1=825		1.V T T T	10.089	10.219
T 1	4	001,000 081,545	36		10,202	10.0%
	5	682.375	Vi.	III	10,256	10.1114
	6	683.545	D	VI	10.257	10.235
	19	666,535	RG	IV	10.078	10.213
	12	689,525	36	тv тv	10.158	10.262
	15	692.380	RG	III		10.167
	15	692.515	ЗG	IV	10.084	10.177
	17	594.345	$: \mathbb{D}$	III	10.178	10.254
	19	695.205 Soc 505	VII VII	111	10.156	10.133
	20	697.360		TTT	IC.300	10.257
	22	699.500	RG	ĪV	10.171	10.174
	23	700.495	ŀD	IV	10.091	10.126
17	29	706.475	RG	IV	10.265	10.236
V	D g	715.430	KG VIJ	L V TV	10.104	10.185
	10	717.455	MD	IV	10.145	10,217
	14	721 .445	(TIT)	IV	10.141	10.299
	15	722.420	RG	VI	9.905	-
	16	723.470	RG	IV	**	10,280
	25	732,575	HD HD	T A	10 424	10,268
	26	733.405	VM ·	īv	10.202	10.274
	26	733-550	VM	V	10.308	
	29	736.395	VM T/M	IV	10.302	10.256
VI	~9 5	750,505	VM ED	V TT	1.U . 2444	10,254
•	6	744.400	RG	ĨV		10.270
	6	744.545	RG	У	10,297	10,260
	15	753.520	HD	V	10.391	10.306
	20	755.490	RG	V V	10.403	
	21	759.505	PrD	v	10.385	10.443
	25	763,520	MD	v	-	10.327
	27	765.485	RG	V	10.361	10.325
	57	765.030	RG	VI	10.402	10 1157
VII	1	769.450	RG	v	10.398	10,422
	8	776.455	RG	ν	10,361	10.405
	8	776.325	RG	VI	10.360	10.378
	g	777-455		V	1.0.463	10.552
	10	778.445	1711) VTVI	V I V	10 453	10.300
	10	778.015	VM	VI	10,405	10.400
	11	779.435	RG	V	10.484	10,536
	11	779.615	RG	VI	10.416	10.378
	12	780.435	r:D MD	V 1/	10,455	10.364
	15	783.450	RG	V V	10,001 	10.375
	19	787.415	VI-1	v	10.462	10.419
	19	787.585	VIA	VI	10.474	10.465
	20	788,585	niD UN	VI. v	10.414	10.555
	21	789.585	VI.	v VT	10.515	10.474
	20	790.415	_{(-)	V.	10.420	10,474
	.42	790.585		$\nabla \mathbb{T}$	10.454	يتاريع ويدين

	~ -					
	25	791,415	i-ID	V	10.537	10.561
	22	1701 585	N:D	$\chi \tau$	3 (° – 4.1.4	14 2.22
	21	1120/0/	1.1.1	سيك. ¥ م		100,12
	C.L.	192.415	Vier	V	10.555	10,487
	24	792.575	VI	VΤ	10 500	10 502
	00		1.12	¥		
	20	194.405		V	10,441	10.440
	26	794.575	ίαD	vr	10.402	10.461
	20		5 August 7 776-7	T vin T ?		
	61	192.9492	A 1.1	V	10,4470	10,462
	27	795,575	VM	VT	10.586	10.443
	20	707 205	5075	τy.	10,500	
	67	191.0992	1717	¥	10.009	10.212
	- 29	797 . 565	1-LD	VI	10.575	10.551
UTTT	ż	802 400	1171	17		30 600
مغدمك مقدان	1	002.400		ý V	*G 8 +	24 a 3644
	4	803.400	V14	V	-	10,488
	6	805.365	D.T.	V	10 551	10 /01
	č		1	· · ·		100471
		806.365	VH	V	10,528	10.531
	18	817.505	90	VT	10 SEA	30 627
	~~		22. CB	یک ۲ منتخب		10002/
	20	019,550	RG	V1	100.01-	10,654
	26	825,510	MD	Vĩ	-	10.625
	20	000 100	1. Lar 1. rt	1 2 m	10 -12	
	61	020,407	It. LT	V 1	20.5242	The man
	27	826.645	RG	I	10.517	10.610
TY	2	830 465	7. 73	V.T.	10 606	30 200
Martin D	5	076 701	1.777	¥	40.020	A Provide Charles
	2	852,600	\mathbb{PD}	I	10,796	* 23
	3	833 465	20	VT	10 550	TO SER
	ñ	070 200	3885 1996 #	i she		10,001
	7	027.02/0	VPI	A T	10.578	-9841
	8	838,395	BG	Υr	10.581	10 541
	ō	820 205	1978.4	4 Sender		and the second s
	2	0270272	A 3.7	V L	20.000	1000000
	9	839.555	VM	Ĩ	10.622	10.562
	77	841 395	TTM	177	In che	10 550
			¥ 211	1°	10.07	70.000
	alecter	841.530	VM -	1	10,511	100
	15	845.400	7.7)	VT	C'ARI	10.505
	2	001 200		nder 17 naprig 17	10 000	
	Carlo	071.0940	Els	A T	10.525	+C+
	23	853.355	M	VI	10.508	10-509
	22	853 515	TIM	T	10 001	10 000
			V 1-1	7	LUarUL	10.004
	29	859.335	LD	VI	10.637	10.733
	20	859,480	TJ	Т	10 220	
	70		المريكينية. مور مور	میلید محمد ا	200727	
	20	860.335	لأبل	V L	10.579	10.694
	30	860,480	T.D	7	10.695	5.54
	G	060 200	7.771	11.111	10 670	* 0 CCC
-2-	0	006*220	A 1.1	i she	10.02cl	70.260
	6	866.485	VM	-	10.542	10,998
	8	RER ZIÉ	TIM	157	TA GOD	10 400
	Š		VIL	4 2.	1.0.02.7	dand a "" " " 1
	0	868.480	Viji	Ĺ.	エロッシャン	10.746
	9	869.315	MD	VT	10.502	10 484
	á	OCO HOO	4 m 199	• -•• - ?'		1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -
	7	007.400	rω	1	10.070	エレ・4 うど
	11	871.475	$\operatorname{In}\mathbf{D}$	I	10,641	10.830
	12	872.315	RG	VΤ	IN SEE	10 680
	7 7	007 775	A. 4-4-4-4 7. 177 (4 T.	30 000	
	12	072.215	A 1,1	V	エロッラウロ	
	13	873.465	VN	Т	10.595	3 O. 559
	10	000 000	n	· 7·4	202072	
	19	0/9.200	12130	V .1.	10,005	
	26	886,290	ЬD	VI	A 13	10.511
	26	886 425	MD	т	10 610	in Eor
	20	000,727	111/	<u>_</u>	10.010	10.5c2
	40	888.415	RG	1	10.673	10.593
	28	888.575	RG	тт	10.500	10 512
	20	900 DEC			10	200000
	20	070.277	لنعا	Α.Τ	こしょうから	10.577
	30	890.415	VM	I	10,553	10, 588
	20	800 505	UTA		30 645	200,000
	50	070.373	A 7.1	1 L	TOPOTT	エリュラウム
	31	891.220	RG	VJ.	10.516	147-
YT	1	802 105	DC	7	10 000	10 000
مطار وبالق			ntr	_ L	エク ックシス	10,500
	1	892.590	RG	II	-	10.512
	3	894 405	171.1		10 620	10 / 20
			8 212 	-A.	19.222	14.427
	2	094.265	VII	11	10.577	10,584
	4	895.395	$\mathbb{R}G$	T	10,500	10.500
	71	800 E.C.	3.7			10 000
	64- 	072-202	215	i. L	10.481	10.903
	5	XOS JOJE	50	VI	10,580	10,520

R. Grujić, M. Djokić, V. Milovanović, L. Djurović

VALU	VALUES OF BELGRADE LATITUDE OBTAINED IN THE PERIOD 1969.0-1975.0									
II.	7 7 12 13 19 25 29 29	898.395 898.395 903.355 903.525 903.3525 900.355 910.355 916.515 916.335 920.480	RG RG HD MD VM VM RG VM VM VM	71 I I I I I I I I I I I	10.500 10.605 10.581 10.551 10.524 10.510 10.482 10.536 10.614 10.447 10.485	10.407 10.505 10.403 10.732 10.509 10.652 10.578 10.414 10.415 10.547				
1971										
I II	19 23 23 30 10 11	971.340 972.355 975.355 975.515 982.505 993.510 994.295 994.485	RG VM RG RG RG MD MD	II II III III III III III III	10.166 10.314 10.382 10.316 10.446 	- 10.332 10.403 10.237 10.350 10.177 10.221 10.249				
	12 12 13 13 16	995.285 995.475 996.285 996.470 999.260 2441000+	VM VM RG RG LD		10.144 10.269 10.214 10.345 10.341	10.299 10.140 10.187 10.172				
III	10 12 13 15 18 20 22 24 55 66 1	021.560 023.530 024.385 024.555 026.400 029.535 031.535 031.535 035.525 035.525 036.520 037.555 036.520 037.555 036.520	RG LDGG RDD MDD RGD LDD MDD LDC RDD LDD LDC	IV IV IV IV IV IV IV IV IV IV IV IV IV I	10.016 10.275 10.423 10.093 10.225 10.137 10.132 9.970 10.236 10.346 10.321 10.321 10.104	10.186 10.211 10.218 10.126 10.126 10.184 10.012 10.172 10.108 10.176 10.308 10.176 10.388 10.194 10.197				
Υ	31 27 8 99 14 15 16 20 21 21 790 10	042.32 044.480 049.340 050.315 050.485 051.315 051.485 056.320 056.465 057.465 058.465 062.445 062.445 063.445 063.445 063.445 063.445 063.445 063.445 063.445 063.490 079.430 081.3970 081.3970 082.385 082.385 082.385 082.385 082.385 082.385 082.385 082.385 082.385 082.385 082.385 082.385 082.385 082.385 082.385 083.385 083.590 085.590 085.590 085.590 085.590 085.590 085.590 00	RG LD RD LD MD LD MD LD MD LD MD LD MD LD MD LD MD LD LD LD MD LD LD LD LD LD LD LD LD LD LD LD LD LD	III III III III III III III III III II	10.113 10.350 10.282 10.103 10.053 9.972 10.272 10.129 10.118 10.180 10.044 10.099 10.246 10.161 10.108	10.027 10.082 10.229 10.240 10.048 10.268 10.089 10.357 10.059 10.191 10.172 10.159 10.180 10.304 				
	11	083.570	LD	V L	10.00c	10.088				

\mathbf{v}			5. F.C. 1	T 1 1	3.6 5.13	
Ŷ	da et i	1124.20	1.1	1.7	LC . CL	
	1.2	084,843	5	<u> </u>	10,150	14
	1 2	0. 2 202		7		
	54	19 - 2 • 2 • 2	1. A A A A A A A A A A A A A A A A A A A	~ 1		24.0
	エク	085,035	é, D	1	10.1~4	10.177
	14	085 375	7.75	TV	10 310	16 345
	1.		1.1.	1. V	AV O JIV	L V S C TE
	1. 4.	086.560	1.D	1		10.18%
	17	089.535	11 D	V	10 205	10 225
	10	000 575	5.55	17		10 212
	10	090.000	فادا	V	10.274	10.51/
	25	092.330	LD	τv	10.082	
V^{γ}	2	105 500	NTT)	T	10 225	10 771
يف لا	- 2	100.000		Y	10.224	10*200
	1 L	114.330	LD	IV		10,153
	٦٦	174.425	T.D	17	10 360	10 384
	1 1		and and		+ · · · · · · · · · · · · · · · · · · ·	
	1.4+	11/.407	L'LL	V	LC and S	14°008
	15	118.440	LD	V	10.329	
	211	100 400	2 CD	U.	10 00/	
	20	167.4760	الشدة	Ŷ	1.76 6.04	
	28	151.425	MD	V	10.327	10.310
779.00	8	141,400	e4 D	17	10 452	16 394
	ő	140 700	10 T T S			10 707
	- 2	1-12 # 292	لاذرا	Ŷ	エリ。クラフ	10.007
	10	143.395	MD	V	10,308	10.425
	12	145 305	MID	17	1/1 729	10 101
	10	エアノタジ ノノ	1111	¥	10.000	10.404
	12	エキフ・ウラウ	(H1)	VL	10,390	10,470
	16	149.360	LD	V	10.262	
	717	150 500	170.1	171	10 000	
	T. (エフレッフとし	A 1.1	VI	10.270	
	22	155.500	LD	VI	10,293	
	25	152 455	T.D	v	10 305	10 200
	50	100 700			2000	100211
	27	250 x 545	لمغدلا	V	10.488	10.391
	27	160.490	LD	VT	10.452	
VIII	19	182 /55	MD	TT	10 505	10 500
S at a star	±)		1111	¥ 1	10.000	The Doc
	20	184.285	VM	V	10,48?	10,493
	20	184-470	VM	VT		10 422
	21	ior the	5.4.75	v	10 505	10 400
	ی لہ ک	102:4422	لمبله د ۲	A T	10.967	10,442
	26	190,290	MD	V		10.364
	25	100 425	IS TO	177	10 550	10 400
	00	100 400	1112	L V	10 + 2 / 1	10.1403
	20	192,400	√1 ⁺ 1	V 1	10,384	~~~~
	29	193.280	CM	V	wtr	10.557
	Zn	10/ 090	1750	17		10 000
	12	174,200	V1.)	V	~~~	TO 0 (4.3.)
	20	194.425	VM.	VI	10,506	10.501
ΞX	3	198.405	T.D	VΤ	10 550	10 603
	ž	100 606	7 73	T		30.000
	2	+70+272	1.12	1	10,000	10.041
	4	199.405	MD	VI	10.564	10,599
	4	199.575	MD	T	10 553	10 600
	G		4 4 4 4 4 5 0 7 5	.لار سیاری ا		キンキクロジョン
	7	CUH ++CU	1.773	Ý.1.		10.559
	9	204,530	ND	5	10,733	
	12	207 305	VM	VT	10 200	10 202
	01	576 ZCA	TT	ע. א דיד	1 C 2 C 1	
	<u>ل</u> د ک	<	diala -	VI	10.0707	TC*235
	21	216, 525	1.D	I	10,552	10.787
	22	217 355	171.4	171	10 662	10 604
			775 *	۲ <u>+</u>		
		6110767	V 1∘1	.L	10.540	10. 100
	23	218,355	F!D	VT	10.255	10.212
	23	218 515	1.17	т	10 500	10 614
	~~		1.11	1	10.020	10.014
	24	217.275	LL	VI.	10.688	10,556
	24	219.515	T.D	Ť	10 612	10 203
	05	011 516	1.075		10 000	1000707
		ارطار فالماتات	111	1.	10.000	10.020
	$\leq \prime$	222,520	VP1	VI	10,629	**
	27	222.505	VN	Т	10 500	10 200
×	- (8 · · ·	1	1.0 0 747	10.020
	<u> </u>	441.000	F.1)	1 V	10.735	10.695
	4	229,300	P.D	VT	10.713) -
	65	230 300	1.11	1.577	*****	
	-			T. V	10.020	* ***7
	う	250,485	LD)	Ţ	10,632	10.753
	8	223,31=	Τ.D	VT.	10 445	10 440
		022 452	1. 201	سد. / برد		
	1	422 H / C	See. 1	.1.	LULDON	LC . 70-
	10	235.505	- 13	1 7 11	10.24	16.525
	715	943 J.04	N. 45	r	7 13 12 1	
		2 1 1 0 1 1 1 3	214,23		1.1.2 Sec. 5.15	1.4.3

O()

VALUES OF BELGRADE LATITUDE OBTAINED IN THE PERIOD 1969.0-1975.0

	11	236.305	VM	VI	10.661	10.726
	11	236.475	Vŀ.	I	10. 768	10.763
	12	237.305	LD	IV	10.699	10,666
	12	237.465	LD	I	10.654	10.675
	1.3	238.305	MD	VI	10.531	10.610
	14	239.295	MD	ΨI	10.700	10.634
	14	239.465	MD	I	10.568	10.581
	19	244.285	LD	VI	10.547	10.567
XI. XII	19 20 22 23 33 44 28 95 56 68 81 11 57 77 15 52 23 3 3	244.470 245.285 245.445 247.475 247.445 248.275 248.435 249.435 249.435 251.240 253.425 261.565 262.565 262.565 264.580 267.520 271.680 283.545 267.520 271.680 283.545 283.505 293.500	LÐ VM VLD LD VM VD LD VM VD LD VM VD LD VM VD LD VM VD LD VM VD LD VM VD LD VM VD LD VM VD LD VM VD LD VM VD LD VM VD LD VM VD LD VM VD LD VM VD VD VD VD VD VD VD VD VD VD VD VD VD	I VI I VI	10.610 10.664 10.661 10.729 10.642 10.605 10.605 10.615 10.568 10.561 10.560 10.561 10.560 10.561 10.549 10.617 10.612 10.612 10.437 $-$ 10.625 10.464 10.448 10.315	$10.756 \\ 10.644 \\ 10.587 \\ 10.505 \\ 10.778 \\ 10.637 \\ 10.637 \\ 10.648 \\ 10.648 \\ 10.648 \\ 10.648 \\ 10.649 \\ 10.553 \\ 10.647 \\ 10.651 \\ 10.624 \\ 10.618 \\ 10.499 \\ 10.551 \\ 10.624 \\ 10.618 \\ 10.592 \\ 10.629 \\ 10.592 \\ 10.495 \\ 10.572 \\ 10.466 \\ -$
1972						
II	2357780 1780 26611433	350.350 351.325 353.315 365.285 365.455 366.280 368.250 374.255 374.410 378.270 378.425 381.415 390.385 390.555	RG MD RG MD LD RG RG RG RG RG RG LD MD	II II II II II II II III III III III I	10.512 10.267 10.444 10.358 10.438 10.316 10.272 10.358 10.356 10.243 10.228 10.228 10.228	10.476 10.526 10.442 10.449 10.502 10.382 10.290 10.283 10.281 10.184 10.250 10.541

	14	391.385	RG	III	10.36	10.345
	14 15	クラム・シララ ろう2、375 203、545	HD D		10.263	10.429
	17	594.575 396.365	MD RG	ĪII III	10.299 10.248	10,325 10,543
	20	397,525	LD LD	III IV	10,372 10,132	- 10,335
	21	398.550 402.345	MD RG	IV III	1.0,21.5	10.385 10.210
	30 31	407.335 408.310	LD HD	III III	10.211 10.321	10.155
τv	23	410.470 411.325	RG LD	IV III	10.224 10.092	10,082
	4 5	412.510 413.325	MD RG	IV III	10.291	10.247 10.114
	78	415.460 416.290	ND RG	IV III	10.175 10.223	**
	8 10	416.480 418.305	RG LD	IV III	10.208	10.256
	22 29	430,445 437,400	RG RG	IV	10.277	10,209
V	56	444.405	RG RG	A TA	10.129	10.137
	7	445.420		IV	10.099	10.164
	17	446-565	RG -	IV TV	10.233	10,258
	22	460.535		V TV	10.225	10.296
	23 23	461.525	MD RG	V IV	10.201	10.214
	24	462.525	RG LD	V IV	10.112	10.097
	26 29	464.320	MD LD	IV IV	10,102	10.065
	29 30	467.530	LD MD	IA A	10.244	10.074 10,218
	30 31	468,495 469,350	MD RG	V IV	10,262	10.267 10.183
VI	31 5	469,495 474,485	RG LD	V V	10.257 10.195	10.159
	6 U	475.315 475.460	MD MD	TV V	10.124	10.150
	7 7	476.315 476.485	RG RG	V TV	10.190	10.205
	8	477.500		$\mathbf{v}_{\mathbf{v}}$	~	10.124
	29	478.550 478.475	MD TD	V V V	10,268	10.259
	17	486.455	RG	V v	10.110	10.192
	21 25 26	494,435	RG T.D	v v	10.175	10.177
	28 28 28	497.450 497.570	RG RG	v v v	10.305	10.225
71	29 I 2	498.425	I.D RG	V V	10,158 10,311	10.050 10.267
• 24	5	504.40 ² 507.370	RG RG	7 17	10.234	10.193
	ıč	509.395	RG	V	10.24%	10.329

VIII	16 18 19 20 9 9 11 14 27	515.350 517.340 517.510 518.340 519.510 529.360 539.315 539.450 541.305 541.450 544.490 557.280	RG HD RG HD HD HD HD MD MD MD MD MD	V V V V V V V V V V V V V V V V V V V	10.392 10.117 10.193 10.130 10.173 10.276 10.196 10.295	10.280 10.165 10.259 10.179 10.245 10.292
X	27 1 6 7 14 14 18 22	557.400 562.415 567.400 568.395 575.375 575.520 579.340 583.355	MD MD RG LD RG RG LD	AI AI AI AI AI AI AI	10.350 10.338 10.430 10.508 10.471 10.532 10.442 10.467	10.290 10.415 10.537 10.399
x	22 25 28 15 17 24 25	583.550 586.355 589.345 606.455 608.310 615.460 615.260	LD RG RG MD MD MD RG	AI AI AI AI I	10.530 10.485 10.354	10.521 10.391 10.474 10.357 10.468 10.436
	25 26 27 27 31 31	616.430 617.265 617.425 618.260 618.425 622.245 622.415	RG - LD MD MD MD MD MD MD	I VI VI VI I VI	10.500 10.670 10.619 10.390 10.592 10.455 10.575	10.510 10.678 10.595 10.499 10.363 10.376 10.354
XI	1 4 7 8 9 12	623.245 623.415 626.405 629.370 630.395 631.420 634.385	RG RG RG MD RG LD RG	VI I I I I I I	10.521 10.534 10.632 10.521 10.595 	10.656 10.467 10.511 10.651 10.707 10.527
XII	28 28 34 20 21 38 20 21 38	650.360 650.480 655.325 656.325 672.275 672.445 673.275 675.240 680.255	ND HD RG LD RG LD RG RG	I II I I II I I I	- 10.483 10.568 10.520 10.464 10.514 10.522 10.461 10.562	10.476 10.606 10.482 10.526 10.633 10.493
1973	29	681.270	MD	I	2492	10,511
I	13 14 25 26 8 12 19	696.240 697.375 703.330 708.370 709.345 720.475 722.450 726.395 726.465 733.250	RG MD RG LD MD RG LD LD RC LD	I II II III III III III III	10.460 10.499 10.254 10.469 10.198 10.488 10.329 10.421	10.431 10.443 10.545 10.543 10.431 10.560 10.338

*	III	19 17 17 22 22 23 23	733.445 759.375 759.540 764.355 764.525 765.355 765.525	RG RG LD LD MD	III IV IV IV IV IV IV IV	10.467 10.340 10.270 10.394 10.350 10.392	10.292 10.340 10.382 10.266 10.346 10.186
	IV	231 31 22 7 7	773.335 773.505 775.325 775.490 780.315 780.460 780.430	RG RG LD LD RG RG	III IV III IV III IV	10.231 10.336 10.400 10.309 10.312 10.185	10.295 10.336 10.266 10.318 10.365
	V	18 22 27 13 13 14	791.285 795.445 800.435 816.410 816.530 817.385	RG RG MD RG RC MD	IV IV IV IV IV	10.298 10.180 10.202 10.195 10.195	10.254 10.194 10.314 10.192 10.138
		15 17 21 22 24 29 29	818.400 820.375 824.365 825.360 827.330 832.345 832.505	RG RG MD RG RG RG	IV IV IV IV IV	10.112 10.084 10.208 10.130 10.098	10.257 10.215 10.162 10.135
	ΔI	30 1 12 13 13	833.360 835.335 835.500 846.470 847.320 847.465	MD MD MD RG MD MD	IV IV V V IV V	9.996 10.238 10.132	10.165 10.026 10.121 10.289 10.193 10.176
	VII	16 22 5 6 10 12	850.440 856.445 869.405 870.405 874.400 876.385	RG MD RG RG RG RG	А А А А А А	10.155 10.234 10.092 10.020 10.183 10.210	10.074 10.176 10.156 10.204 10.105
	VIII X	19 21 31 1 21	880.375 883.340 885.365 895.335 896.480 916.445 928.415	RG RG RG RG MD PC	V V V V V V V V V V V	10.200 10.238 10.106 10.271 10.257 10.292	10.184 10.185 10.335 10.168
		4 7 9 11 12 15	930.405 933.370 935.395 937.380 938.350 941.340	RG MD MD RG MD RG	IV IV VI VI VI VI VI	10.367 10.172 10.264 10.463 10.325 10.380	10.254 10.371 10.252 10.437
		16 20 25 29 29	942.365 946.365 946.550 951.370 955.335 955.505	MD RG RG RG RG RG	VI I VI VI I	10.211 10.347 	10.297 10.367 10.331 10.212 10.278 10.207
	X	5 5 10 11 11	961.325 961.480 966.330 967.305 967.460	MD MD ED RG BA	IV VI VI	10.266 10.317 10.249	10.285 10.282 10.377 10.249

						0.0
					W the country frame and the second	
	19	975-470	КD	Т		10,286
	23	979.250	RG	τv	10.353	
	26	982.265	MD	VI	10.438	10.445
	27	983.260	RG	VĪ	10.314	10.371
	27	983.425	RG	I	10.421	10.538
XI	1	988.415	RG	I	10.400	10.522
	10	997.385	RG	I	10.443	10.324
	18	005.365	RG	I	10.476	10.388
	19	006.365	MD	I	10.317	10.430
	19	006.550	MD	ĨI		10.267
	20	010 7 555	RG	Ť	10.383	10.342
VTT	2)	010.990	PC	1 7	10.501	-
ATT	10	027 305	in D	1. T	10.276	10-11-20
	10	027.000	PC	1 7 T	10.470	10.420
	16	033 260	RG	Т Т	10 578	10.552
	20	037.250	RG		10 438	-
	20	037.445	MD	ĪT	10.423	10.522
	23	040 435	RG	ĪĪ	10.397	10.344
-						
1974					-	
1	2	057.385	MD	11	10.315	10.379
	7	061 305	HG DC		10.303	10.356
	12	061 545	AU MTD		10.351	10.565
	15	063 400	PC	*** ***	10.455	10.222
	22	070-380	RG	- ⁺		10.051
	22	070,500	MD	TTT	10,492	10.409
	24	072.515	RG	ĪĪĪ	10.385	10,199
	26	074.345	RG	II	10,283	10,401
	26	074.510	MD	III	10.325	10.375
	29	077.335	RG	II	10.392	10.327
	29	077.505	MD	III	10.284	10.138
11	5	084.315	MD	II	10.430	10.412
	ל	084.485	RG	III	10.417	10.339
	10	089.300	RG	<u>1</u>	10.366	10.426
	10	001 300	MTD		10.362	10.242
	12	091.020	PLD PC		10 // 25	10.292
	16	095-285	RG		10.425	10,121
	16	095,455	MD		10 408	10 220
	27	106.255	MD	ĬĨ	10.397	10.355
	27	106.425	RG	ĪĪI	10.345	10.309
	28	107.255	RG	II	10.408	10.396
	28	107.400	MD	III	10.425	
III	3	110.245	RG	II	10.429	10.368
	3	110.415	MD	III	10.346	10.219
	12	119-285	ΜŪ		10.284	10.147
	12		RG		10.268	10.384
	14	121 530	MD		10.326	10,264
	19	125 320	RG	<u>т</u> т	10.397	10 210
	19	125-535	MD	TV	10.324	10.419
	2í	127-365	RG	ŤŤŦ	10,402	10,252
	21	127.525	MD	ĪV	10.206	10.297
	26	133.345	MD	III	10.373	10.322
	26	133.515	RG	IV	10.248	10.361
	28	135.370	ЫD	III	2 	10-165
_	28	135.515	RG	IV	10.289	10.410
IV	3	141.325	ыD	III	10.270	10.176
	3	14].495	RG	<u>IV</u> _	10.267	10.362
	6	144.290		<u>ــــــ</u>	10.375	-

VALUES OF BELGRADE LATITUDE OBTAINED IN THE PERIOD 1969.0-1975.0

Same State and a low of the

95

4

• ينجيم

	Č.	147.315	ЗG	III	10.592	10.194
	, é	147.460	20	IV	10.125	-
	10 20	148.280 158.4.20	20 20	111 TV	10.357	-
	29	167.430	RG	ĪV		10,335
V	1]	179.395	RG	IV VI	10.181	10.214
	19	187.365	RG	IV	10.290	10.357
	19	187.535	RG	V	10.235	10.306
	26	194.515	nG MD	T A T	10,274	10.229
	30	198.340	RG	IV	10,224	10.259
VT	30 4	198.505	hiD Lin	V	10.239	10.268
	4	203.495	RG	τ,	10,199	10.240
	2	204.325 204.490	HD PG	IV V	10.225	10.250
	17	216.310	RG	IV		10.240
	17 20	216.430	MD	V TTT	10.212	10,101
	20	219.445	MD	V V	10,127	10.121
	25	224,435	RG	Ϋ́	10.275	10,196
VII	3	232.415	RG	v	10.237	10.225
	10	239.395	RG	V	10.265	10.263
	13	299•222 242.385	RG	V⊥ V	10.382	10,323
	13	242.555	RG	IV	10,231	10.174
	16	245.545	RG	V VT	10.208	10.212
	24	253.355	RG	V	10.178	10.167
	28	252.525	RG RG	VI V	10.279	10.248
17 - T - 7.	28	257.510	RG	VI	10.200	10,188
VIII	1	261.480	RG RG	V VT	10 352	10.342
	7	267.315	ND	V	10.291	10.363
	24	207,485	F1D F1D	V1 V	10.324	10.270
Tar	14	274.440	MD	VI	10.336	
LA	12	299.395	MD RG	VI VT	10.177	10.308
	13	304,385	IAD	VI	10.313	10.324
	17	308,375 308,535	RG ND	VI	10,368	10.392
	28	319.340	RG	Ī	10,184	10.304
x	28	319.530	MD	I	1.4T	10,260
	10	331.475	RG	I	10,286	10.258
	11	332.330	MD	VI	10,020	10.241
	27	348.265	ND	VI	10.273	10.367
vт	27	348,425	RC	I	10.354	10.274
	11	363.220	RG	VI VI	10.391	10.368
	12	364.190	MD	TI	10-358	
	14	366,215	rg RG	I VI	10.359	10,260
	14	366.375	ND	I	10.296	10.259
	20	372.365	RD RG	V L I	10.264	10,254
	30	382,360	:.1)	I	ر با در ا در ا	10,200

VALUES OF BELGRADE LATITUDE OBTAINED IN THE PERIOD 1969.0-1975.0

XII 2 2 2 2 2	21 22 22 28	403.275 403.440 404.275 404.435 410.230	RG RG MD MD RG	I II I II I	10.253 10.238 10.327 10.366 10.308	10.256 10.242 10.319 10.283
---------------------------	----------------------	---	----------------------------	-------------------------	--	--------------------------------------

Bulletin de l'Observatoire astronomique de Belgrade N^O 142, Beograd, 1990.

CONTENTS

Original Scientific papers:

	J.P.Anosova	A search and classification of multiple systems in the general field	1
	V.Protitch—Benishek M.B.Protitch	An approach to the problem of secular acceleration of the Moon	17
	S.Ninković	A Consideration of velocity distribution within coronae of galaxies	23
Preliminary re	ports:		
	M.S. Dimitrijević S.Sahal—Bréchot	Stark broadening of K I lines	29
	M.S. Dimitrijević S.Sahal—Bréchot	Tables for Na I lines Stark broadening parameters	59
	S.Sadžakov	Behaviour of levels in the conditions of assymmetrical heating	79
	R.Grujić M.Djokić V.Milovanović L.Djurović	Values of Belgrade latitude obtained in the period 1969.0 – 1975.0	83