UDC 521-525

YU ISSN 0373-3734

BULLETIN

DE

L'OBSERVATOIRE ASTRONOMIQUE DE BELGRADE

Nº 144

BEOGRAD 1991

BULLETIN

DE

L'OBSERVATOIRE ASTRONOMIQUE DE BELGRADE

FOUNDED IN 1936

EDITORIAL BOARD:

Dr Milan S. DIMITRIJEVIĆ, Editor-in-chief (Astronomical Observatory, Belgrade) Mr Olga ATANACKOVIĆ-VUKMANOVIĆ, (Astronomical Observatory, Belgrade) Dr Zoran KNEŽEVIĆ (Astronomical Observatory, Belgrade) Dr Andrea MILANI (Università di Pisa, Pisa) Dr Jelena MILOGRADOV-TURIN (Faculty of Sciences, Belgrade) Dr Slobodan NINKOVIĆ (Astronomical Observatory, Belgrade) Mr Vojislava PROTIĆ-BENIŠEK (Astronomical Observatory, Belgrade) Dr Sofija SADŽAKOV (Astronomical Observatory, Belgrade) Dr Sylvie SAHAL-BRÉCHOT (Observatoire de Paris, Paris) Dr Ištvan VINCE (Astronomical Observatory, Belgrade) Dr Vladis VUJNOVIĆ (Institute of Physics of the University, Zagreb)

Published and copyright © by Astronomical Observatory, Volgina 7, 11050 Beograd, Yugoslavia

Director of the Astronomical Observatory: I. Vince

The publication of this issue is financially supported by the Republic Fund of Sciences of Serbia.

Printed by: MULTIFKSPER1, Beograd, Ruzveltova 42, tel. 455 282, tiraž: 500 primeraka .

BULLETIN

DE

L'OBSERVATOIRE ASTRONOMIQUE DE BELGRADE

NO 144

BEOGRAD 1991

Bull. Obs. Astron. Belgrade N^o 144 pp. 1-128 Belgrade Septembre 1991

e mant a though that will be a

UDC 524-68 Original scientific paper

A STUDY OF THE VELOCITY DISTRIBUTION FOR A PARTICULAR CASE OF THE SPHERICAL SYMMETRY

S. Ninković

Astronomical Observatory, Volgina 7, 11050 Beograd, Yugoslavia

(Received: April 12, 1991)

SUMMARY: A particular case of spherically symmetric stellar systems, characterised by the mass distribution of the type $(1-r^2/r_1^2)$, is studied. It is obtained that, if the mean radial velocity square varies in the same way as the density, then anisotopic velocity distributions with the transverse component prevailing take place. The fraction of the radial component in the total kinetic energy is not high, even in the case of a very high mean radial-velocity square at the centre it is less than 50%.

1. INTRODUCTION

It is well known that in the case of spherical symmetry the velocity distribution in the self-consistent and stationary stellar systems is generally anisotropic, but being isotropic at their centres (e. g. Binney and Tremaine, 1987, p. 242; Ninkovic, 1990, hereinafter referred to as Paper I). Therefore, it is of interest to study the anisotropy degree. In this paper the case of a specific and very simple mass distribution, almost a ,school example" will be considered.

2. THEORETICAL BASE

The mass distribution considered in the present paper is given by the following density function where r is the distance to the centre of the system. It is clear

$$\rho = \rho (0) \left(1 - \frac{r^2}{r_1^2} \right) \quad r \le r_1, \rho = 0 \quad r > r_1$$
 (1)

that the amount of the total mass depends on the two parameters: the central density ρ (0) and the limiting radius r_l . Formula (1) is very simple and the density function described by it satisfies the basic conditions imposed on the density of a realistic stellar system, i. e. it decreases radially outwards, the rate of decrease becomes as lower as the distance to the centre is smaller so that the density attains its maximum just at the centre. A mass distribution like (1) has been often mentioned in various studies (e. g. Baranov and Volkov, 1977).

The potential generated by the density (1) is described in the following way

$$\Pi = \Pi(0) - 4\pi G \rho(0) \left(\frac{r^2}{6} - \frac{r^4}{20r_1^2}\right), \Pi(0) = \pi G \rho(0) r_1^2 \quad (2)$$

where G is the gravitation constant. If the system studied in the present paper is self-consistent, then all the motions within it will be governed by the potential (2). The intention of the present author is to examine the resulting velocity distribution. This will be done in the same way as in Paper I (formulae (1) and (2)). One should also bear in mind that the mean radial-velocity square at the centre is limited, i. e.

$$\overline{v_r^2}(0) < \frac{2}{3} \Pi(0),$$

since all objects of the system are in the potential well.

3. RESULTS

The function f (r) (formula (2) of Paper I) is here composed in a similar way (like that in Paper I). A usable example for the present purpose may be

$$f(r) = \alpha_1 \left(1 - \frac{r}{r_1}\right) + \alpha_2 \left(1 - \frac{r}{r_1}\right)^2 + \alpha_3 \left(1 - \frac{r^2}{r_1^2}\right)$$
(3)

Now, the case of a "transverse" anisotropic velocity distribution, i. e. when it is $v_t^2 > 2v_r^2$ beyond r = 0, is studied. A solution of the type $\alpha_1 = \alpha_2 = 0$ (form. (3)) is found. It is seen that in such a situation the dependence of the mean radial-velocity square on the radius has the same form as that of the density. The upper limit of v_r^2 (0) is about 0.133 II (0) since then the mean transverse-velocity square becomes negative at the boundary because it is valid- v_t^2 (r_1) = u_c^2 (r_1) - $4\alpha_3 v_r^2$ (0) (u_c - the circular velocity, as in Paper I).

It is also of interest to examine the case of "radially" anisotropic velocity distributions, i. e. when within some interval $re(0,r_i)$, $r_i < r_1$, it is valid $\overline{v_t}^2 < 2v_r^2$. It is possible to obtain such distributions by assuming $\alpha_1, \alpha_2 > 0$ and examining comparatively higher values of $v_r^2(0)$. As already said in Paper I, radially anisotropic velocity distributions are characterised by a minimum in the v_t^2/v_t^2 ratio placed somewhere between r=0 and r=r₁. The present examinations indicate that those minima are not very deep, especially when compared to the minima found in Paper I for the case of a different mass distribution. For example, in the extreme case v_r^2 (0) = 0.66 II(0), with the coefficients of (3) equal to $\alpha_1 = 0.01, \alpha_2 = 0.8, \frac{\alpha_3}{r_r^2} = 0.19$, one obtains that at $r=0.65r_1$ the ratio v_t^2/v_r^2 attains its smallest value of 1.038. Its central value of 2 this ratio attains again as far from the centre as at $r = 0.91 r_1$. The role of the third term in (3) is to prevent any increase of the mean velocity square v^2 ($v^2 = v_r^2 + v_t^2$) towards the boundary of the system, as in Paper I. In the case of a transverse anisotropic velocity distribution the mean velocity square at first increases (beginning to increase immediately from the centre), attains a maximal value and finally decreases towards the boundary. This is not surprising. It is enough to say that in the extreme case $\overline{v_r}^2$ (0) = 0 the mean velocity square behaves exactly like the square of the circular velocity (formulae (1)--(2) of Paper I). If v_r^2 (0) is different from 0, then the behaviour of $\overline{v^2}$ is no longer identical to that of u_c^2 , but it is still similar to it.

4. DISCUSSION AND CONCLUSIONS

A comparison with the results of Paper I shows that the degree of "radial" anisotropy in the case of the mass distribution described by (1) is very different from

that corresponding to the mass distribution studied in Paper I. Unlike the deep minima in $\overline{v_t^2}/v_r^2$ ratio found in Paper I, here one finds much shallower ones, even in the case of high central mean squares of the radial velocity component, approaching the limit of $2/3\Pi(0)$ mentioned above. Certainly, as the best measure of the anisotropy degree appears the fraction of the radial velocity component in the total kinetic energy of the system (see Paper I). This quantity is calculated for the two cases of interest: $\overline{v_r^2}(0) = 0.13 \Pi(0), \alpha_1 = \alpha_2 = 0$, $\alpha_3 = 1$ and $\overline{v_r^2}(0) = 0.66 \Pi(0), \alpha_1 = 0.01, \alpha_2 = 0.8$, $\alpha_3 = 0.19$. In the first case one obtains 20%, in the second one 44%. It is clear that because of the low absolute density gradient (second term on the right-hand side in formula (1) of Paper I) the fraction of the radial component in the total kinetic energy cannot attain high values (say more than 50%). Hence, it is possible to see that a mass distribution like that studied in Paper I, suspected to exist in the dark coronae of spiral galaxies, is "favourable" for giving rise to velocity distributions characterised by the domination of the radial velocity component.

ACKNOWLEDGENENT

This work has been supported by RFNS (Republican Fund for Science of Serbia) through the project "Physics and Motions of Celestial Bodies".

REFERENCES

Baranov, A.S., Volkov, M.S.: 1977, Astron. zh. 54, 1140
Binney, J., Tremaine, S.: 1987, Galactic Dynamics, Princeton University Press, Princeton, New Jersey.
Ninkovic, S.: 1990, Bull. Obs. Astron. Belgrade, 142, 23.

A STUDY OF THE VELOCITY DISTRIBUTION FOR A PARTICULAR CASE OF THE SPHERICAL SYMMETRY

ПРОУЧАВАЊЕ РАСПОДЕЛЕ БРЗИНА ЗА ЈЕДАН КОНКРЕТАН СЛУЧАЈ СФЕРНЕ СИМЕТРИЈЕ

С. Нинковић

Астрономска опсерваторија, Волгина 7, 11050 Београд, Југославија

УДК 524—68 Оригинални научни рад

Проучава се један конкретан случај сферно симетричних звезданих система који карактерише расподела масе облика $(1-r^2/r_1^2)$. Добијено је да, ако се средњи квадрат радијалне брзине мења на исти начин као пустина, онда се јављају анизотропне расподеле брзина у којима преовлађује трансверзална компонента. Удео радијалне компоненте у укупној кинетичкој енергији није велик; чак и када је средњи квадрат радијалне брзине у центру врло велик, он не прелази 50%.

Bull. Obs. Astron. Belgrade N⁰ 144 (1991), 5-12.

UDC 550.38 Original scientific paper

GEOMAGNETIC FIELD OBSERVATIONS IN THE KOPAONIK THRUST REGION, YUGOSLAVIA

T. Bicskei and M. Popeskov

Geomagnetic Institute, 11306 Grocka, Yugoslavia

(Received: April 4, 1990)

SUMMARY: In the absence of continuous registrations of the geomagnetic field variations in the surveyed region, the nearest permanent observatory records had to be used in the data reduction procedure. The proposed method estimates the differences between the hourly mean values at the particular measuring site, which are not actually known, and at the observatory on the basis of a series of instantaneous to-tal field intensity values measured simultaneously at these two places.

The application of this method to the geomagnetic field data from the wider area of the Kopaonik thrust region has revealed local field changes which show connection with pronounced seismic activity that has been going on in this region since it was affected by the M = 6.0 earthquake on May 18, 1980. The distribution of Sperman's coefficient of rank correlation between the local field changes and the magnitudes of those earthquakes which could have had the influence on the magnetic field behaviour in particular time intervals, exhibits a dipole-like feature clearly defining the Kopaonik source region as an anomalous one. An attempt is made to interpret the observed magnetic effect by modelling the source region with two displaced prisms of appropriate magnetization vectors.

1. INTRODUCTION

Geomagnetic investigations in the wider area of the Kopaonik mountain were initiated after the occurrence of an M = 6.0 earthquake on May 18. 1980, in order to study the local behaviour of the total field intensity in the period which followed the main shock and was characterized by numerous aftershocks of M = = 4. As the Kopaonik epicentral region was continuously showing increased seismic activity, it was decided to go on surveying over this area so that fourteen surveys were carried out up to November 1986. Owing to the fact that we were unable to set up a temporary station for continuous registrations of total field intensity variations in the Kopaonik area, we had to use Grocka observatory records in data reduction procedure. Grocka observatory is situated about 170 km north from the Kopaonik epicentral region and it is obvious that the inequality between the geomagnetic field variations at the observatory and in the Kopaonik area has to be taken into account. Therefore, we proposed a particular method of data reduction which will be discussed in the next section.

2. DATA REDUCTION, ANALYSIS AND DISCU-SSION OF RESULTS

Assuming the proportionality between the total field intensity variations in the Kopaonik area (ΔF_K) and at the observatory (ΔF_O) , we can put $F_K = k \cdot \Delta F_O$, where k is the coefficient of proportionality. The instantaneous value of the total field intensity at the observatory can be expressed as

$$F_{O} = Q_{O} + \Delta F_{O} \tag{1}$$

where Q_O denotes the hourly mean value taken as the basis in respect to which the variation F_O is determined. The respective instantaneous value for the Kopaonik area is

where the hourly mean value
$$Q_K$$
 is not actually known.
Taking into account relations (1) and (2), the differences between the instantaneous total intensity values can be written as

$$F = F_{K} - \Delta F_{O} = Q_{K} - Q_{O} + (k-1) \cdot \Delta F_{O} \text{ or}$$

$$F = O + \mathcal{H} \cdot F_{O}.$$
(3)

where $Q = Q_K - Q_O$ and $\mathcal{H} = k - 1$. Setting the condition for the differences $Q_K - Q_O$ to be minimum, expressions

(4)

Fig.1 The network of observation sites. Dashed area includes the epicenters of all earthquakes which are considered in this work.

give the system of equations

$$nQ + \mathcal{H} \sum_{i=1}^{n} \Delta F_{Oi} = \Sigma \ \delta F_{i}$$

$$Q \sum_{i=1}^{n} \Delta F_{Oi} + \mathcal{H} \sum_{i=1}^{n} \Delta F_{Oi}^{2} = \sum_{i=1}^{n} \delta F_{i} \Delta F_{Oi}$$
(5)

The solution of equations (5) gives Q, i.e. Q_K if needed, and the coefficient of proportionality $k = \mathcal{H} + 1$. In the above equations n stands for the number of the instantaneous total-field-intensity values. The results discussed in this work are based on the analysis of the Q values for each measuring site and each particular epoch.

In order to eliminate any possibly existing longterm trend in the Q values because of the difference in the secular variation at the observatory and in the Kopaonik area, both linear and parabolic regressions have been applied to the obtained Q values. Finally, the residuals from parabolic regression (Q_R) are accepted as local-geomagnetic-field changes at the time of the particular survey and their temporal and spatial variation is considered with respect to the seismic activity in the period May 1980 April 1990.

The difference between the houfly mean values at a particular recordine site and at the observatory should be constant in time unless a certain process is going on either in the vicinity of the observatory or at the recording site, which is not identical at the two locations. Under the reasonable assumption that the geomagnetic field in the vicinity of the observatory is of a "normal" character, at least as far as tectonic processes are concerned, all variations in $Q_K - Q_O$ differences (i.e. residuals Q_R) can be, in this case, ascribed to the processes responsible for the increased seismic activity in the Kopaonik area.

The distribution of recording sites is presented in Fig. 1 and the time variation of the Q_R values for a few sites is shown in Fig 2. The dominant feature is not only the magnitude itself of the observed changes from one survey to another at sites which are closer to the epicentral region (No. 12 and 13) in comparison with those which are further away, but rather their better temporal coincidence with earthquake occurrences. In accordance with this, the next step was to rank the Q_R values taking absolute intensities and also to rank the magnitudes of those earthquakes which, due to the time of their occurrence, could have had the influence on the geomagnetic field behaviour at the time of a particular survey. Applying Spearman's formula for rank correlation, the coefficient r has been computed for each site.

Due to the dimensions of the surveyed area, certain sites fall within some seismotectonic units which are characterized by their own regimes of stress accumulation and release. In order to reduce unknown but possibly existing effects of complicated interrelationships and influences between different seismotectonic units, and assuming that it is more probable to detect geomagnetic field changes in connection with the Kopaonik earthquakes at sites closer to the epicentral region than at distant ones, we have used the concept of the so-called strain radius to "filter out" originally obtained values of the correlation coefficients. If the assumption is adopted that the zone of effective manifestation of the precursory deformations is a circle with the center at the epicenter of an immanent earthquake, then the relation

$$\rho(\epsilon) = e^{C(\epsilon)M}$$
(6)

defines the strain radius $\rho(\epsilon)$ for a given deformation of ϵ , where $C(\epsilon)$ is a constant which depends on ϵ and M is the magnitude of the earthquake (Dobrovolsky et al., 1979). In our case, we took the center of the region within which fall the epicenters of all earthquakes in the period concerned. Taking M = 6.0, the strain radius ranging from 1.6 to 73.8 km was obtained, for $= 10^{-1}$ to 10^{-6} , respectively. The calculated coefficients of the rank correlation are reduced with respect to the value of the strain radius corresponding to each site owing to its distance to the epicentral region. The distribution of such a reduced correlation coefficient r* is presented in Fig. 3.

It can be seen that the largest positive and negative values of r* occur in the wider area of the source region so that the pattern of distribution clearly defines the field of a dipole-like character. A very pronounced seismic activity in the period concerned in this work, is the result of activation of the SE boundary of the Kopaonik seismogene block. This triangularly shaped block has the largest seismic potential among several other blocks within the investigated area. Since we are attempting to interpret the charcteristic distribution of the rank correlation coefficient in relation with intensive tectonic processes in the area concerned, it is interesting to notice that the dipole-like field is formed just in the wider area of the source region, i.e. in the vicinity of the NE corner of the Kopaonik seismogene block.

If the connection between the geomagnetic field changes (Q_R) , correlation coefficients (r^*) and magnitudes of earthquakes (M) holds in the form $Q_R \sim$ $-r^*M$, then the physical meaning of the obtained pattern of the distribution shown in Fig. 2 can be searched fo in the light of the assumed relationship. Namely, the distribution of the correlation coefficients might be considered as to reflect the magnetic field changes as characteristic response to the stress variations in this area. A very simple model is applied to explain the observed effect.

In order to gain the picture on the relationship between the surface distribution of the geomagnetic field and stress induced changes of rock magnetization, T. Bicskei, M. Popeskov

Fig. 2 An example of time-variation of parabolic residuals Q_R at five measuring sites. Those numbered 8,9 and 10 were established during the 8th survey so that they are not representative in a choice of sites which are close to the epicentral region due to incomplete data, and therefore are not presented in this figure.

GEOMAGNETIC FIELD OBSERVATIONS IN THE KOPAONIK THRUST REGION, YUGOSLAVIA

Fig. 4 The distribution of correlation field originating from model calculation based on two prismatic bodies, situated with respect to the Kopaonik seismogene block as indicated in the figure.

a model of geomagnetic field source has been derived based on two prismatic bodies (A) and (B). Tops of these prisms are at the depth of about 8--9 km, which corresponds to the hypocentral depth of the May 18, 1980 earthquake, their width, length and tickness is approximately 10,10 and 3 km, respectively. Their spatial position with respect to the Kopaonik seismogene block is indicated in Fig. 4.

The application of a two-prism model enabled us to get a rough picture on the spatial distributon of the rock magnetization vector, which is cased by the existing stress stage and its relevant changes. Taking into account the average magnitude of earthquakes considered in this period as 4.5, the amplitude of possible seismomagnetic effect can be estimated to 1-4 nT. Due to the addopted model, to get on the surface the magnetic effect of such an order of magnitude, the induced magnetic field (μ_0 M) of prism (A) should be -4, 10 and -1 nT in the direction of northward, eastward and downward axis, respectively. The relevant values for the second prism (B) are 0.3 and -1.5 nT. These results indicate that the vector of the rock magnetization rotates from the south towards the north in the counterclockwise direction, while its intensity constantly increases as it approaches the source region. These changes of the rock magnetization vector are likely to indicate the existence of intensive tectonic forces on the one hand and, on the other hand, they point out the complex features of the stress field.

Let us now recall again the relation between the magnetic field changes, correlation coefficients and magnitudes of earthquakes. The distribution of the magnetic field changes which results from the described model colculation can be converted into a corresponding distribution of correlation field by taking into account an appropriate factor, i.e. the average magnitude of earthquakes, yielding the pattern presented in Fig. 3, which is in an obvious accordance with the pattern of the distribution of correlation coefficients in Fig. 2, calculated on the basis of the measured geomagnetic field changes.

Of course, the results of the present model calculations are only of an informatory character. A more complete information can be obtained in the frame of more complex procedures of modelling such as described by Stacey (1964) or Ohshiman (1981), which take into account the geometry of fault surfaces and relates the block structure of geological environment to the surface geomagnetic field changes. However, the solution of such a problem is beyond the scope of this work.

3. CONCLUSION

The analysis of the Q_R values, defined in a manner described in the previous section, has revealed the

existence of "information" on the geomagnetic field changes contained in the original total-field-intensity data, which might be related to particular earthquakes from the Kopaonik source region. The same conclusion has been implied from the analysis of the total-field--intensity base values F_B (Popeskov, 1986). However, the Q_R values seem to emphasize just those variations which could be connected with earthquakes. The result of comparative rank-correlation analysis applied both to the Q_R and F_B values on one side and magnitudes of earthquakes on the other, supports this assumption. In the first case, the distribution of the correlation coefficient defines more distinctly the dipole-like anomaly surrounding the epicentral region. The model calculations offer a possible theoretical support but, more complex studies of the observed and established phenomena from the Kopaonik thrust region, which are in progress, will certainly contribute in clarifying some of the points discussed in this work.

REFERENCES

- Dobrovolsky, I.P., S.I. Zubkov. and V.I. Miachkin,: 1979, Estimation of the Size of Earthquake Preparation Zones, *Pageoph.*, **117**,
- Ohshiman, N.: 1981, Local Geomagnetic Changes Associated with Fault Activity, Ph. D. Thesis, Tokyo Institute of Technology, Tokyo.
- Stacey, F.D.: 1964, Pure and Appl. Geophs., 58, 5-22.

ПОСМАТРАЊА ГЕОМАГНЕТСКОГ ПОЈЪА У ТРУСНОМ ПОДРУЧЈУ КОПАОНИК, ЈУГОСЛАВИЈА

T. Bicskei и М. Попесков

Геомагнетски институт, 11306 Гроцка, Југославија

УДК 550.38 Оригинални научни рад

Пошто у Исграживаној области није вршена континуална регистрација варијација геомагнетског поља, за редукцију релеватних геомагнетских података коришћени су подаци најближе лоциране геомагнетске опсерваторије. Предочени метод редукционе процедуре омогућава да се на темељу истовремено мерених вредности тоталног интензитета геомагнетског поља на ове различите локације /на терену и опсерваторија/ израчуна разлика непознатих средњечасовних вредности поља за месго мерења на терену и одговарајућих опсерваторијских вредности.

Примена ове методе на геомагнетске податке прикупљене у широј околини копаоничке трусне

области, јасно указује на повезаност локалних промена поља и наглашене сеизмичке активност ове области изазване земљотресом магнитуде M = 6.0 18. маја 1980. тодине. Територијални распоред Спеарманнових коефицијената корелације ранга између локалних промена геомагнетског поља и оних земљотреса који у датом временском интервалу могу имати утицаја на особине магнетског поља, приказује диполну структурну конфигурацију и указује на аномалну природу извора поља у копаоничкој области. У циљу интерпретације опажаног магнетског ефекта извршено је моделирање извора аномалног поља помоћу два размакнута призматична тела одређене магнетизације.

Bull. Obs. Astron. Belgrade, N⁰ 144 (1991), 13-38.

and the second sec

TRIPLE STAR SYSTEMS NEARER THAN 200 pc

G. M. Popović

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

(Received: January 23, 1991)

SUMMARY: A survey of 783 triple star systems is presented. All stars listed belong to the IDS Catalogue and are nearer than 200 pc. In addition to the system identification the survey includes Sp_A , π_A and m_A main component), as well as the designation (multiple) of the apparent component configuration in the system. The data concerning the real relationship among the components (dynamical state) are also included; existence of orbits among the components, or a tendency for any orbital motion, is also specified. In order to examine the relationship between this survey on one side and the Leningrad Triple-Star-System Programme and Gliese's Nearby-Star Catalogue on the other side, suitable designations are brought in the survey. As a final step a short recapitulation of the survey data is done.

a state or get

1. INTRODUCTION

The compilation of a triple-star-system catalogue is a complicated task, not easily performable. The basic difficulty in its realisation is the lack of a complete set of astrometric and astrophysical data concerning triple systems (Anosova & Orlov, 1985; Popović, 1991). The gathering of these data is a long work requiring a coordinated action of several observatories and involving equally the astrometrists and astrophysicists. One of the most complete surveys of triple star systems is, undoubtedly, given by Anosova (1969) where the systems of Eps Lyrae type from the IDS catalogue (Jeffers et al., 1963) were examined. By applying the dynamical and statistical criteria she found 298 reliably optical systems and 650 possibly physical systems. Anosova's survey could be a basis to formations of many observing programmes and also to the compilation of the future triple-star-system catalogue. However, the treatment of that triple-star-system sample has not been continued afterwards in spite of the advent of new observational data and methods of examination. In the present author's opinion there are two reasons for which Anosova's survey has not been treated beyond her home institution: 1. She presented the systems without an ADS number through an internal designation only, making in this way any object identification extremely difficult. 2. There was no choice of nearby systems and, consequently, systems of all possible parallaxes were taken into consideration which, certainly, has made any gathering of the relevant observational data difficult. In addition, the choice of the system Eps Lyrae, itself, has diminished the atractivity of the sample.

By extending a new procedure for detection of physically triple systems (Anosova & Popović, 1989) Anosova decides to study nearby triple systems within a limited programme containing only 113 triple systems in order to offer a complete information about them. There are several reasons to carry out the pre-

sent survey.

1. The present author's intention is to obtain a complete survey of the triple star systems from the IDS Catalogue with known parallaxes, closer than 200 pc, which would serve as a nucleus in the compilation of a triple star --system catalogue. The data concerning

the systems more distant than 200 pc are not considered as reliable enough, nor the gathering of the relevant data in their case is easy to do. Hence they are not included in the present analysis.

2. In the present paper one wants to comprise all triple systems from the IDS Catalogue with known parallax, closer than 200 pc, without regard to the hierarchical type and actual knowledge of the dynamical state of the system components.

3. The intention is also to offer an acceptable framework for the observing programmes with a possibility to choose the systems, weakly examined and of interest, so that the obtaining of a complete set of astrometric and astrophysical data becomes faster.

4. This survey will also serve for the purpose of choosing systems convenient for observations in the framework of the Belgrade observing programme.

5. The systems contained in this survey will be also subjected, depending on the available observational data, to examinations aimed at establishing the dynamical states and, if possible, the statistical conclusions which may be applied also to the systems more distant than 200 pc, or to the systems not comprised by the IDS.

2. THE SURVEY OF TRIPLE SYSTEMS FROM THE IDS CATALOGUE NEARER THAN 200 pc

The first thing which should be done in such a work is to define a triple system, i. e. to decide what triple systems are to be included in the survey. Today we know very few systems for which a physical connection of the components is reliably established. A large number of systems can be, only under certain conditions, accepted as a real triple one. Systems for which nothing can be said about the mutual connections of the components are the most numerous. There are systems where some discordances concerning the optical or physical membership of the components arise, so that only additional observations can solve the problem. With regard that the purpose of the present survey is not to obtain a sample for statistical and dynamical examinations of triple systems, but above all to obtain a basis for observing programmes and a framework from which a representative sample will be formed by filtration, it is decided to include all triple systems registered as visual ones in the IDS (Jeffers et al., 1963), closer than 200 pc. Due to this decision the present survey comprises also the systems which, though visually triple, contain for other reasons more than three components. This is the case when one of the components is a spectroscopic binary, or its magnitude or line-of -sight velocity are variable. In a few cases the fourth component is the dark companion to one of the visual components.

Since the present author has observed double and triple stars for many years, he can find a frequent discordance in the number of components of a multiple star between the catalogues and reality. The real number is always larger which is a consequence of an insufficient interest of observers to register all components of a multiple star. This is the reason that many ,,triple" systems from the present survey (Table 1) often have more than three detectable components, but it is a quite different question what the true number of components is. It is certain that systems with four or more components contain real triple systems, but such cases are not included here. Exceptions are a few well--known systems where other components can be surely rejected as optical ones.

All said above indicates that at the beginning it is difficult to specify a true triple system and that in such a general survey it is justified not to insist on rigorous definitions. For some systems one even meets analyses with contradictory results concerning the membership of the components, as well as more or less reliable biased conclusions. In the present author's opinion it is better for this survey to avoid the apriori exclusion of any system since the cases when a rejected "uninteresting" system becomes important again are not rare. Hence, in Table 1 appears a new column (column 11) giving "connection multiple" where results of many authors concerning the membership of the components are taken into account. This column offers an insight into the present state of relationship between the system components.

Because of the unreliability in the stellar-parallax determination systems within which the parallaxes of the components are mutually discordant are also not excluded from the survey. All such cases will be subjects to a further analysis.

The thirteen columns of the survey (Table 1) of the triple systems from the IDS Catalogue closer than 200 pc contain the following data:

Column 1 Current number of a triple system in this survey

Column 2 IDS number (epoch 1900)

Column 3 ADS number

Column 4 BD number

Column 5 Spectrum of component A (the source is preferentially from the IDS; it the spectrum designation is followed by an asterisk, then the additional informationis obtainable from Table 2)

Column 6 Visual apparent magnitude of component A (source: mostly the IDS, for orbital ones Couteau's (1986) Ephemeris Catalogue).

Columns 7,8 Parallax of component A (0.001 arc seconds) and its error.

The preference is given to the trigonometric parallax or to the one derived from orbit elements. A significant number of parallaxes is taken from the General Catalogue of dynamical Parallaxes by H. N. Russel

TRIPLE STAR SYSTEMS NEARER THAN 200 pc

Tabl	e 1	÷					an a	n na sas	e ne se se se		er en ara	
1	2	3		4	5	6	7	8 9	10	11	12	13
1	00008N1732	6Ú	N17	5036	KO	9.50	005	63	AB-C	AB-C	(AB)	**N0
2.	00008\$3053	*	S31	19595	F8	9.70	028	F: 2	AB-C	*	*	****
3	00054N6635	128	N66	7	G5	9.30	013	* 1	AC-B	★ = 14	*	****
4	00082N2626	161	N26	13	G0 *	6.70	007	* 5	AB-C	ABC	AB	**N*
5	0014350883	*	S09	48	KO	3.80	010	8 3	AC-B	*	*	****
57	00158N6627	293	N66	20	B8 *	5.50	007	* 5	AB-C	ABC	AB	*** <u>f</u>
8	0010052334	302	523 N36	62	GU 45	0.00	015	F 2	A-BC	ABÇ	(ABC)	***1
9	00234N3043	409	N28	75	F3 -	5.30	029	8 L * 1	AC-R	AC	*	***
10	0025951038	426	S10	89	Â3	6.70	008	f^{2}	A-BC	ABC	(BC)	**N*
11	00276N2744	455	N27	84	G5	6.40	008	* 1	AB-C	AB	*	****
12	00288\$5553	*	S56	103	A2	7.90	009	F 2	AB-C	ABC	(AB)	****
13	00298N3617	486	N36	87	KO	7.00	009	p 2	ABC	AB	*	**N*
14	0030150369	490	S04	62	F8V	5.69	063	57	AB-C	AB-C	AB	*GNO
10	00307N2927	497	NZY	105	10	9.00	028	g 2	AB-C	A-B-C	• * •	**NU
17	0034013013	588	NUS	91	LZ Rev	7 80	022	* 5	ABC AB-C	AD-C	ΔR	****
18	00382N3319	*	N33	99	K5	8.70	054	57	AB-C	A-B-C	*	*GN*
19	0038350086	608	S01	88	G5	9.30	015	* 1	ABC	A-B	*	***0
20	00396N5440	625	N54	143	AO	5.50	010	73	AC-B	AC	*	****
21	00437N1624	*	N16	76	F8V	5.08	046	8 3	ABC	A-B-C	*	*GN*
22	00448N5005	684	N49	215	F5V	8.40	018	* 5	AB-C	ABC	AB	**N0
23	00473S2269	716	S23	334	GO	7.70	021	g 2	AB-C	AB-C	(AB)	****
24	00403N1820	748	NDO	134	KU A1 V	5.00	005	53	AC-B	A-C	ж лр	****
26	0049301039 0049802305	755	N22	146	KITV	6.23	007	* 5 * 5	AB-C	AB	AB AR	****
27	00507N6011	782	N59	144	BO	2.20	022	11 3	AB-C	ABC	(AB)	**Nf
28	00508N5950	784	N59	146	B9 *	6.00	010	* 5	AB-C	ABC	AB	**Nf
29	00543N0015	818	NOO	159	KO	8.40	005	16	AB-B	A-B	*	A*No
30	00545S0144	822	S01	125	G5	9.30	011	* 5	AB-C	ABC	AB	***f
31	00587N0050	875	NOO	174	FO	6.20	026	f 2	AB-C	AB	*	****
32	00599N1218	893	N12	131	GO	9.30	010	56	ABC	ABC	*	A*N*
33	01015N2036	899	NZU	156	AZ	5,50	015	I Z	ABC	AB	ж лр	**N*
35	01015N3607	310	547	324	KU -	4 00	011	11 3	AB-C	AD AR	AD (AR)	****
36	01032N0508	*	NO4	190	FO	5 70	033	83	ABC	A-B-C	*	****
37	0104154672	*	S47	333	A5	7.60	007	F: 2	AB-C	AB	(AB)	****
38	C1083N2403	995	N23	158	KO	4.60	014	* 1	AB-C	AB	*	**N*
39	01085N0703	.996	NOG	174	A5	5.60	012	f 2	A-BC	ABC	(BC)	**Nf
40	0109750090	*	S01	162	F5	5.80	025	53	ABC	*	*	**N*
41	0113550083	1057	S01	167	K1V	8.00	045	5 7	AB-C	AB	*	*GN*
42	0114750061	1081	SUI N10	168	10 70	5.40	009	8 4	A-BC	ABC AB-C	(A)BU	****
43	0118051289	1037	S13	249	RU	7.40	007	↑ J 5 7	AD-C	AB-C	но ж	AGN¥
45	01225N0450	1158	NO4	251	GOV	7.60	014	* 5	AB-C	AB	AB	****
46	01242N2219	1183	N22	236	A2V	7.40	018	* 5	AB-C	AB	AB	****
47	01249N0537	*	N05	194	K2	5.10	021	63	A-BC	A-B	*	****
48	01288N3409	1227	N33	257	*	9.40	008	* 5	A-BC	BC	BC	**Nf
49	01304S2986	*	S30	529	K3V	7.87	056	77	AB-C	ABC	ABC	*GN*
50	01310N4054	*	N40	332	F8V	4.10	062	57	ABC	*	*	*GN*
51	0133184033	1204	N4U	340	10 T0	9,70	007	I 2	AB-C	AB	ж ч	***[
53	01339N1607	1200	N15	244	r0 G5	9.00 7 10	007	× 1	AB-C	AB	(AR)	****
54	01347N3350	*	N33	273	GD	8.10	018	4 6	ABC	A-B	*	A*N*
55	01347N4922	1315	N49	435	K1	9.40	009	* 5	AB-C	ABC	AB	**Nf
56	01357N2514	1326	N25	276	F5	6.30	020	73	AB-C	AB	*	**Nf
57	01371N1947	*	N19	279	KIV	5.24	134	6 7	AB-C	A-B-C	*	*GNO
58	01429N5615	1437	N56	357	F8	9.40	006	g 2	AB-C	AB	(AB)	****
59	U1432N1548	1431	N15	267	*	9.40	018	* 4	AC-B	AC	AC	***f
00	014/4N7800	*	NZO	312	LOIA	5.44	USU	11	ABC	A-8-C	Ŧ	*414*

G. M. Popović

1	2	3		4	5	6	7	8	9	10	11	12	13
61	01480N1848	1507 N	18	243	AUp	4.80	019	g	2	AB-C	AB-C	*	**NO
62	01494N6047	1531 N	60	383	AO	8.10	012	g	2	AB-C	AB	*	**N0
63	01494N2818	1522 N	28	319	F2	7.70	005	*	5	AB-C	ABC	AB	***f
64	01513N3032	1548 N	30	303	F5	8.20	007	*	5	AB-C	AB	AB	****
65	01528N7501	1588 N	74	91	AO	6.70	007	6	3	AB-C	AB	(AB)	****
66	01529S0233	1567 S	02	330	AO	6.60	011	Р	2	AC-B	AC	(AC)	**N0
67	01538N5803	1587 N	57	447	FO	8.10	014	P	2	AC-B	ABÇ	*	***1
68	01560N7538	1625 N	75	86	GS	5.30	020	10	3	AB-C	ADC	ADO	**!!*
59	01552N3514	1613 N	30	391	69V	0.30	017	*	5	AD-C	ABC	ABC	Δ*Nf
70	015/0N4151 01590N2527	1631 N	25	341	NU IEA	5 90	010	×	5	AB-C	AR	AR	****
72	0158750049	1634 9	2J 01	285	45 45	6 00	020	*	1	ABC	*	*	****
73	0201052451	1652 5	24	891	G5	8.70	008	12	3	A-BC	ABC	(BC)	**NF
74	02037N2528	* N	25	355	FO	5.10	019	*	1	ABC	*	*	****
75	02042N1952	1678 N	19	329	A3	8.30	012	f	2	AB-C	AB	*	***0
76	02059N5644	* N	56	449	GO	7.00	021	7	3	ABC	A-B	*	****
77	0207750252	1703 S	03	336	F9	5.67	045	8	7	AB-C	AB	*	*GN*
78	02100N6053	1737 N	60	457	G2V	8.70	015	*	5	AB-C	AB	AB	****
79	02104N1018	1727 N	10	303	GO	9.70	013	2	6	AB-C	AB	*	A*N*
80	02166N4056	* N	40	500	FO	5.90	024	*	1	AC-B	A-C	*	****
81	02189N4950	1 P A O C	49	656	K5	4.90	009	7	3	AC-B	*	· *	****
83	0221251347	1049 5	24	420	HZ.	5.90	009	9 1	0	AB-C	AB	*	****
84	0224002440	1964 N	36	519	RO	5 90	022	Б *	1	ABC	A-C	*	****
85	022331N6051	2018 N	60	541	FO	8 00	026	f	2	AB-C	AB	*	****
86	02355N1822	2042 N	18	337	B9	7.50	005	f	-	AB-C	ABC	*	***f
87	02374N4848	2081 N	48	746	F7V	4.13	079	5	7	AB-C	AB-C	AB	*GNO
88	02381N0249	2080 N	02	422	A2V	3.56	046	4	7	AB-C	ABC	ABC	*GN*
89	02409N3508	2117 N	34	513	F2	6.40	013	f	2	AB-C	AB	(AB)	****
90	02418N1857	2122 N	18	3470	IF9	7.40	030	*	5	AB-C	AB	AB	****
91	02442N3754	* N	37	646	FO	4.30	020	7	3	AC-B	A-B	*	****
92	U2458N5235	2185 N	52	640	88	6.50	006	g	2	AB-C	ABC	(AB-C)***I **NO
93	UZ4/ZN3ZZ1	22U2 N	22	641	60	4.10	012	5	5	APDC		*	* (1) *
94	0249782020	2210 N	25	1180	G5	7 83	040	7	7	A-BC	ABC	BC	AGNE
96	0252552402 02535N2056	2257 N	20	484	A2	5.20	012	ģ	2	AB-C	AB	(AB)	****
97	02549N1736	2279 N	17	471	AO	7.00	008	f	2	AB-C	AB	(AB)	****
98	02576N5307	2324 N	52	654	F5	3.10	018	*	1	AB-C	ABC	*	***F
98	03027N7110	2377 N	70	230	F8	8.40	019	*	5	AB-C	AB	AB	***0
100	03076N7722	2450 N	77	115	FO	5.50	012	5	3	AB-C	AB-C	*	***0
101	03088N6517	2436 N	65	338	A3V	6.90	006	g	2	AB-C	AB-C	AB	**N*
102	03089S4448	* 5	44	1025	F6	6.50	026	*	5	AB-C	ABC	AB(C)	****
103	U3141NU3UU	* N * 11	UZ OP	518	G5V NO	4.84	107	5	7	ABC	A-B	* (\ \ \ \ \	*61*
104	U3183NZ3Z6		UR	4 620		10.04	012	4	5	AB-C	ADC	(AD)	****
105	0318031300	2538 N	59	657	BON	6 80	015	*	5	AB-C	AB	AB	****
107	03224N5506	2565 N	54	684	A2	5.00	018	5	3	AB-C	AB	*	****
108	03226N2227	2552 N	22	495	G5	6.10	021	*	1	AB-C	AB	(AB)	****
109	03247N1946	* N	19	547	G5	8.10	035	6	3	ABC	*	*	****
110	0325251129	2577 S	11	673	F5	8.40	017	f	2	AB-C	AB	* .	****
111	03268N5942	2612 N	59	675	FЗV	6,90	020	*	5	AB-C	AB	AB	**N*
112	03285N2408	2616 N	23	473	A3V	6.60	006	*	5	AB-C	ABC	AB(C)	***0
113	U3327N6931	2678 N	69	222	A3	7.90	0.05	p	2	A-BC	ABC	(BC)	****
114	U3352NU448	2681 N	04	571	65	5.80	008	2	00	ABC	ABC	ABC	84N4 84
110	0338388821	* N * N	42	270	UU KR I	1.00	029	• *	5		RC BC	BC	*ርእ¥
117	0338313151	א ה-272 וא ה-272	31	643	R5	8 an	000	Ť F	2	AC-P	ARC	(AC)	****
118	03398N7101	2,00 N * N	70	259	An	4 70	800	5	3	ABC	*	*	****
119	0347252574	2821 S	26	1453	F8	9.80	014	14	3	A-BC	A-BC	*	***0
120	03492N0454	2849 N	04	601	FO	7.90	005	*	1	A-BC	ABC	(BC)	****

16

Ì,

TRIPLE STAR SYSTEMS NEARER THAN 200 pc

1									
	- 2		4 5	6	7 8 9	10	11	12	13
151	0210200275	2050 002	1			A 110	AD		de ste ste ste
121	0348350275	2000 503	001 AZ	5.00	005 g 2	R-BC	AB	*	****
122	03548N0801	2923 NO7	582 KO	9.20	009 f 2	A-BC	ABC	BC	****
123	03550N2255	2926 N22	617 B9	6 90	005 1 6	A-BC	ABC	*	AXNF
1 2 %	0250202448	- + COA	1401 00	7 20	017 12 2	AD C	ADC	(AD)	4444 4
164	0000200440	* 554	1491 GU	1.20	017 13 3	AD-C	AD-C	(AD)	****
125	03594N2144	* N21	587 G1	5.90	069 5 7	ABC	*	*	*GN*
126	04009N3749	2995 N37	878 K1V	7.40	053 14 6	AB-C	ABC	AB	A*N*
127	0400981405	* 113	E42 E2	7 80	0.11 2 6	A-RC	ARC	*	AXNX
100	0400001400	- N110	042 12	7.00	011 2 0	A-DO:	ADG	· · · · · ·	1711 T
128	0408580901	3072 NU8	652 G5	5.10	010	AB-C	AB-C	(AB)	***1
129	D4096S1030	3079 S10	867 KO	5.20	011 7 3	AB-C	AB	(AB)	**N*
130	04100N3302	3092 N32	758 *	9 80	007 * 4	AB-C	AB	*	****
121	0410181500	V N15	802 P5	6.00	010 + 1	ADC	A D	.	4444
101	0410101009	CIN *	003 FJ	0.40		ADC	A-D		****
132	0410850749	3083 207	780 GB	4.43	208 42 6	A-BC	ABC	BC	A*N*
133	04138N2330	3131 N23	672 AO	7.70	029 * 4	AB-C	AB	≭	***f
134	0416350020	3152 500	687 K2	6 10	005 10 3	AC-B	A-C	*	****
101	0417400550	2150 000	1040 80	¥ C CE	022 4 7		ADC	۸D	+ON+
135	0417452556	3139 520	1642 FU	* 0.00	033 * 1	AB-C	ABC	AD	*GN*
136	04197N1742	3206 N17	719 A2	4.20	025×1	AB-C	ABC	(ABC)	***0
137	04199N1543	* N15	621 F7V	7.20	017 * 5	AB-C	AB	AB	**N*
138	04241N5342	3274 N53	779 B1	5 70	006 f 2	AR-C	AR	*	**NF
100	0420200001	0000 100	071 10	0.10	000	AD C	ADC	AD	444E
138	0430/NU8U1	3326 NU7	D/I AU	0.80		AB-C	ABC.	AD	***I
140	U4318S5515	* S56	663 AO	* 3.80	021 * 5	AB-C	AB-C	AB	****
141	04325N5316	3365 N53	796 A3	9.30	015 * 4	ABC	AB	*	****
142	04326N1218	¥ N12	618 43	4 30	018 5 3	ABC	*	*	****
140	0402001210	2200 110	DIO HO	4.00	010 8 0	AD C	AD	ч.	+++++
143	043/2N2003	3338 N18	764 NZ	9.00	036 I Z	AB-C	AD	*	****
144	04389N1058	* N10	621 A3	5.40	020×1	A-BC	*	* 1,11	****
145	04397N5635	3432 N56	973 A2	5.40	011 7 3	AC-B	AC	*	***0
146	04404N4313	3438 N43	1057 FO	9 50	009 * 5	AB-C	ABC	AB	**N*
147	0110101010	2429 012	082 50	7 70	073 ¥ 4	AC-P	ACER	*	**NO
147	0441251100	3420 512	01 208	7.70	0/0 + 4	AC-D	AC-D	Ť :	TTTT T
148	U444UN1544	3464 N15	687 G5	6.30	005 * 1	A-BC	ABC	*	****
149	04457N1054	3475 N10	654 F6V	7.50	024 * 5	AB-C	AB-C	AB : :	***0
150	04462N1329	3483 N13	728 F6	6.50	027 * 5	AB-C	AB	AB	**N*
151	0448415156	3520 N51	QQQ F8	8 80	nng ¥ 5	AB-C	ABC	AR	***f
150	0440400100	0020 H01	754 70	0.00	000 4 0	ADO	AD C	4	***
152	04488N0713	3514 NU7	154 KU	8.50	033 4 3	ABC	AB-C	*	***0
153	04493N5336	3536 N53	829 A1V	4.50	010×5	AB-C	ABC	AB	**Nf
154	04508N1322	3540 N13	740 KO	4.30	016 5 3	ABC	A-B-C	*	**N*
155	0454586018	3615 N60	856 60	4 20	007 6 3	A-BC	AB	*	***f
150	0454601622	2500 010	1012 520	5 01	024 * 5	AP_C	AP	٨Ð	***0
100	0404051052	2200 210	1012.424	J.34		AD-C	AD	AD	****0
157	U4556N2631	3608 NSP	775 G2V	7.10	019 * 5	AB-C	ABC	AB	***1
158	05022N0921	* N09	736 GO	6.30	033 4 3	ABC	A-B	* .	****
159	04462N1329	3483 N13	728dF6	6.50	027×5	AB-C	AB	AB	**N*
180	0503800042	* NOQ	743 42	5 40	C 01 300	ARC	*	*	****
100	0000000042	* NU3	100 000	5.40	000 10 0	AD C	• D	ц. ц.	+ (1)1 -
101	02001N/30/	3864 N/9	109 FDV	5.04	053 57	AD +C	A-B	*	*GNO
162	05081N0245	3797 NU2	888 KO	4.60	003×1^{-1}	AB-C	AB	*	**N*
163	05083N0151	3799 NO1	938 A5V	6.70	007 * 4	AB-C	ABC	AB	**N*
164	0514150311	3900 503	1061 K3V	7 75	074 5 7	AC-B	AC	(AC)	*GN*
165	051/10101/	2000 010	1051 00	5 05	064 13 7	ARC	1_P	*	*CNO
100	0014101014	0053 010	1001 00	5.50	004 10 7	ADC .	A D	(AUNTE
166	0517752452	3954 S24	3023 GO	5.50	006 6 6	AB-C	ABC	(ABC)	A*NE
167	05188S0058	3991 SO1	882 F5	6.10	021 g 2	A-BC	ABC	(A)BC	**Nf
168	05194S0229	4002 S02	1235 B1	3.80	005 g 2	AB-C	AB	(AB)	**N*
160	0520912731	4032 127	771 59	8 60	010 f 2	AR-C	AP	(AB)	***0
100	0020002701	4002 1127	771 10	0.00		AD C	AD	(AD)	ar an ar ar
170	0522353526	* 535	2281 15	1.10	000 F: 2	ABC	AB	*	***
171	05231N2504	4068 N25	839 AO	5.80	014 g 2	AB-C	AB	(AB)	****
172	05246N4919	4119 N49	1364 F5	7.50	008 1 6	AB-C	ABC	* : `	A*Nf
173	05246N7916	4189 N79	182 65	9 30	017 3 6	A-BC	ABC	*	AXNE
174	0522001010	4100 070	102 00	2.00		ADC	ADC	Ψ	44N4
1/4	0320330022	4134 500	303 BU	2.50	003 34	ADU	ADU	1	**11*
175	0528351754	4146 \$17	1166 FO	2.70	013×1	ABC	AB	*	**N*
176	05307S0455	4196 SO4	1188 FO	5.30	019 11 3	ABC	ABC	*	****
177	05394ND347	4329 ND3	1022 B9	7.70	006 2 6	AB-C	ABC	*	A*Nf
178	05400N2117	4349 N21	978 F2	8 40	007 0 2	AB-C	AR	(AR)	***0
170	054020002117	1337 033	1011 001	0.40	100 0 7	ADC	A P	4	*CNY
119	0040352229	4334 522	1211 FOV	3.60	145 0 /	ADC	AD -	1	*GN*
180	U5422N3909	4398 N39	1418 KO	4.60	U16 * 1	ABC	AB-C	* .	**N*

G. M. Popović

121 0545650127 4442 501 10.56 5. 9.00 007 * 1 AC-B ABC ****** 182 055734857 * \$484 1328 AON 2.10 063 * 1 AC-B AB-C ***** 183 05523480439 4557 504 1310 GO 6.80 026 p 2 AB-C B ***** 185 0556345133 492 N51 1146 A5 6.30 006 # 4.B-C B ***** 186 0556981033 4917 N09 1064 227 A 005 AB-C AB AB ***** 180 05569810439 417 N09 1064 227 A AB-C AB ***** 180 05569810439 4455 52075 C20 008 #1 AB-C AB ***** 190 05569810439 ****** 1030 018 f<2 AB-C AB ****** 182 0600114119	1	2	3	4	5	6	7	8	9	10	11	12	13
182 0545724857 * 556 N44 1322 05 0 13 F: 2 AB-C * ***** 183 0552244456 4555 N44 1322 05 6.40 007 *1 AC-B AC-B AC-B AC-B ***** 186 05548N353 4557 S04 1322 AO B.00 006 F 2 AB-C AC-B ***** 186 05568N3103 4537 S11<2902	181	05456S0127	4442 SC	1 1038	Ġ5	8.00	007	*	1	AC-B	ABC	*	***f
183 05522N4456 4556 N44 1322 65 640 007 *1 AC-B AC-C ***NF 184 0553480433 4557 S04 1310 G0 6.80 026 p 2 AC-B AC-B ***** 185 0555685133 4532 N311 146 A5 6.30 006 * 4 A-BC ABC AB ***** 180 0556881033 *S31 2302 K5 6 050 7 ABC ABC AB ***** 180 0556810334 4617 N09 1064 A27 4.30 015 5 AB-C AB AB ***** 190 0558070334 4637 N104 A0 7.50 016 2 A-BC ABC (AB) ****** 191 061584505 *5452 2302 F5 5.40 007 F 2 AB-C ABC ABC <t< td=""><td>182</td><td>05457S4857</td><td>* S4</td><td>8 1991</td><td>AO</td><td>7.50</td><td>013</td><td>F :</td><td>2</td><td>AB-C</td><td>*</td><td>*</td><td>****</td></t<>	182	05457S4857	* S4	8 1991	AO	7.50	013	F :	2	AB-C	*	*	****
	183	05522N4456	4556 N4	4 1328	AOn	2.10	063	*	1	AC-B	AB-C	*	**Nf
	184	05530N4435	4576 N4	4 1332	G5	6.40	007	*	1	AC-B	AC-B	(AC)	**NF
100 033408301 432 1332 AU 0,10 000 I 2 ABC * ***** 187 0556883103 * 831 2902 K5V 8.6 050 7 7 ABC ASK ABC ABC ABC ABC ABC ASK ABC ASK ABC ASK ABC ASK ABC ASK ABC ASK ABC ABC ASK ABC ABC ABC ABC ASK ASK ABC	185	0553450439	4557 50	4 1310	GU	6.80	026	p	2	AC-B	AC-B	*	**N*
10: 03:05:08:10:1 11:16 03:0 03:00:0 14:16 03:0 03:00:0 14:16 03:0 03:00:0 14:16 03:0 03:0 14:16 03:0 03:0 14:16 03:0 03:0 14:16 03:0 14:17 03:0 14:17 03:0 14:17 03:0 14:17 03:0 14:17 15:0 15:0 15:0 16:0 15:0 16:0 <th16:0< th=""> 16:0</th16:0<>	100	05566N5125	4092 NO	0 1332	AU	8.10	008	I. V	Z A	AB-C	ABC	* (RC)	****
189 05569010393 4617 100 100 100 055 x ABC ABC AB x*NO 180 05580223617 4645 526 6275 S.2 009 x 1 AB AB A**N* 181 05580232617 4645 526 6275 S.2 009 x 1 AB-C X ***** 182 060184108 *N12 1004 AO 7.50 006 y A-BC ABC AB A**** 194 060184505 * \$45 2302 F5 5.40 007 F2 AB-C AB AB X***** 195 061081218 * \$1223 F1 10.00 018 f2 AB-C AB X****** 196 06138N2628 +5038 N58 927 K2 5.50 008 *1 ABC AB X***** 200 06229N1535 5012 N04 1236 A5 000 70 AB AB-C AB X****** 200 </td <td>188</td> <td>0556683103</td> <td>4000 NO</td> <td>1 2902</td> <td>K5V</td> <td>8 6</td> <td>000</td> <td>7</td> <td>4 7</td> <td>ABC</td> <td>ABC</td> <td>BC</td> <td>*GN*</td>	188	0556683103	4000 NO	1 2902	K5V	8 6	000	7	4 7	ABC	ABC	BC	*GN*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	189	05569N0939	4617 NG	9 1064	A2V	4.30	025	* .	5	AB-C	AB-C	AB	**N0
	190	05580N2316	* N2	3 1170	G8 *	4.30	019	*	5	AB-C	AB	AB	**N*
193 06019810446 4667 N10 1004 A0 7.50 006 g 2 A-BC ABC (AB) ***** 194 0601854605 * \$45 2205 F5 8.40 0007 F2 ABC ABC (AC) A*** 195 06108M1218 * N12 1084 F5 510 042 7 3 AC-B * ***** 196 06162N2517 4884 N12 1084 F5 510 008 * 1ABC ABC ABC ABC ****** 199 06162N2051 5060 N12 127 K0 6.60 007 * 1ABC ABC AB * ****** 200 06220N1535 5060 N20 1427 K0 6.60 007 g ABC	191	0559252617	4645 S2	6 2675	K2	5.20	009	*	1	AB-C	*	*	****
193 0601154109 *.541 2205 F5 8.40 007 F 2 ABC ABC ACB (AC) A**** 194 0610841528 ***12 1084 F5 5.94 040 10 6 ACB ABC A**** 195 06162N12517 4824 N25 1238 * 10.30 018 f2 AB-C ABC ***** 198 06161N5028 5032 N05 927 K2 5.50 008 *1 ABC ABC ***** 199 06161N5228 5062 N15 1197 B 6.80 011 f2 AB-C ABC * ***** 100 06218N1011 5068 N40 1613 A0 0007 f2 AB-C AB * ***** 010 06260N5232 5178 N52 1097 A3 7.20 017 g2 AB-C AB * ***** 010 06260N5232 5178 N52 1097 A3 7.20 017 </td <td>192</td> <td>06009N1046</td> <td>4687 N1</td> <td>0 1004</td> <td>AO</td> <td>7.50</td> <td>006</td> <td>g</td> <td>2</td> <td>A-BC</td> <td>ABC</td> <td>(BC)</td> <td>***f</td>	192	06009N1046	4687 N1	0 1004	AO	7.50	006	g	2	A-BC	ABC	(BC)	***f
194 0601854505 **** 545 2302 F5 5,94 040 10 6 AC-B AC ABC (AC ABC (AC ABC A	193	0601154109	* S4	1 2205	F5	8.40	007	F	2	AB-C	AB	(AB)	****
195 06108N1218 ***12 1084 F5 5.10 042 7 3 AC-B * ***** 196 06162N2517 4823 N28 1078 3.0 018 f 2 AB-C AB ***** 197 06162N5225 5036 N58 927 K2 5.50 008 *1 ABC AB ***** 199 06163N0439 5012 N04 1236 A5 4.50 024 5 3 AB-C AB ****** 200 06219N4011 5060 N12 N27 K0 6.00 007 #1 AB AB ****** 201 06221N4011 5060 N14 717 C0 6.00 007 #1 AB AB ****** 201 06261N751 516 N17 128 F8 7.00 017 #2 ABC AB ****** N20 06318N1228 *N08 1393 F8 5.50 007 2 ABC ABC * ************************************	194	06018S4505	* S4	5 2302	F5	5.94	040	10	6	AC-B	ABC	(AC)	A*N*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	195	06108N1218	* N1	2 1084	F5	5.10	042	7	3	AC-B	*	*	****
137 06162Ac2317 4304 N23 1230 1130 010 1 2 ABC ABC ***** 199 06165N6265 5036 NS 927 K2 5.50 008 *1 ABC ABC ABC ***** 199 06165N6265 5062 N11 72 A-BC BC ***** 200 062208N1535 5062 N11 27 ABC ABC ABC ABC ****** 201 062208N1535 5062 N11 127 K0 6.60 007 *1 ABC ABC ABC ****** 202 06260N5232 5178 N52 1097 A3 7.20 017 g 2 ABC ABC A ****** 206 06267N0764 * N08 1393 F8 8.50 007 2 6 ABC ABC * ****** 206 06319N1216 * N12 1218 65 5.10 011 *1 ABC * *******	190	U0130N2828	-4929 N2	8 1078	A3n	8.00	008	*	2	AB-C	ABC	AB(C)	****
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	108	0618185828	4804 NZ	0 1200 8 027	*	5 50	010	.1 ¥	2	AB-C	ABC	*	****
200 06209N1535 5062 N15 1197 BS 6.80 011 f 2 A=BC BC ***** 201 06218N2051 5060 N20 1427 K0 6.60 007 * 1 ABC A=B ***** 202 06219N4015 5080 N40 1613 A0 8.00 0084 * AB-C AB A AB AB CAB AB ***** 204 06265N13751 5166 N17 1275 K0 6.30 034 * 4 AB AB CAB ***** 205 06265N13751 5166 N17 1266 F8 7.10 0006 f2 ABC AB #***** 206 06319N1629 * N16 1223 A0 1.90 031 63 ABC A=BC A A***** 210 06329N5549 543 S16 1591 A117 F8 6.30 031 63 ABC A A***** 211 0632N	199	06185N0439	5012 NC	4 1236	45	4 50	024	5	3	AB-C	AB	*	****
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	06209N1535	5062 N1	5 1197	B9	6.80	011	f	2	A-BC	BC	*	**N*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	201	06218N2051	5080 N2	0 1427	KO	6.60	007	*	1	ABC	A-B	*	****
203 06254N1660 5146 N17 1275 KO 6.30 034 * # AB-C AB-C AB-C (AB-C AB-C (AB-C (AB-C)	202	06219N4011	5088 N4	0 1613	AO	8.00	008	f	2	AB-C	AB	(AB)	***f
204 06260N5232 5178 N52 1097 A3 7.20 017 g 2 AB-C AB-C (AB) **N0 205 06265N1751 5166 N17 1286 F8 7.10 006 f 2 ABC ABC AB **N* 206 06267N0764 * N08 1393 F8 8.50 007 2 6 ABC ABC * A*N* 207 06318N4026 * N40 1663 K0 7.70 040 27 6 ABC ABC * A*N* 208 06319N1629 * N16 1223 A0 1.90 031 6 3 ABC A-B-C * A*N* 209 06319N1216 * N12 1219 G5 7.60 015 3 6 ABC A-B-C * A*N* 210 06322N4235 * N42 1565 G5 5.10 011 * 1 ABC * * **** 211 06332N421 5300 N48 1411 F8 8.40 015 3 6 AC-B AC * **** 212 0639N5549 5436 N55 1122 F5 6.30 031 6 3 AB-C AB * **Nf 213 06408S1635 5423 S16 1591 A1V -1.46 377 4 7 A-BC ABC AB **Nf 214 06443N5934 5514 N59 1028 F5 5.70 006 * 5 ABC AB AB **Nf 215 06462N3365 5532 N34 1481 A2 3.60 021 6 3 ABC * * **** 216 06462N3859 5534 N39 1771 F2 6.20 013 * 1 ABC AB * **** 217 06478N4841 5555 N13 1462 F0Vp 4.74 031 * 5 AB-C AB AB **Nf 218 06490N1318 5559 N13 1462 F0Vp 4.74 031 * 5 AB-C AB (AB) **Nf 219 06545N2724 5671 N27 1284 G0 10.20 013 * 4 AB-C AB (AB) **Nf 221 06577N5254 5746 N52 1165 A2 6.90 017 g 2 AB-C AB (AB) **Nf 221 06577N5254 5746 N52 1165 A2 6.90 017 g 2 AB-C ABC (BC) **Nf 221 06577N5254 5746 N52 1165 A2 6.90 017 g 2 AB-C ABC (AB) **Nf 221 06577N5254 5746 N52 1165 A2 6.90 017 g 2 AB-C ABC (AB) **Nf 221 06577N5254 5746 N52 1165 A2 6.90 017 g 2 AB-C ABC (AB) **Nf 221 06577N5254 5827 N25 11594 G0 7.00 030 * 1 A-C-B A-B-C * **NF 223 07028N1541 * N15 1473 F8 7.40 021 6 3 ABC AB (AB) **Nf 224 07028N1546 5812 N16 1397 K0 5.60 011 12 3 AB-C AB-C AB (AB) **Nf 225 07044N3025 5846 N30 1439 K0 4.50 012 * 1 AB-C AB (AB) **Nf 230 07076N1620 * N16 1417 Mb 5.30 009 7 3 AB-C AB-C & ***N 230 07076N1620 * N16 1417 Mb 5.30 009 7 3 AB-C AB-C AB (AC) ***F 233 07103S1518 5925 S15 1720 F8 7.80 007 * 5 AB-C ABC (AC) ***F 234 07103S1518 5925 S15 1720 F8 7.80 007 * 5 AB-C ABC (AC) ***F 235 07124S151 5956 S11 1874 F5 7.40 006 * 5 AB-C ABC AB **** 236 07105N1542 6038 N21 1589 B9 8.50 008 g 2 AB-C AB (AB) **** 237 07168N251 **X4 3237 A5 9.60 015 F: 2 AB-C ABC AB **** 238 07206N1542 6038 N21 1589 B9 8.50 008 g 2 AB-C AB (AB) **** 239 0724	203	06254N1660	5146 N1	7 1275	KO	6.30	034	*	4	AB-C	ABC	*	**NF
205 06265N1751 5166 N17 1286 F8 7.10 006 f 2 ABC AB **N* 206 06265N0764 * N06 1593 F8 8.50 007 2 6 ABC ABC * A*N* 206 06316N4026 * N16 1223 A0 1.90 031 63 ABC ABC * ****** 209 06319N1216 * N12 1219 65 7.60 015 3 B ABC A=DC * ****** 210 06322N4235 * N42 1585 G5 5.10 011 * 1 ABC * ****** 211 06332N4821 5300 N48 1411 F8 8.40 015 3 ABC * ****** 212 06339N5549 5436 N51 122 F5 5.70 006 * 5 ABC AB ****** 213 064081635 5532 N34 1481 A2 2.60	204	06260N5232	5178 N5	2 1097	AЗ	7.20	017	g	2	AB-C	AB-C	(AB)	**N0
20606287N0764* N081393F88.5000726ABCABC*A*N*20706316N026* N101223AO1.9003163ABC*******20806319N1629* N121219G57.6001536ABCABC******20906319N1216* N121219G57.6001536ABCABC******20006322N4235* N121286G55.10011*1ABC******21006332N48215300N481411F88.4001536AC-BA*****21306408516355423S161591AIV-1.4637747A-BCABCAB**Nf21406443N59345514N591028F55.70006*5ABCAB*****21606462N36595534N391771F26.20013*1ABCAB*****21706478N48415555N481450F28.20013*5AB-CAB*****21806545N27245671N271294G010.20013*4AB-CAB*****21906550N54195706N541101G07.70005f2AB-CAB***** </td <td>205</td> <td>06265N1751</td> <td>5166 N1</td> <td>7 1286</td> <td>F8</td> <td>7.10</td> <td>006</td> <td>f</td> <td>2</td> <td>ABC</td> <td>AB</td> <td>*</td> <td>**N*</td>	205	06265N1751	5166 N1	7 1286	F8	7.10	006	f	2	ABC	AB	*	**N*
20706316N4026* N401663 KU7.70040276ABC*ABC*ABA20806319N1216* N121219G57.6001536ABC********20906319N1216* N121219G57.6001536ABC*******21006322N4235* N421585G55.10011*1ABC********21106332N48215300141141F88.4001536AC-BAC*******21206339N55495436N551122F56.3003163AB-CAB******21306408S18355423S161591A1V-1.463774A-BCABAB******21406462N336595534N391771F26.20013*AB-CAB******21506462N36595534N391771F26.20013*AB-CAB******21606462N36595534N391771F26.20013*AB-CAB******21606490N13185559N131462F0Vp4.74031*5AB-CAB******2100657N52495746N521165A2<	206	06287N0764	* NC	8 1393	F8	8,50	007	2	6	ABC	ABC	*	A*N*
20906319N1029* N101223A01.800316.3ABC***21006322N4225* N121219657.6001538ABCA=B-C*A*N*21106332N46215300N481411F88.4001536AC-BAC*A*N*2120639N55495436N551122F56.3003163AB-CAB******21306408S16355423S161591AIV-1.4637747A-BCABA*N*21406443N59345514N591028F55.700065ABCABA*N*21506462N336595534N391771F26.20013*1ABCAB*<****	207	06316N4026	* N4	U 1663	KU	7.70	040	27	5	ABC	ABC	*	A*N*
21006322N4235*N4212156357.00011*1ABC*******21106332N48215300N481411F88.4001536AC-BAC*A*Nf21206399N55495436N551122F56.3003163AB-CAB*******21306408516355423S161591A1V-1.4637747A-BCABA*N*21406443N59345514N591028F55.70006*5ABCABA*N*21406462N36595532N341481A23.6002163ABCAB****21506462N36595534N391771F28.20006f2AB-CAB****21606462N36495508N131462F0Vp4.74031*5AB-CAB*****21906545N27245671N271294G010.20013*4AB-CAB(AB)*****22006550N54495706N541101G07.70005f2A-BCABAB****2210657N52545746N521165A26.90017ggAB-CABAB****22307023N1561\$812N161337K0	200	0631901029	* 141	0 1223 2 1210	AU (15	7 60	031	3	ง ค	ABC	A-B-C	*	4*N*
211 06332N4821 5300 N48 1411 F8 8.40 015 3 A A A M 212 06332N4821 5300 N48 1411 F8 8.40 015 3 A A A M M A M A M	210	06322N4235	* N4	2 1585	G5	5 10	011	*	1	ABC	*	*	****
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	211	06332N4821	5300 N4	8 1411	F8	8.40	015	3	6	AC-B	AC	*	A*Nf
213 $06408S1635$ 5423 $S16$ 1591 $A1V$ -1.46 377 4 7 $A-BC$ ABC AB $A+N*$ 214 $06443N5934$ 5514 $N59$ 1028 $F5$ 5.70 006 $*5$ ABC AB AB $**Nf$ 215 $06462N3365$ 5532 $N34$ 1481 $A2$ 3.60 021 6 3 ABC $*$ $*****$ 216 $06462N3365$ 5534 $N39$ 1771 $F2$ 6.20 013 $*1$ ABC AB $*$ $*****$ 217 $06478N4841$ 5555 $N48$ 1450 $F2$ 8.20 006 $f2$ $AB-C$ AB $*$ $*****$ 218 $06490N1318$ 5559 $N13$ 1462 $F0Vp$ 4.74 031 $*5$ $AB-C$ AB AB $*****$ 210 $06550N5419$ 5706 $N54$ 1101 $G0$ 7.70 015 $f2$ $A-B-C$ AB (BB) $*****$ 220 $066550N5419$ 5706 $N54$ 1101 $G0$ 7.70 015 $f2$ $A-B-C$ ABC (AB) $*****$ 221 $06577N5254$ 5746 $N52$ 1165 $A2$ 6.90 017 g $AB-C$ ABC $*$ $AF**$ 223 $07028N1565$ 5812 $N16$ 1397 $K0$ 5.60 0111 12 $AB-C$ $AB-C$ $*$ $*****$ 225 $07034N2554$ 5	212	06399N5549	5436 NS	5 1122	F5	6.30	031	6	3	AB-C	AB	*	**Nf
214 06443N5934 5514 N59 1028 F5 5,70 006 * 5 ABC AB AB **Nf 215 06462N3365 5532 N34 1481 A2 3,60 021 6 3 ABC * * ***** 216 06462N3859 5534 N39 1771 F2 6.20 013 * 1 ABC AB * ***** 217 06478N4841 5555 N48 1450 F2 8.20 006 f<2	213	06408S1635	5423 S1	6 1591	A1V	-1.46	377	4	7	A-BC	ABC	AB	A*N*
215 06462N3365 5532 N34 1481 A2 3.60 021 6 3 ABC * ***** 216 06462N3859 5534 N39 1771 F2 6.20 013 * 1 ABC AB ***** 217 06478N4841 5555 N48 1450 F2 8.20 006 f2 AB-C AB ***** 218 06490N1318 5559 N13 1462 F0VP 4.74 031 * 4 AB-C AB ***** 219 06545N2724 5671 N27 1294 G0 10.20 013 * 4 AB-C AB (AB) ***** 220 06555N5419 5706 N54 1101 GO 7.70 005 f2 AB-C ABC (AB) **** 220 06507N5254 5746 N52 1165 A2 6.90 017 g2 AB-C ABC * ***** 223 07023N1541 * N15 1473	214	06443N5934	5514 NS	9 1028	F5	5.70	006	* .	5	ABC	AB	AB	**Nf
216 06462N3859 5534 N39 1771 F2 6.20 013 * 1 ABC AB * ***** 217 06478N4841 5555 N48 1450 F2 8.20 006 f2 AB-C ABC * ***** 218 06490N1318 5555 N48 1450 F2 8.20 006 f2 AB-C AB ***** 219 06545N2724 5671 N27 1294 G0 10.20 013 * 4 AB-C AB (AB) ***** 220 06555N5419 5706 N54 1101 G0 7.70 005 f2 AB-C AB (AB) **** 220 06550N5419 5706 N54 1101 G0 7.70 005 f2 AB-C AB (AB) **** 220 07023N1541 * N15 1473 F8 7.40 021 6 3 AB-C AB-C * ***** 225 07048N3255 5824 N31	215	06462N3365	5532 N3	4 1481	A2	3.60	021	6	3	ABC	*	*	****
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	216	06462N3859	5534 N3	9 1771	F2	6.20	013	*	1	ABC	AB	*	****
218 065450N1316 5358 N13 1462 FOVP 4. 031 * 3 AB-C AB C AB C AB AB C AB AB AB C AB AB C AB AB C AB AB C AB	217	U6478N4841	5555 N4	8 1450	FZ FOV-	8.20	005	I.	25	AB-C	ABC	*	***I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	210	0649081316	5671 N	3 1404	CO	10 20	013	*	D A	AB-C	AD	AD (AR)	****
221 06577N5254 5746 N52 1165 A2 6.90 017 g 2 AB-C AB (AB) **Nf 222 07009S4328 * S43 2906 G3V 5.54 057 6 7 AB-C ABC * AGNF 223 07023N1541 * N15 1473 F8 7.40 021 6 3 AB-C AB-C * ***** 224 07026N1566 5812 N16 1397 K0 5.60 011 12 3 AB-C A-B-C * ***** 226 07040S1350 5824 S13 1842 A2 9.00 010 f 2 AB-C AB * ***** 226 07040S1350 5824 S13 1842 A2 9.00 010 f 2 AB-C AB * ***** 226 07066N2724 5871 N27 1337 F8V 7.18 030 11 3 AB-C AB ***** <	220	06550N5419	5708 NS	4 1101	GO	7 70	015	f	2	A-BC	ABC	(BC)	**Nf
222 07009S4328 * S43 2906 G3V 5.54 057 6 7 AB-C ABC * AGNF 223 07023N1541 * N15 1473 F8 7.40 021 6 3 ABC BC * ***** 224 07026N1566 5812 N16 1397 K0 5.60 011 12 3 AB-C A-B-C * ***** 225 07034N2554 5827 N25 1594 G0 7.00 030 * 1 AC-B A-B-C * ***N* 226 07040S1350 5824 S13 1842 A2 9.00 010 f 2 ABC AB * ***N* 226 07040S1350 5846 N30 1439 K0 4.50 012 * 1 AB-C AB * ****** 227 07064N4840 5879 N48 1489 A0 7.70 011 p AC-B AE ********** 230 07076N1620 <t< td=""><td>221</td><td>06577N5254</td><td>5746 N5</td><td>$\frac{1101}{21165}$</td><td>A2</td><td>6.90</td><td>017</td><td>đ</td><td>2</td><td>AB-C</td><td>AB</td><td>(AB)</td><td>**Nf</td></t<>	221	06577N5254	5746 N5	$\frac{1101}{21165}$	A2	6.90	017	đ	2	AB-C	AB	(AB)	**Nf
223 $07023N1541$ *N15 1473 F87.40 021 63ABCBC******224 $07026N1566$ 5812 N16 1397 K0 5.60 011 12 3 $AB-C$ $A-B-C$ ***N*225 $07034N2554$ 5827 $N25$ 1594 G0 7.00 030 * 1 $AC-B$ $A-B-C$ ***N*226 $07040S1350$ 5824 $S13$ 1842 $A2$ 9.00 010 f2 ABC AB *****227 $07048N3025$ 5846 $N30$ 1439 K0 4.50 012 * 1 $AB-C$ AB ******228 $07064N4840$ 5879 $N48$ 1489 $A0$ 7.70 011 p 2 $AC-B$ AC (AC)***f229 $07066N2724$ 5871 $N27$ 1337 $F8V$ 7.18 030 11 3 $AB-C$ AB #****231 $07078N2511$ * $N25$ 1613 K0 8.40 037 5 $AB-C$ $A-C$ ****N0232 $07093N6342$ 5948 $N63$ 700 $K2$ 9.50 008 2 $A-BC$ ABC $A \times Nf$ 233 $07103S1518$ 5925 $S15$ 1720 $F8$ 7.40 006 $*5$ $AB-C$ ABC $A \times Nf$ 234 $07113S4429$ * $S44$ 3237 $A5$ <	222	07009S4328	* \$4	3 2906	G3V	5.54	057	6	7	AB-C	ABC	*	AGNF
224 07026N1566 5812 N16 1397 K0 5.60 011 12 3 AB-C A-B-C ***N* 225 07034N2554 5827 N25 1594 G0 7.00 030 * 1 AC-B A-B-C ***N* 226 07040S1350 5824 S13 1842 A2 9.00 010 f 2 ABC AB ****N* 227 07048N3025 5846 N30 1439 K0 4.50 012 * 1 AB-C AB ***** 228 07064N4840 5879 N48 1489 AO 7.70 011 p 2 AC-B AC (AC) ***f 229 07066N2724 5871 N27 1337 F8V 7.18 030 11 3 AB-C AB AB ****0 230 07076N1620 * N16 1417 Mb 5.30 009 7 3 AB-C A-C * ***** 231 07078N2511 <t< td=""><td>223</td><td>07023N1541</td><td>* N1</td><td>5 1473</td><td>F8</td><td>7.40</td><td>021</td><td>6</td><td>3</td><td>ABC</td><td>BC</td><td>*</td><td>****</td></t<>	223	07023N1541	* N1	5 1473	F8	7.40	021	6	3	ABC	BC	*	****
225 07034N2554 5827 N25 1594 G0 7.00 030 * 1 AC-B A-B-C * **N0 226 07040S1350 5824 S13 1842 A2 9.00 010 f 2 ABC AB * ***** 227 07048N3025 5846 N30 1439 K0 4.50 012 * 1 AB-C AB * ***** 228 07064N4840 5879 N48 1489 A0 7.70 011 p 2 AC-B AC (AC) ***f 229 07066N2724 5871 N27 1337 F8V 7.18 030 11 3 AB-C AB AB ***0 230 07076N1620 * N16 1417 Mb 5.30 009 7 3 ABC * ***** 231 07078N2511 * N25 1613 K0 8.40 037 5 AB-C A-C * ****** 232 0	224	07026N1566	5812 N1	6 1397	KO	5.60	011	12	3	AB-C	A-B-C	*	**N*
226 07040S1350 5824 S13 1842 A2 9.00 010 f 2 ABC AB * ***** 227 07048N3025 5846 N30 1439 K0 4.50 012 * 1 AB-C AB * ***** 228 07064N4840 5879 N48 1489 AO 7.70 011 p 2 AC-B AC (AC) ***f 229 07066N2724 5871 N27 1337 F8V 7.18 030 11 3 AB-C AB AB ***0 230 07076N1620 * N16 1417 Mb 5.30 009 7 3 ABC * ***** 231 07078N2511 * N25 1613 K0 8.40 037 5 AB-C A-C * ***** 232 07093N6342 5948 N63 700 K2 9.50 008 2 6 A-BC AB ****** 233 07103S1518	225	07034N2554	5827 N2	5 1594	GO	7.00	030	*	1	AC-B	A-B-C	*	**N0
227 0704883025 5846 N30 1439 K0 4.50 012 * 1 AB-C AB * ***** 228 07064N4840 5879 N48 1489 AO 7.70 011 p 2 AC-B AC (AC) ***f 229 07066N2724 5871 N27 1337 F8V 7.18 030 11 3 AB-C AB AB ***0 230 07076N1620 * N16 1417 Mb 5.30 009 7 3 ABC * ****0 231 07078N2511 * N25 1613 KO 8.40 037 5 3 AB-C A-C * ***N0 232 07093N6342 5948 N63 700 K2 9.50 008 2 6 A-BC AB ***** 233 07103S1518 5925 S15 1720 F8 7.80 007 * 5 AB-C ABC ***** 235 07124S1151	226	07040S1350	5824 S1	3 1842	A2	9.00	010	f	2	ABC	AB	*	****
226 07064N4640 5879 N48 1489 A0 7.70 011 p 2 AC-B AC (AC) ***1 229 07066N2724 5871 N27 1337 F8V 7.18 030 11 3 AB-C AB A***0 230 07076N1620 * N16 1417 Mb 5.30 009 7 3 ABC * * ***0 231 07078N2511 * N25 1613 K0 8.40 037 5 3 AB-C A-C * ***N0 232 07093N6342 5948 N63 700 K2 9.50 008 2 6 A-BC AE * ***Nf 233 07103S1516 5925 S15 1720 F8 7.80 007 * 5 AB-C ABC * ****f 234 07113S4429 * S44 3237 A5 9.60 015 F: 2 A-BC AB ****f 235 07124S	227	07048N3025	5846 N3	0 1439	KU	4.50	012	*	1	AB-C	AB	*	**N*
239 07060002724 3071 N27 1337 F6V 7.16 030 11 3 ABC AB ***** 230 0707601620 * N16 1417 Mb 5.30 009 7 3 ABC * ***** 231 0707802511 * N25 1613 K0 8.40 037 5 3 AB-C A-C * ***N0 232 0709306342 5948 N63 700 K2 9.50 008 2 6 A-BC ABC * ***N0 233 07103S1518 5925 S15 1720 F8 7.80 007 * 5 AB-C ABC * A*Nf 234 07113S4429 * S44 3237 A5 9.60 015 F: 2 A-BC ABC * ****f 235 07124S1151 5956 S11 1874 F5 7.40 006 * 5 AB-C ABC * ***** 236 07154	228	07066N2724	5971 NO	0 1409 7 1227	AU	7.10	020	11.	2	AC-B	AC	(AC)	***1
231 07078N2511 * N25 1613 K0 8.40 037 5 3 AB-C A-C * **N0 232 07093N6342 5948 N63 700 K2 9.50 008 2 6 A-BC # **N0 233 07103S1518 5925 S15 1720 F8 7.80 007 * 5 AB-C ABC # **Nf 234 07113S4429 * S44 3237 A5 9.60 015 F: 2 A-BC ABC # ****f 235 07124S1151 5956 S11 1874 F5 7.40 006 * 5 AB-C ABC # ***** 236 07154N3657 6009 N37 1707 K0 5.20 021 6 3 AB-C AB ***** 237 07182N2139 6038 N21 1589 B9 8.50 008 g2 AB-C AB ***** 238 07206N1842 6073 N18	220	07000002724	JOIL N2	7 1007 6 1417	rov MP	5 30	000		3 3	ABC	*	н <i>Б</i> ж	****
232 07093N6342 5948 N63 700 K2 9.50 008 2 6 A-BC ABC * A*Nf 233 07103S1518 5925 S15 1720 F8 7.80 007 * 5 AB-C ABC * A*Nf 234 07113S4429 * S44 3237 A5 9.60 015 F: 2 A-BC ABC * **** 235 07124S1151 5956 S11 1874 F5 7.40 006 * 5 AB-C ABC A * ***** 236 07154N3657 6009 N37 1707 K0 5.20 021 6 3 ABC A-C * ***** 236 07182N2139 6038 N21 1589 B9 8.50 008 g AB-C AB (AB) ***** 237 07182N2139 6038 N21 1589 B9 8.50 008 g AB-C AB (AB) ***** <t< td=""><td>231</td><td>07078N2511</td><td>* 112</td><td>5 1613</td><td>KO</td><td>8 40</td><td>037</td><td>5</td><td>3</td><td>AB-C</td><td>A-C</td><td>*</td><td>**N0</td></t<>	231	07078N2511	* 112	5 1613	KO	8 40	037	5	3	AB-C	A-C	*	**N0
233 07103S1518 5925 S15 1720 F8 7.80 007 * 5 AB-C ABC AB ***f 234 07113S4429 * S44 3237 A5 9.60 015 F: 2 A-BC ABC * **** 235 07124S1151 5956 S11 1874 F5 7.40 006 * 5 AB-C ABC AB ***** 236 07154N3657 6009 N37 1707 K0 5.20 021 6 3 ABC A-C * ***** 237 07182N2139 6038 N21 1589 B9 8.50 008 g AB-C AB (AB) ***** 238 07206N1842 6073 N18 1616 F0 8.10 007 2 ABC ABC * A*N* 239 07218N2139 6089 N21 1602 F5 5.30 030 6 3 ABC AB * **N* 240 0723N4052	232	07093N6342	5948 NE	3 700	K2	9.50	008	2	6	A-BC	ABC	*	A*Nf
234 07113S4429 * S44 3237 A5 9.60 015 F: 2 A-BC ABC * ***** 235 07124S1151 5956 S11 1874 F5 7.40 006 * 5 ABC AB **Nf 236 07154N3657 6009 N37 1707 K0 5.20 021 6 3 ABC A-C * ***** 237 07182N2139 6038 N21 1589 B9 8.50 008 g 2 AB-C AB ***** 238 07206N1842 6073 N18 1616 F0 8.10 007 2 ABC ABC * A*N* 239 07218N2139 6089 N21 1602 F5 5.30 030 6 3 ABC AB * **N* 240 07238N4052 * * * 400 620 F5 5.40 044 7 2 ABC AB * * *****	233	07103S1518	5925 S1	5 1720	F8	7.80	007	*	5	AB-C	ABC	AB	***f
235 07124S1151 5956 S11 1874 F5 7.40 006 * 5 AB-C AB **Nf 236 07154N3657 6009 N37 1707 K0 5.20 021 6 3 ABC A-C * **** 237 07182N2139 6038 N21 1589 B9 8.50 008 g 2 AB-C AB **** 238 07206N1842 6073 N18 1616 F0 8.10 007 2 6 ABC ABC * ***** 239 07218N2139 6089 N21 1602 F5 5.30 030 6 3 ABC AB * ***** 240 0723N4052 *	234	07113S4429	* S4	4 3237	A5	9.60	015	F: :	2	A-BC	ABC	*	****
236 07154N3657 6009 N37 1707 K0 5.20 021 6 3 ABC A-C * ***** 237 07182N2139 6038 N21 1589 B9 8.50 008 g 2 AB-C ABC (AB) ***** 238 07206N1842 6073 N18 1616 F0 8.10 007 2 6 ABC ABC * ***** 239 07218N2139 6089 N21 1602 F5 5.30 030 6 3 ABC AB * **N* 240 07223N4052 * N40 1620 F5 5.30 030 6 3 ABC AB * **N*	235	07124S1151	5956 S1	1 1874	F5	7.40	006	*	5	AB-C	ABC	AB	**Nf
237 07182N2139 6038 N21 1589 B9 8.50 008 g 2 AB-C AB (AB) **** 238 07206N1842 6073 N18 1616 F0 8.10 007 2 6 ABC * A*N* 239 07218N2139 6089 N21 1602 F5 5.30 030 6 3 ABC AB * **N* 240 07223N4052 * N40 1620 F5 5.30 030 6 3 ABC AB * **N*	236	07154N3657	6009 N3	7 1707	KO	5.20	021	6	3	ABC	A-C	*	****
238 U72U6N1842 6U73 N18 1616 FU 8.10 007 2.6 ABC ABC * A*N* 239 07218N2139 6089 N21 1602 F5 5.30 030 6.3 ABC AB * **N* 240 07223N4052 * N40 1620 F5 5.40 044 7.3 ABC AB * **N*	237	07182N2139	6038 N2	1 1589	B9	8.50	008	g	2	AB-C	AB	(AB)	****
233 07273N4052 + N40 1620 D5 E 40 044 7.3 ABC AB + + + N+ + + + + + + + + + + + + + + +	238	U72U6N1842	6073 N1	8 1616	FU -	8.10	007	2	3	ABC	ABC	*	**N* **N*
그 그 나는 그는 그 것 이에서 집에 가지 않는 것 같아. 이 것 같은 이 가지 않는 것 같아. 이 집에 있는 것 같은 것 같	233	0722384052	0009 N2	d 1630	F D	5.30	030	7	с С	ABC		*	****

TRIPLE STAR SYSTEMS NEARER THAN 200 pc

1 .	2	3		4	5	6	7	89	:10	11	12	13
241	07227N0867	6100	NOS	1660	KO	4.80	016	53	ABC	A-C	*	****
242	0726850019	6155	S00	1746	AO	9.80	010	f 2	AB-C	AB	*	***f
243	07282N3166	6175	N32	1581	A1V	1.94	069.	4 7	AB-C	ABC	AB	AGN*
244	0732380353	*	S03	1979	F5	5.20	027	5 3	AC-B	ABC	*	***F
245	0732850222	6232	S02	2207	A5	8.40	009	f 2	AB-C	ABC	(ABC)	***1
246	0734752634	6255	526	4707	82	4.50	010	10 2	ABC	AB-C	* / AD \	****
247	0737786418	6336	NEA	610	AU A2	6 82	000	2 6	AD-C	ABC	(HD) *	Δ*N*
240	07211N3340	6364	N33	1585	R2	5 30	013	5 3	AC-B	A-C	*	**N*
250	0752950033	6487	S00	1866	K5	7.99	063	10 7	AB-C	AB-C	(AB)	*GNO
251	07543N5454	6516	N55	1240	AO	8.20	006	f 2	AB-C	AB	(AB)	***f
252	07574N2764	*	N28	1532	KO	5.20	014	63	ABC	*	*	****
253	07575N4734	6552	N47	1522	F5	8.50	010	f 2	AB-C	ABC	(AB)	***f
254	08009N2549	*	N25	1848	*	10.00	025	13 3	ABC	*	*	****
255	08037N3545	*	N35	1767	F8	6.60	022	63	ABC	A-B	*	****
256	08044N2549	*	N25	1865	G5.	5.80	029	7.3	ABC	A-B	*	****
257	U8054N3246	. eeso	NJZ	1695	GU	7.00	043	53	AB-C	A-B-C	ADC	****
200	UBUDDN1707	, popn	NIO	1120	E7	9.00	063	63	AB-C	ABC	ABC *	****
250	0809653126	*	531	5719	CD CD	6.00 6.70	019	12 3	ABC	ж-р ж	*	****
261	08097N7243	6724	N72	409	K5	6.30	006	* 1	ABC	AB	*	****
262	08100N4072	6700	N41	1810	GO	9.00	012	3 6	A-BC	ABC	(ABC)	A*N*
263	0811953037	*	S30	5946	G5	6.30	009	F 2	AB-C	AB	(AB)	****
264	08173N2020 -	6776	N20	2070	F5	9.90	022	* 5	AB-C	AB	AB	****
265	08178S1022	6777	S10	2495	GO.	9.69	008	3 6	AB-C	ABC	*	A*Nf
266	08194S0049	*	S00	1987	GO	6.90	036	63	ABC	* *	*	****
267	08207N2452	6811	N25	1920	A3	7.02	012	2 6	A-BC	ABC	(A)BC	A*Nf
268	0822653844	*	538	4462	AU	6.70	005	f Z	A-BC	ABC	(BC)	****
208	0828862416	6871	502	2081	MCA	6 00	013	* 5	AB-C	ABC	AD	****
271	0020052410 08344N1154	1100	D44	1888	KIV	7 62	014	4.7	AD-C	A-R	АD Ж	*GN*
272	0834852219	6914	522	6442	GETV	5.40	062	* 5	AB-C	AB	AB	*GN*
273	08373N0956	*	N10	1857	MO	9.70	064	67	AC-B	ABC	(ABC)	*GN*
274	0838850652 *	*	S06	2708	GO	4.70	006	* 1	ABC	AB	* .	**!!*
275	08441N0874	7021	NOS	2063	A5	7.90	007	* 5	AB-C	AB	AB	****
276	08449N3147	7042	N31	1891	*	10.30	014	f 2	AB-C	AB	*	****
277	08460N1230	7049	N12	1925	FO	7.90	014	f 2	AB-C	A-B-C	*	***0
278	08460N7071	7067	N71	482	K5V	8.69	091	4 7	AB-C	AB-C	AB	*GNO
279	08482N3057	7071	N31	1907	KU	6.10	007	16	AB-C	AB	(AB)	A*N1
280	0849UN2636	7082	NZO	1202	GZY	7.00	020	* 5	AB-C	AB-C	AB	***()
282	0002404020	7203	N67	577	FEIV	1 85	050	67	AB-C	ABC	AR	AGNX
283	09017N2283	7187	N23	2048	F5	6.90	015	f 2	ABC	AB	*	**N*
284	09029N2662	*	N27	1715	G5	6.00	042	6 3	ABC	A-B	*	****
285	0902950644	7198	S06	2825	GO	8.50	049	* 4	ABC	AB-C	(AB)	***0
286	0908854312	*	S43	5041	B8	6.70	005	F 2	AC-B	ABC	(AB)	****
287	09092N0244	7253	N02	2167	AO	3.80	019	63	ABC	A-B-C	*	**9*
288	0910650049	7266	S00	2164	G5	8.70	018	7 3	AB-C	A-B	*	**!!*
289	09138N5141	7303	N51	1495	F2	6.10	037	73	AC-B	AC-B	(AC)	***()
290	U8147N3837	7307	N38	2025	E4V	6.76	020	* 5	AB-C	AB	AB *	***1
291	0915050900	1211	200	2043	GD EAV	4.00	013	20 ¥5	A-BC	ADC		4444 7444
293	09180N2780	7344	N28	1745	F5	8 30	040	ar 2	AB-C	ARC	(AR)	***0
294	0918050925	7334	SOS	2816	A5p	7.30	023	* 5	AB-C	AB	AB	***f
295	09188N2637	7351	N26	1930	KO	4.60	016	* 1	AB-C	AB	(AB)	**N*
296	0919352314	7350	S23	8331	F2	7.80	005	F: 2	AB-C	AB	*	****
297	09219N3154	7384	N32	1884	GO	9.40	007	f 2	AB-C	AB	(AB)	****
298	09221N4563	*	N46	1509	G5	5.41	012	36	ABC	ABC	(AB)	A*N*
299	09236N6330	7402	N63	845	FO	3.80	034	63	ABC	AB-C	*	**NO
300	U9247N3366	*	N34	1999	KU	5.85	020	56	ARC	ABC	*	A*N*

G. M. Popović

1	2	3		4	5	6	7	8	9	10	11	12	13
301	09260N6674	7425	NE7	597	F5	8.21	011	3	6	AB-C	ABC	*	A*Nf
302	09264N2029	7415	N20	2334	F5	8.50	024	*	4	ABC	AB-C	*	****
303	09291N3984	7438	N40	2226	F2	6.77	014	3	6	AB-C	ABC	*	A*N*
304	09387N4341	7503	N43	1958	F5	8.90	015	f	2	AB-C	AB	*	****
305	09452N3657	7541	N37	2023	F2	8.50	005	*	5	AB-C	AB	AB	****
306	U9468N6882	7566	NPA	542	PD	9.50	005	ľ	4	AB-C	ABC	ቶ ለ D	***0
202	1000786856	1000	NEG	2909	KU NTA	9.00 9 nn	012	â	3	ABC	A-B	*	****
300	1003651915	7655	519	2926	GO	7 20	015	13	3	AB-C	AB-C	*	****
310	10053N4958	*	N50	1725	K7V	6.59	222	7	7	ABC	A-B	*	*GN*
311	1005751152	7671	S11	2820	ко	3.80	014	10	3	ABC	A-B-C	*	**N*
312	1007056812	*	S68	1034	AO	6.80	007	F :	2	AB-C	ABC	(AB)	****
313	10098N7134	7705	N71	534	AЗ	6.70	007	1	6	ABC	ABC	(AC)	A*N*
314	10137S6050	*	S60	1817	K5	3.40	018	12	3	ABC	*	*	****
315	10172S5532	*	S55	3286	B5p	4.70	008	F	2	AB-C	ABC	*	****
316	1023552518	7787	S25	8055	GO	8.80	010	*	5	AB-C	ABC	AB(C)	***f
317	10299N2647	7839	N27	1907	G5	10.00	019	f	2	AB-C	AB	*	***()
-318	1035355505	*	S54	3915	GO	4.40	015	11	3	ABC	AB	*	****
319	10382N0476	7902	NU5	2384	KU	6.30	007	*	1	AC-B	AC	*	**N*
320	1042751443	1930	514	3188	AU	5.80	012	Ţ	4	A-BC	AB	*	**!
321	1042/51303	*	514	3184	FO	2 00	010	11	3	ABC		*	****
322	1049455619	8048	202	3040	65 65	7 50	026	*	5	A-BC	ABC	(A)BC	**NF
320	11052N6633	0040 *	NEE	704	G5	8 25	025	6	6	ABC	A-B-C	*	AXNO
325	11088N7361	8100	N74	456	K5	7 72	074	6	7	AC-B	AC-B	(AC)	*GNO
325	11088N2064	*	N21	2298	A4V	2.56	059	10	7	ABC	A-B	*	*GN*
327	11093N0548	8098	NOG	2421	KO	8.40	033	17	6	A-BC	ABC	*	A*N*
328	11104S1734	*	*		MOV	10.10	053	6	6	A-BC	ABC	*	A*N*
329	11104S1736	*	S17	3336	M1	9.96	062	6	7	AB-C	ABC	*	*GN*
330	11179N0441	8145	N04	2454	F5	8.80	005	*	5	AB-C	AB	AB	**Nf
331	11217N0333	8162	NO3	2502	KOIV	6.52	057	6	7	ABC	AB .	*	*GN*
332	11242S1648	8179	S16	3258	GO	9.10	009	f	2	A-BC	ABC	(BC)	**N*
333	11247S2355	8183	S23	10009	F1	5.80	021	p	2	AB-C	AB		***1
334	112/050259	8200	SUZ NOO	3364	KU A 2	8.70	010	I	2	A-BC	ABC	TAD Y	***
335	1131UNZ/0U	0231	N 20	2022	AJ CO	0.40	012	5	4	AD-C	ABC	(AD)	4*N*
330	1130253033	*	548	6770	RU RU	0.40 0.20	023	<u>د</u>	5	AB-C	AR	AR	***
338	11428N0848	*	NNS	2549	AO	5.20	012	7	3	*	AB	*	****
339	11454N0179	*	NOZ	2489	F8V	3.60	100	5	7	ABC	A-B-C	*	*GN*
340	11511N3560	8355	N36	2225	F2	6.80	020	5	6	AC-B	AC	(AC)	A*N*
341	1201053224	*	S32	8503	GO	6.70	010	F :	2	ABC	AB	*	****
342	12043S1118	8440	S11	3246	GO	6.90	053	g	2	ABC	AB-C	(AB)	***0
343	12091N3280	8470	ИЗЗ	2205	KO	6.90	014	р	2	A-BC	AB	*	***f
344	12091S0510	8471	S04	3235	Α5	6.50	010	11	3	ABC	A-C	*	***0
345	12100S0642	8477	S06	3532	G5	7.96	031	9	6	AB-C	ABC	(AB)	A*N*
346	12105N5735	*	N57	1363	A3V	3.31	053	5	7	ABC	*	*	*GN*
347	12136N1181	8506	N12	2446	GU	9.40	014	f	2	AB-C	AB	*	****
348	121/5N2584	8530	NZ6	2337	10	4.81	011	1	5	ABC	ABC	* ^D	A*N*
349	1219412000	0008	NZD CB2	2343	A/V D1	1 60	0021	* 	2	AB-C	AC-B	AD *	****
330	1221030233	*	502	5084	KU DT	6 20	000	11	2	ABC	X -D	*	****
352	12239N2588	8568	N26	2354	AO	5 40	014	6	3	A-BC	AB	*	***f
353	12245N2964	8570	N30	2281	G5	9.30	011	1	6	AC-B	ABC	*	A*Nf
354	12253N5165	*	N52	1631	F8	6.20	037	7	3	ABC	A-C	*	** 0
355	12294N0591	8598	NO6	2630	F5	9.20	005	f	2	AB-C	ABC	(AB)	***f
356	12300N0760	8601	NO8	2621	F8	7.90	021	g	2	AB-C	AB-C	(AB)	**N0
357	12358N4050	8623	N41	2317	GO	8.65	014	4	6	AB-C	ABC	(AB)	A*N*
358	12360S4825	*	S48	7597	Ally	7 3.10	025	*	5	AB-C	AB	AB	****
359	1236151228	8627	S12	3676	F5	6.00	014	g	2	AB-C	AB	(AB)	**Nf
360	12409N1042	*	N10	2466	G5	9.60	005	1	6	ABC	*	*	A*N*

TRIPLE STAR SYSTEMS NEARER THAN 200 pc

1	2	3	4	5	6	7	89	10	11	12	13
361	1246250948	8684	SO9 3569	KO	6.50	008	* 1.	AB-C	AB	(AB)	****
362	12470N1943	8690	N19 2613	A8	7.34	018	4 6	AB-C	ABC	*	A*N*
363	12472N1737	*	N17 2551	K5	6.36	008	1.6	AB-C	ABC	ж	A*N*
364	12484N2147	8695	N22 2519	F8 *	5.05	015	* 5	AB-C	ABC	AB	**Nf
365	12519N5438	8710	N54 1556	A2	6.00	012	g 2	AB-C	ABC	(AB)	** f
366	12554S0250	8732	SO2 3609	K6	6.10	008	* 1	AB-C	AB-C	(AB)	**N*
367	12557N1855	8735	N19 2622	F5	6.23	011	1 6	A-BC	ABC	*	A*Nf
368	12582S0553	8755	S05:3619	FO	8.70	014	f 2.	AB-C	AB	*	****
369	13017N7334	8772	N73 583	A5PO	6.50	011	g 2	AB-C	AB	(AB)	****
370	13048S0500	8801	S04 3430	AO ·	4.40	005	f 2	AB-C	ABC	*	**N(-
371	13051N1763	8804	N18 2697	F6V	5.05	053	4 7	AB-C	AB-C	AB	*GNC
372 -	13065N3082	8811	N31 2462	G5	9.50	006	* 2	AC-B	ABC	(AC)	***f
373	13090S2345	8831	S2310974	A2	7.30	011	* 5	AB-C	ABC .	AB	****
374	13095N5674	*	N57 1425	G1V*	6.84	037	5.7	ABC	A-B	*	*GN*
375	13101N6749	*	N68 720	KO	6.54	007	36	ABC	AB-C	*	A*N*
376	13118N1733	8841	N17 2611	K2V	6.58	087	77	AB-C	AB	(AB)	*GN*
377	13244N2242	8918	N22 2584	F8	8.10	017	g 2	AB-C	AB	*	****
378	13252N5987	8919	N60 1464	F8	5.41	013	26	A-BC	ABC	(BC)	A*Nf
379	1327551451	*	S14 3739	KO	5.60	010	* 1	AC-B	A-B	*	****
380	13283N3485	8939	N35 2462	A6 *	7.30	008	* 5	AB-C	AB	AB	***f
381	1329451242	8954	S12 3843	AUVp	6.50	010	* 5	AB-C	AB-C	AB	**N0
382	13304S6111	*	S61 3841	F6V	6.20	032	* 5	AB-C	AB	AB	****
383	13326N0254	8975	NO3 2799	KO	6.90	008	1 6	AB-C	ABC	*	A*N*
384	13330N3648	8974	N37 2433	F7 *	5.01	018	* 5	AB-C	AB	AB	**NO
385	13338N4839	8980	N48 2138	MOep.	10.1	054	8.7	AB-C	ABC	(AB)	*GN*
386	13346N1075	8987	N11 2589	FOV	6.30	016	* 5	AB-C	AB-C	AB	***()
387	13359N1988	8991	N20 2858	A2	5.70	018	g 2	AB-C	AB	(AB)	****
388	1338350346	9002	S03 3522	K2	7.10	005	* 1	ABC	AB	*	****
389	13397N7681	8997	N77 519	A5	6.70	011	26	ABC	ABC	*	A*N*
390 -	13402N1781	*.	N18 2776	M1	9.83	097	77	*	A-B-C	*	*GN*
391	13485N6473	9039	N65 963	MЗ	4.80	008	* 1	ABC	A-C	*	****
392	13485N6849	*	N69 724	KO	6.40	023	11 3	ABC	A-B	*	****
393	1349855338	*	S53 5805	A2 :	6.70	012	F 2	AB-C	AB	(AB)	****
394	13548N2544	*	*	K5 1	10.60	027	8 3	ABC	*	*	**N*
395	13566N0162	9085	NO2 2761	A2	4.30	015	53	ABC	AB	*	****
396	13586N5742	9089	N57 1478	F 5	8.40	009	* 5	AB-C	AB	AB	****
397	14056N2664	9136	N27 2342	G5	8.80	011	f 2	AB-C	AB	(AB)	****
398 -	14071S2932	9156	S2910904	F2	9.40	019	F: 2	AB-C	AB	(AB)	****
399	1408880803	9170	S07 3799	F2	9.40	800	f 2	AB-C	AB	(AB)	***f
400	14126N5150	9198	N52 1784	A5	4.90	044	73	ABC	* . '	*	****
401	14133S2522	9212	S2510271	F4	5.86	045	6 7	AC-B	AC-B	*	*GNO
402	1417450719	9237	SO7 3834	GO	7.60	022	g 2	AB-C	AB	(AB)	****
403	14185N0854	9247	NO9 2882	AO	5.10	016	* 4	A-BC	ABC	BC	***f
404	14196N4763	9249	N48 2193	G5 -	9.80	005	g 2	AB-C	AB-C	(AB)	***0
405	1419951931	9258	S19 3880	AO	6.40	005	g 2	A-BC	ABC	(BC)	**N*
406	14218N5179	*	N52 1804	F7V	4.06	068	6 7	AB-C	ABC	*	*GN*
407	1423050147	9273	SO1 2957	KO	5.00	020	g 2	AB-C	ABC	*	***E
408	14255N5457	9281	N55 1686	KO	8.80	022	f 2	AC-B	AC-B	(AC)	****
409	14258S1511	9291	S14 3970	G5 -	8.30	035	93	ABC	AB .	(AB)	****
410	14277N7568	9286	N76 527	K2	4.40	014	* 1	ABC	AC-B	* :	****
411	1429UN4937	9306	N49 2308	F5	7.80	036	f 2	AB-C	ABC	* .	***£
412	14295N3561	9312	N36 2505	G5	8.00	015	r Z	AB-C	AB-C	*	****
413	143U4N2971	*	N3U 2536	FZV	4.47	057	11	ABC	A-B	×	*GN*
414	143U7NU041	9318	NUU 3206	G5	8.30	009	r 2	A-BC	BC	(BC)	***()
415	143UBN4542	*	545 9302	KU	6.20	016	93	AB-C	ABC	(AB)	****
416	1432856025	*	560 5483	GZV -	-0.01	743	- 7 · 7	AB-C	ABC	AB(C)	AGN*
417	14339N4769	9327	N48 2224	G5	10.00	017	56	AC-B	ABC	*	A*N*
418	1435UN1651	9338	N17 2768	AU AO	4.93	011	2 5	AB-C	ABC	(AB)	4*N*
419	14304N1369	3343.	N14 2770	HZ ×	4.02	012	* 0	AB-C	AD .	AD	****
420	1400200100	3040.	100 1023	VO	1.00	040	5 4	ND-C	AD	(ab)	ጥጥጥጥ

G. M. Popović

1	2	3	4	5	6	7	8 9	}	10	11	12	13
421	14406N2730	9372	N27 2417	КО	2.70	007	e :	2	AB-C	ABC	(AB)	**NF
422	1441150658	9379	S06 4071	GO	8.40	013	g	2	AB-C	AB-C	(AB)	****
423	1443552350	9394	S2311915	KO	5.80	006	* :	1	A-BC	A-BC	*	****
424	1453551044	9456	S10 3999	KO	6.00	007	* :	1	AB-C	AB	*	**Nf
425	1456551953	9475	S19 4004	F8	9.20	005	F	2	AB-C	AB	*	***f
426	1458854041	*	S40 9257	G5	5.30	013	9 3	3	ABC	*	*	****
427	1500280638	9497	SO6 4130	GO	8.00	018	g	2	AB-C	AB.	(AB)	****
428	15009N3451	9496	N35 2648	F8	8.80	006	f 2	2	AB-C	AB	*	****
429	15029N2475	*	N25 2873	F5V	4.93	056	5 1	7	ABC	A-B	*	*GN*
430	1503650036	9514	SOO 2933	GO	9.10	013	5 6	3	AB-C	ABC	(AB)	A*N*
431	15139N4370	9573	N44 2444	G5	9.40	017	3 6	5	AB-C	ABC	(AB)	A*N*
432	15139N1048	9580	N10 2823	F8	7.00	028	a di di	2	AB-C	AB	(AB)	****
433	1515553554	*	53510236	KD DO	3.60	008	10 0	3	ABC	*	* 	****
434	1515954420	*	54410066	BJ	4.00	009	F: 2	2	AB-C	ABC	(AB)	ተተተተ ለ ቁክ ቁ
430	1520712742	0626	NOU 1000	FO	1,40	010	20	2	ABC	ADC	(DON)	84114 84N4
430	1522850000	9020	NJ/ 2030	ru R1	4.00 6 00	030	8 7	7	ARC	ABC	(BC)	*CN*
438	1522050500	19859	S2811366	E8	8 10	017	о г т	2	AB-C	ABC	(AR)	***
439	1522002001 15230N4421	9639	N44 2485	10 G5	7 60	018	- d - 1	2	AB-C	AB	(AB)	****
440	1525053329	*	\$3310564	A2	7 70	017	- F	2	AB-C	ABC	(ABC)	****
441	15266N5747	9672	N57 1590	F8	6.90	024	7 3	3	AC-B	A-C	*	**N*
442	1527252409	9689	S2412155	A3	7.50	010	* :	5	A-BC	ABC	BC	***f
443	15282N4074	9688	N41 2611	A2	5.80	008	* :	5	AB-C	ABC	AB	****
444	15296N2663	9695	N27 2507	GO	9.40	024	f	3	ABC	AB-C	*	****
445	1529951427	9704	S14 4237	KO	4.00	020	* 4	4	AB-C	ABC	*	***f
446	1531455203	*	S51 9324	AO	5.50	009	10 3	3	A-BC	*	*	****
447	15338N3026	9727	N30 2684	F8	8.80	020	f	2	AB-C	AB	*	****
448	15350N8047	9696	N80 480	G5	6.90	028	7 3	3	AB-C	AB	*	****
449	1537251541	9751	S15 4165	G4	7.30	007	p 2	2	AB-C	AB	(AB)	****
450	15393N0644	9765	NO6 3088	K2 *	2.64	049	4	7	ABC	A-B-C	*	*GN*
451	15410S3736	*	\$3710500	GGV	6.02	073	6	7	ABC	AB-C	(AB)	*GN*
452	15416N1544	9778	N15 2911	A2	3.67	029	4 6	5	AB-C	ABC	*	A*N*
453	1546450541	9810	SU5 4182	KU	8.90	008	g	2	AB-C	AB	(AB)	****
404	15512NC024	3/30	NOL 330	65	0.10	017	10 0	3	AC-B	*	* (\ D \	****
455	1551911550	9032	NOU 1039	GO TEU	9.40	029		± 7	AD-C		(AD)	****
450	15534N2670	0850	N27 2558	RU	1 20	021	6 1	2	AC_B	AC-B	(AC)	****
458	1553553807	3003	53810797	RS	3 60	021	F . 5	2	AB-C	ABC	(<u>n</u> c) *	****
459	15540N4157	9861	NA2 2853	F5	9 20	013	r . 2	>	AB-C	AR	*	****
460	1555485730	*	S57 7500	ATTV	5 30	028	* 5	5	AB-C	ABC	AB	****
461	15556N1158	9872	N12 2930	GO	8.50	006	# 2	Ž	AC-B	ABC	(AC)	***f
462	15584N5873	9891	N59 1694	Â3	8.20	010	f	2	AC-B	ABC	(ABC)	***0
463	1558951106	9909	S10 4237	F5IV	4.16	045	3 6	3	AB-C	ABC	AB(C)	A*Nf
464	1559353235	*	S3211405	KOV	8.30	026	* 5	5	AB-C	ABC	AB	****
465	15596S2013	9914	S20 4395	G5	9.50	024	F: 2	2	AC-B	AC	(AC)	****
466	16014N1338	9922	N13 3064	KO	6.90	007	16	3	AB-C	ABC	(AB)	A*N*
467	16036N1719	9933	N17 2964	G5	5.30	011	8 3	3	ABC	ABC	(AB)	**N*
468	16054S7827	*	S78 1092	M5	4.80	013	10 3	3	ABC	AB	*	****
469	16057S2718	9948	S2710836	A5	8.40	014	F: 2	2	AC-B	AC	*	****
470	16058N4537	9940	N45 2377	F5	8.80	010	p2	2	AB-C	AB	*	***f
471	16078N3336	9958	N33 2696	KO	6.40	009	f	2	AB-C	AB	*	****
472	16100N1348	9969	N13 3091	KU	1.39	048	4	2	AB-C	AB-C	(AB)	*GNU
4/3	10109N3367	99.18	N34 2750	GUV	3.58	045	4 6	2	AB-C	ABC	AB	*GN* ****
4/4	1617511022	10022	53211007	AU TO	3 00	015	2 Z	4	AB-C	ADC A_P	*	****
470	161700/855	10022	SV81000	го С5	9.00 8 nn	010	20	2	AB-C	AB-C	(AR)	****
477	1619803335	10038	N33 2722	ж ж	9 60	033	* 4	1	AB-C	ABC	(ARC)	****
478	16212N4836	. ¥	*	M3	10.27	138	6 7	≭ 7	A-RC	*	*	*GN*
479	16226N6144	10058	N61 1591	G8 *	2 74	046	10 5	7	AC-B	AC-B	*	AGN*
480	16234N2067	10069	N21 2926	GO	8.30	013	* 1	L	AC-B	AC-B	*	**N0

TRIPLE STAR SYSTEMS NEARER THAN 200 pc

1	2	3	4	5	6	7 8 9	10	11	12	13
481	16245N1837	10075	N18 3182	K1V	7.75	053 5 7	AB-C	AB-C	AB	*GN*
482	1625451624	10086	S16 4298	KG	4.40	009 11 3	ABC	*	*	****
483	1632554735	10150	S4710924	15 ro	8.10	012 F: 2	AB-C	AB-C	(AB)	****
404	1638192716	10173	S00 3360 S2711103	ro An	9.40	012 8 2	AB-C	ABC	<u></u> ፈለወ ነ	****
486	16384N2351	10171	N23 2978	G5	9.00	012 F 2	AB-C	ABC AR	(AD) *	****
487	16410N0846	*	NO8 3271	K2 :	5.40	007 6 3	ABC	ABC	*	****
488	16412N3555	10193	N35 2864	G5	9.60	005 f 2	AB-C	AB'	(AB)	****
489	16420N0832	10206	NO8 3275	GO .	9.80	005 g_2	AB-C	AB	(AB)	****
490	16435N2549	10216	N25 3136	*	9.30	033 9 6	AB-C	ABC	*	A*N*
491	16475N7741	10214	N77 634	F2	6.10	027 5 3	AB-C	AB-C	*	***0
492	16479N2850	10235	N28 2624	F4V	6.80	018 * 5	AB-C	AB	AB	****
493	1650150809	*. 10000	SU8 43520	1MJe	9.76	161 4 7	AB-C	ABC	AB	*GN*
494	16507C0456	10200	N47 2410	10 12 5 17	1.19	001 5 7	AC-B	ABU	(AB)	AGNI
496	17008N2814	10332	N28 2661	KU KU	7 29	006 1 6	AB-C	AC~R	*	AXNO
497	17015N0047	10341	NOO 3633	GO	8.70	022×5	AB-C	ABC	AB	***f
498	1702451940	10353	S19 4533	F8	10.10	007 F: 2	AB-C	AB	(AB)	****
499	17033N5436	10345	N54 1857	F7V	5.65	036 * 5	AB-C	ABC	AB	***F
500	17060S2655	10388	S2611990	G5	6.90	007 F 2	AB-C	AB	*	****
501	17078N2121	10394	N21 3063	KO	7.50	018 12 3	AB-C	*	*	**N*
502	17092N4551	*	N45 25050	HM4	9.96	155 5 7	AB-C	AB-C	AB	*GN*
503	17109N5414	10410	N54 1869	FU	6.91	010 1 6	AB-C	ABC	*	AXNX
505	1712802253	10452	S3411020 S2313308	AO	0.30	140 37	AC-B	ABC		****
506	1714051739	10452	S17 4773	AO AO	6.30	007 F. Z	AB-C	ABC	*	** 1
507	17168N2436	*	N24 3167	AO	5.10	007 7 3	ABC	AB	*	****
508	17169N3236	10488	N32 2896	G2V	5.39	073 57	A-BC	A-BC	*	*GNO
509	1718255032	*	S5011269	K1	5.20	023 10 3	ABC	*	*	****
510	1719554545	*.	S4511531	B9	6.00	009 F 2	AB-C	ABC	(AB)	****
511	17202N3714	10526	N37 2878	AO	4.50	010 g 2	AB-C	AB	(AB)	**N*
512	17255N2929	10585	N29 3029	A3	9.30	046 5 7	A-BC	A-BC	BC	*GNO
513	17282N5223	10011	N52 2065	GU	3.00		AC-B	ABC	· * •	***!
515	17331N2757	10033	N27 2853	GD *	11 00	014 + 1 031 + 5	A-BC	ABC	BC	**N*
516	17341N0205	*	NO2 3373	KO	6.40	008 * 1	ABC	ABC	*	****
517	17370N2434	10715	N24 3225	KO	6.44	008 1 6	AB-C	ABC	*	A*NF
518	17375N1560	10723	N16 3255	F4Vw	5.60	033 * 5	AB-C	ABC	AB	**N*
519	1739450142	*	SO1 3386	K2	8.20	045 14 6	ABC	ABC	* .	A*N*
520	17412S0426	10775	SO4 4349	GO	9.50	009 11 3	ABC	AB	*	****
521	17415S0111	10781	SO1 3389	GO	8.50	018 4 6	AB-C	ABC	(AB)	A*N*
522	1742IN1449	10784	N14 3335	GU	8.70	U12 I 2	ABC	AB	ж. РС	<u>አጽጽጵ</u> ትርክት
524	1742082747	10700 *	NZ7 2000	GOIV RO	3.44	124 J 7	ARC	*	ыс ж	****
525	1747650753	10858	S07 4517	G2	7.60	013 7 3	AB-C	AB	AB	****
526	1751253600	*	\$3512103	ÂŨ	7.00	034 F: 2	ABC	AB	*	****
527	1752753015	*	S3015035	MO	5.30	005 9 3	AB-C	AB	*	****
528	17528N1058	10916	N10 3337	K5	8.80	006 * 5	AB-C	AB	AB	***£
529	17558S2731	10984	S2712272	B8	8.60	006 F: 2	ABC	AB	*.	****
530	17576S0811	11005	SO8 4549	F4IV	5.24	045 8 7	AB-C	ABC	AB	*GNf
531	17577N0137	11002	NO1 3565	AU	9.10	013 f 2	AC-B	AC	(AC)	****
002' 532	17584N2620	11005	ND2 2125	ROV	0.1U 7 01	022 g Z	AB-C	A-P C	(HR)	ችላችች ¥ርእ¥
534	17592N2803	11012	N26 3151	A3	9 20		AB-C	AB	(AR)	****
535	18004N0232	11012 11046	NO2 3482	KOVe	4 20	195 5 7	AC-B	ABC	ABC	AGN*
536	18011N1200	11056	N12 3383	AO	7.00	009 f 2	AB-C	AB-C	*	****
537	18021N0852	*	NO8 3581	F5	7.80	.007 8 3	ABC	*	*	****
538	1803152607	11096	S2612862	GO	7.50	014 12 3	ABC	*	*	****
539	18032N3033	11077	N30 3128	F7V	5.10	061 4 7	AB-C	AB	AB	*GN*
540	18038N2605	11089	N26 3178	AЗ	5.90	012 f 2	AB-C	AB	*	**N*

•

G. M. Popović

1	2	3	4	5	6	7	89		10	11	12	13
541	18046N0359	11111	NO3 3610	F2V	6,07	018	. * 5	5	AB-C	ABC	AB	**N*
542	18049N0306	11113	NO3 3613	F5	5.70	037	5 3	3	AC-B	AB	*	**N*
543	18076N7959	11061	N79 571	F5	5.80	021	5 3	31.	AB-C	AB	(AB)	**N*
544	18078S1537	11166	S15 4874	F5	7.30	010	f 2	2	ABC	ABC	(AC)	****
545	18079N0548	11160	NO5 3643	B9	8.10	011	g 2	2	AB-C	AB	*	**N*
546	18081N3325	11148	N33 3044	A2	6.40	013	* 5	; · ·	AB-C	ABC	ABC	**N*
547	18095N4121	11174	N41 3010	F5	8.60	010	f 2	?	AB-C	ĄВ	(AB)	****
548	18123N2247	11223	N22 3325	A5	9.60	006	* 4		AB-C	AB	(AB)	****
549	18139N5118	11233	N51 2342	G5 -	8.90	014	f 2		AB-C	AB-C	*	****
550	18159N0320	11271	NO3 3680	G5	4.90	016	53	5	ABC	AB	*	****
001 552	18199N8434	11103	N84 409	GD	9.70	018	* 4		AB-C	ABC	* · ·	***10
552	1021UN2/20	11334	NZ/ 3010	AIV	0.30	010		•	AB-C	AB-C	AB	**NU
554	1822110000	11252	NO1 2072	40	5.00	010	4 0). ···	AD-C	ADC	TAD Y	44N4
555	1822784842	11344	NUU 3930	AU G5	7 00	013	. U U	• . 	AC-D	ABC	(AB)	****
556	18229N7241	11044 *	N72 839	- GO 777	3 58	129	57	;	A-BC	A_B	(dd) -	*GNO
557	1824254326	*	54312591	65	8 60	009	10 3	{	ABC	A-C	*	**N*
558	1824553263	*	53313281	A3	5 50	017	93		ABC	AB	(AB)	****
559	18294N1739	11454	N17 3627	F5	7.70	007	f 2		AB-C	ABC	(AB)	**Nf
560	18314N1654	11483	N16 3560	G2V	6.80	022	* 5		AB-C	AB	AB	**N*
561	18317N5216	11468	N52 2238	KO *	6.20	005	* 5	5	AB-C	ABC	AB	**Nf
562	18318N0636	11496	NO6 3855	F2	5.40	027	6 3	3	ABC	A-B-C	*	**No
563	18332S0317	11520	SO3 4331	F9IV	7.20	029	* 5	i i	AB-C	ABC	AB(C)	****
564	18342N1627	11530	N16 3572	G5	8.40	008	* 5)	AB-C	AB	AB	****
565	18351S5552	*	S55 8807	F5	8.20	016	* 5	ò	AB-C	ABC	AB	****
566	18368S0909	11581	S09 4796	FO	4.70	019	* 1		ABC	*	*	**Nf
567	1836953825	*	S3813036	AO	5.10	017	93	3	ABC	AB	*	****
568	18385N6702	11568	N67 1087	dG1	8.60	018	* 5)	AB-C	AB	AB	****
569	18398N3527	11621	N35 3342	A0 *	8.70	013	f 2		AB-C	AB	*	**N1
570	1840785526	*	N55 2107	AU	5.10	007	7 3	\$	ABC	AC	*	****
5/1	1041350004	11007	SUI 3339	AU	0.10	009	I.4		ABC	AD	*	<u>ተተተተ</u>
572	1041000327	11032	ND8 1910	an4	0.90	202	3 /		AB-C	AB-C	AD ¥	AWNY
574	1844712103	11715	N20 3070	DE -	7 10	003	- 2 0	•	AB-C	ADC	*	****
575	1844914919	11698	NA9 2871	B5 F5	7 40	007	. er 2	,	AB-C	AB	(AB)	**N*
576	1848152252	11794	S22 4907	K2	5 00	021	10 3		AB-C	ABC	*	** f.
577	18505N3715	11811	N37 3276	GO	8.20	014	g 2		AB-C	ABC	(AB)	**N0
578	18505N2231	11820	N22 3524	GO	4.60	013	* 1		ABC	ABC	*	**NF
579	18512N0404	11853	NO4 3916	A5	4.60	019	g 2		AB-C	AB	*	A*Nf
580	18517N4128	11840	N41 3177	KO	5.60	010	* 1		ABC	ABC	*	***f
581	18521N4844	11846	N48 2793	F5	5.90	017	83	1	AB-C	AB-C	(AB)	***0
582	18545N1329-	11902	N13 3841	F5	5.40	040	* 4		AB-C	A-B	*	**N*
583	18551N1456	*	N14 3736	KO	4.20	025	63	۱. ۱	ABC	ABC	*	****
584	18552N3233	11908	N32 3286	AOp	3.30	011	53	1	AC-B	AC	(AC)	**Nf
585	18553N1244	11916	N12 3750	K5	7.40	007	f 2		A-BC	BC	*	**N*
586	1856252961	11950	S3016575	A2 *	2.70	036	4 6		AB-C	ABC	AB	A*N*
587	18563N6216	11901	N62 1669	KU	6.50	008	10 0		AB-C	AB	¥ D/I	**N*
200	105/050031	11971	500 3631	GD	8.30	008	14 3		A-BC	A-BC	BU	**NI
500	10009N0110	11070	NJ1 3441	AJ VO	0.4U 6 50	012	_g_ 2		AB-C	ABC	PC	****
501	1000412211	12010	ND2 2320	N2 D2	7 10	013	P 4	,	AP-DC	ADC	ьс *	****
592	1900902311	12010	N13 3800	40	3 00	013	7 2	1	AC-R	A-B-C	*	****
593	1900900624	12020	NO6 4014	F5	7 10	012	1 6		ABC	ABC	*	A*N*
594	19023N3017	12040	N30 3413	KO	8.50	012	* 5		A-BC	ABC	AB	****
595	19026N2201	12050	N21 3666	FO	7.40	014	* 4		AB-C	A-B	*	**N*
596	19038S2111	*	S21 5275	FЗ	3.80	016	63		AB-C	ABC	*	****
597	19040N2939	12071	N29 3483	AO	8.50	005	f 2	!	AB-C	AB	(AB)	****
598	19063N5510	12104	N55 2152	A3	7.40	005	g 2		AC-B	ABC	(ABC)	***f
599	19084S2729	12189	S2713721	AO	8.50	012	F: 2		AB-C	AB	*	****
600	19113S1069	12244	S11 4932	GO	7.00	024	* 1		A-BC	A-B	* 1	**N0

TRIPLE STAR SYSTEMS NEARER THAN 200 pc

1	2	3		4	5	6	7	8 9	10	11	12	13
601	19119N2113	12243	N21	3713	B5	4.60	016	93	ABC	*	*	**N*
6021	19127N4954	12240	N49	2968	G5	6.30	008	* 1	AC-B	AC	*	***f
603	19129N3757	*	N37	3398	KO	4.50	010	* 1	ABC	*	*	**N*
604	19134N0054	12289	NOO	4168	KO	5.30	012	* 1	AB-C	AB-C	(AB)	**N*
605	1916850747	12348	S07	4933	F2	9.50	006	f 2	AB-C	ABC	(AB)	***f
606	1917851012	12368	S10	5058	G5	9.90	016	* 4	AB-C	AB	*	****
607	19202N1143	*	N11	3833	GRIV	5.16	060	77	ABC	A-B	*	*GN*
608	19211N1936	12425	N19	4010	KO	5.30	010	* 1	ABC	A-B	*	**N*
609	19230N2028	12464	N20	4146	B9	8.80	009	'p 2	AC-B	*	*	***f
610	19240S0715	12503	S07	4968	F8p	6.20	013	6 3	AB-C	*	*	**N*
611	19282N0712	*	NO7	4124	GO	9.10	023	g 3	AC-B	*	*	****
612	19293N5247	12580	N52	2450	GO	8.70	016	f 2	AB-C	AB	*	****
613	1930950007	12644	S00	3788	G5	7.90	013	53	AC-B	AC	*	**N*
614	19326N3526	12667	N35	3703	AO	9.30	005	g 2	AB-C	AB	(AB)	***f
615	19331N2235	12697	N22	3746	GO	9.70	012	p 2	AB-C	AB	*	***f
616	19332N0007	12708	NOO	4265	A2	7.50	007	f 2	AB-C	AB	(AB)	****
617	1933251023	12715	S10	5140	A5	6.80	013	g 2	AB-C	ABC	(ABC)	***0
618	19338N4959	12695	N49	3062	F4V	4.47	056	77	AC-B	AC-B	(AC)	*GNO
619	19350S1631	12767	S16	5399	KO	5.40	030	93	ABC	AB-C	*	****
620	19356N1747	12766	N17	4042	GO	4.40	007	* 1	ABC	A-B	*	**N*
621	19403S6164	*	S62	6108	GO	7.90	015	* 5	AB-C	ABC	AB	**N*
622	19418N4453	12880	N44	3234	B9 *	2.91	020	* 5	AB-C	AB-C	AB	**N*
623	19425N0051	*	NOO	4314	G5	6.80	028	63	A-BC	*	*	****
624	19426N3330	12913	N33	3587	F5V	4.99	047	4 7	AC-B	AC-B	(AC)	*GNO
625	19440N1134	12962	N11	3994	F2	6.10	005	G 2	AB-C	AB	(AB)	***0
626	19459N3828	12992	N38	3772	G5	6.20	007	* 1	ABC	ABC	*	****
627	1946551036	13028	S10	5203	F2	7.70	009	g 2	AB-C	AB	(AB)	***f
628	19478N3053	13038	N30	3779	A5	6.90	027	83	ABC	AB	*	****
629	19492N0141	*	NO1	4134	KO	8.50	028	7 3	ABC	AB	*	**N*
630	19504N0609	13110	N06	4357	G8IV	3.72	070	77	AC-B	AC	(AC)	*GN*
631	19507N2457	13109	N24	3926	F5	9.70	007	g 2	AB-C	AB	(AB)	****
632	19518N0139	13147	NO1	4145	AO	9.10	023	* 4	AB-C	ABC	(AB)	**Nf
633	1952385539	*	S55	9275	KO	9.40	020	F: 2	ABC	ABC	(ABC)	****
634	19546N4159	13186	N41	3549	A2	6.70	005	* 4	AB-C	ABC	(AB)	**Nf
635	19556N1720	*	N17	4185	KO	7.10	005	16	AB-C	ABC	*	A*N*
636	19568N2933	13251	N29	3845	G5	8.10	042	* 4	AC-B	A-C	*	****
637	19568S1174	13268	S12	5621	AЗ	9.70	011	* 4	AB-C	AB	*	***f
638	1959457331	*	S73	1547	G3IV	6.37	046	97	AB-C	ABC	(ABC)	*GN*
639	19619N7614	13296	N76	770	G5	6.40	013	* 4	A-BC	A-BC	(BC)	**N*
640	20012N6421	*	N64	1407	G5	6.60	008	* 1	ABC	ABC	*	** F
641	20018N0716	13379	NO7	4366	AO	6.90	008	73	ABC	A-B	*	**N*
642	20026N3541	*	N35	3959	KO	5.50	030	53	ABC	A-B-C	*	****
643	20027N0429	13399	N04	4350	K2	8.80	008	* 4	A-BC	BC	*	**NU
644	20035N6336	13371	N63	1593	A2	6.20	023	fZ	AB-C	ABC	(AB)	**NI
645	20042N6325	13392	N63	1595	GU	9.60	014	T Z	AB-C	AB-C	(AB)	****
646	20050N1630	13434	N16	4166	KU	7.90	018	73	AB-C	AB-C	*	****
647	20053N0809	13443	NO8	4358	F8	6.60	019	63	AB-C	AB	*	**!*
648	20076N5639	13464	N56	2364	F8	9.42	008	30	AB-C	ABC	(AC)	44MA
649	20097N2155	13553	N21	4109	AU	7.90	006	I Z	AB-C	AB-C	*	A WNW
650	20123N7725	13524	N77	764	89	4.38	008	26	AB-C	ABC	*	****
651	20134N4003	13640	N38	4114	ко СЛ	5.50	007	0 3	AB-C	ADC	 ₩	∿ጥጥጥ Δ¥ΝΨ
652	20138N1943	13661		*	*	9.00	008	10 7	A-BC	ADC	↑ ₩	*CN*
653	2015754222	*	542	4036	AUV	5.59	040	TO 1	ADC	APC	APICI	****
654	20166N39U5	13728	N38	4021	ALV	0.33	000	+ D	AD C	ADC	(J/dn	**/3*
655	ZUZI9N3946	1304/	NJO	4100	05	0,00	019	6 3	AC P		(ab) ¥	****
000	2023/N1026	13000	NDA	4000	60	0,0U g 00	013	c c * A	A-PC	ARC	(RC)	****
03/	2020003301	13060	Q10	5100	65	5 80	020	4 3	AC-B	AC-R	(AC)	***
000	2020350372	13086	NIS	4435	*	8 90	007	a 2	AREC	AB	(AB)	****
092	20202011000	12007	NOA	1181	42	8 30	005	f 2	AB-C	AB	*	****
661	2020080308	тооо/ Ж	S47	13477	G2	3.20	040	7 7	ABC	*	*	****

G. M. Popović

1	2	3	4	5 6	7	8 9	10	11	12	13
662	20343N0944	14101	N09 4600	G5 5.20	022	53	AB-C	A-B	*	**N*
663	20343N0008	14108	SOD 4064	KO 5.40	007	6 3	ABC	A-B-C	* .	****
664	20345N8105	*	N80 659	KO 5.60	011	12 3	ABC	ABC	*	****
665	20353N8044	. *	N80 660	KO 6.10	044	11 3	ABC	ABC	*	***F
665	20357N6024	14102	N60 2142	GO 7.12	007	16	AB-C	ABC	(AB)	A*N*
667	20370N3157	14158	N31 4181	KO 5.90	007	* 4	AB-C	AB	*	**N*
668	20378N1222	14184	N12 4440	F5 8.26	011	16	AB-C	ABC	*	A*NO
669	2039053142	*	\$3117815	MOVe 8.61	113	6 7	A-BC	ABC	(BC)	AGN*
670	20402N1157	14233	N11 4368	AU 6.90	009	g 2	A-BC	ABC	(AB)	***1
672	2042200330	142/4	N33 4010	KU * 2,40 KO 5 20	040	v 1	ABC		*	****
673	2043203400	14290	C21 5830	AU 0.20	010	15 1	ABC AB_C	AD AR	*	****
674	2043252653 20435N3607	14296	N35 4267	B5Ve 4 85	006	* 5	AB-C	ABC	AB	****
675	20446N1102	14333	N10 4385	HK8 10.20	028	* 5	AB-C	AB-C	AB	***0
676	20513N6148	*	N61 2068	K2 8,60	137	4 7	ABC	A-B	*	*GN*
677	2051550964	14449	S10 5553	K2 5.70	008	* 1	AC-B	AC	*	****
678	20536N1027	*	N10 4425	KO 5.60	012	* 1	A-BC	*	*	****
679	20580N0108	14573	NOO 4648	F5V 6.74	013	* 5	AB-C	AB	AB	**N*
680	20585N3907	14567	N38 4321	K2 6.50	005	* 1	ABC	AB	*	****
681	2058857334	*	S73 2192	K6 6.60	040	83	AB-C	AB-C	AB	****
682	21004N0642	*	NO6 4741	K6V 8.28	063	8 7	ABC	A-B-C	*	*GN*
683	21016S1379	14638	S14 5936	KU 7.20	029	f Z	ABC .	AB-C	(AB)	ACNY
684	Z1024N3815	14636	N38 4343	KDV 5.22	296	4/	AC-B	ABC	AD (AR)	AGN*
000	2103200003	14030	NO9 2010	AJ 9.40	014	+ 4 + 2	A-BC	ABC	(RC)	** f
687	21035N0145	14773	NO1 2032 NO9 4746	F7V 5 20	014	47	AB-C	AB-C	AB	*GNO
688	2110051046	14786	510 5630	KO 8.80	022	4 6	A-BC	ABC	*	A*Nf
689	2110001040 21108N3737	14787	N37 4240	F2IV 3.82	050	4 7	AB-C	ABC	AB	*GN*
690	2112850015	*	S00 4195	K6 8.23	046	4 7	A-BC	A-B	*	*GN*
691	21130N3521	14822	N35 4461	A2 8.40	008	f 2	AB-C	AB	*	****
692	21166N3202	14889	N31 4425	G5 6.90	018	g 2	AB-C	AB	(AB)	****
693	21168N5233	14878	N52 2916	G5 7.70	014	g 2	AB-C	AB	(AB)	**N*
694	21175N1923	14909	N19 4691	KO 4.30	013	63	ABC	AB	*	**N*
695	21180S4126	*	S4114503	A0p 6.40	006	F: 2	AB-C	AB	(AB)	****
696	212U2NU857	14954	NU8 4671	A2 8.20	005	* 4	AB-C	ABC	(AB)	***1
6097	2124UN 1039	15007	NIU 4554	EZ 7.50	010	* <u>)</u> * 1	AB-C A		AB ¥	****
690	2128412016	15076	306 3770 N20 4055	GU 3.10	000	~ 1 7 3	AB-C	A-D-C	τ (ΔR)	****
700	21324N6617	10070	N66 1415	KO 7 00	010	73	ABC	AB	*	****
701	2134450030	15176	S00 4245	F7V 7.30	025	* 5	AB-C	ABC	AB(C)	***0
702	21363N4249	15208	N42 4177	K5 5.40	007	p 2	AC-B	ABC	(AB)	**NF
703	2136955747	*	S57 9940	GO 6.80	018	26	ABC	ABC	*	A*N*
704	21375N4021	*	N40 4611	AO 6.00	011	63	ABC	A-B	*	****
705	21385N4035	15251	N40 4617	FO 8.30	005	* 4	AB-C	AB	(AB)	**N*
706	21393N0925	15268	NO9 4891	KO 2.50	011	* 1	ABC	*	*	****
707	21401N2511	15281	N24 4463	F5IV 4.80	034	* 5	AB-C	AB-C	AB	**NF
708	21410N1125	15300	N11 4653	GOV 9.40	008	* 5	AB-C	AB-C	AB	***
709	2141551635	15314	\$16 5943	A6M 2.83	069	14 /	ABC	A-C	*	*GN*
710	2141952073	15323	SZI 6093	AZ 9.90	005	* 4	AB-C	AD	* (A B)	****
712	21445N0133	15377	N31 4560	A0 8 50	007	~~ <u>+</u> ★ 4	AC-R	AB	(<u>TD</u>)	**N*
713	21400N3211 21491N6517	15407	N65 1664	A2 7 10	003	a 2	AB-C	AR	(AR)	**NF
714	21506N1025	15447	N10 4659	G5 8.40	021	* 5	AB-C	AB	AB	****
715	21515N2352	15461	N23 4428	AO 8.20	012	f 2	AB-C	AB	*	***f
716	2157051687	15562	S17 6422	A2 7.20	007	* 4	AB-C	AB	*	****
717	21619N8223	15571	N82 673	F5 7.10	028	98	AB-C	AB	(AB)	**N*
718	22009N6408	15600	N63 1802	A3 4.60	038	g 2	AB-C	ABC	(AB)	***F
719	2201855143	*	S5113182	K7 11.20	048	12 7	A-BC	ABC	*	*GN*
720	22027N3536	15645	N35 4712	A3 7.90	006	f 2	AB-C	ABC	(AB)	***f
721	22051N0728	15685	NO7 4806	GU 8.30	005	f. 2	ABC	AB	*	****
122	22U96N3914	15758	N38 4711	KZ 4.60	011	* 1	ABC	A-B	*	****

TRIPLE STAR SYSTEMS NEARER THAN 200 pc

1	2	3	4	5	6	7	89	10	11	12	13
723	22188N2021	-15896 N	20 5139	F5	6.20	033	4.3	AC-B	AC-B	(AC)	**N0
724	22215N0353	15935 N	103 4705	GO	5.80	038	53	AB-C	AB	(AB)	****
7.25	22228N0412	* 1	103 4710	KO	4.90	021	5 3	ABC	A-B	*	****
726	22232N1144	15962 N	111 4804	KO	7.30	016	g 2	AB-C	AB	(AB)	****
727	22254N5754	15987 N	157 2548	G0	4.2	009	* 4	ABC	ABC	*	**N*
728	22287N5316	* N	153 2911	MO	10.82	039	57	AB-C	ABC	(AB)	*GN*
729	2228950165	* 5	502 5781	KO	5.90	009	* 1	ABC	*	*	****
730	22327N2325	16116 N	123 4575	K8	9.80	026	* 4	AB-C	ABC	(AB)	****
731	2234251268	16145 9	513 6235	G9e	8.55	034	* 7	AB-C	ABC	(AB)	*GN*
732	2234252852	16149 9	52817873	GO	6.30	010	* F	A-BC	ABC	(BC)	**Nf
733	22359N1401	16173 N	13 4971	G4V	6.26	029	* 5	AB-C	AB-C	AB	****
734	2238UN2316	16205 N	123 4595	G5	10.00	011	* 4	AB-C	AB	(AB)	***1
735	22388N4638	16214 N	46 3803	89	6.40	005	* 4	ABC	ABC	(ABC)	**N*
730	22390000271	10220 0	130 4033	EQ .	0.20	000	I Z V F	ABC	ABC	(PC)	· ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ
738	2238850271	16255 N	167 1462	10	8 00	009	2 6	AP-C	ABC		Δ*NF
730	22417N0730	16261 N	J11 1875	HE X	4 19	000	20	AC-R	AC-B	(AC)	*GNF
740	22417N1133	10201 F	43 4305	M4 *	10 20	195	3 7	A-BC	A-BC	(BC)	*GN*
741	22456N6802	16291 N	167 1468	F5	7 20	027	53	AB-C	AB	(AB).	**N*
742	22464N1326	* N	113 5006	KO	8.00	040	6 3	A-BC	A-B	*	****
743	22466N2552	16314 N	125 4828	AIV	7.50	006	* 5	AB-C	ABC	AB	***f
744	22474N6109	16317 N	160 2450	GO	6.10	010	g 2	AB-C	ABC	(AB)	** f
745	22492N4413	16345 N	43 4331	АЗm	5.80	020	* 5	AB-C	AB-C	AB	****
746	22580N4213	16467 N	41 4665	A3Vn	5.10	009	* 5	AB-C	AB	AB	**!*
747	22589N2732	16483 N	127 4480	MO	2.60	015	5 3	ABC	A-B-C	*	**N*
748	23000S0774	16497 5	508 6018	F2IV	6.40	016	* 5	AB-C	ABC	AB	****
749	2301254364	* 5	54415149	F4	4.50	012	83	AB-C	ABC	(AB)	** F
750	23028N1208	16524 N	111 4940	FO	7,90	007	f 2	AB-C	AB	(AB)	***f
751	23037N7007	16525 N	169 1307	KO	7.70	012	11. 3	AB-C	AB	*	****
752	23047N7451	16538 N	74 1006	G3 *	4.70	018	* 5	AB-C	AB	AB	**!!*
753	23070N2619	1 * 1	126 4580	KU ·	6.40	024	53	AC-B	A-B-C	ж 	****
754	23083N3927	16599 N	139 5033	A3 MO	7.60	023	E 2	ABC	ABC	*	ችችላላ ሦሦክፑ
100	2308651357	16608 2	00 8140	KZ	7.40	005	93	AB-C	ABC	(AC)	****
757	23106000000	16633 0	008 0149 00 6156	VO V	4 25	014	67	A-BC	ABC	(BC)	*GN*
758	2312550164	16649 9	303 0130	164	8 40	035	* 5	AB-C	AB	AB	****
759	23125N1619	16648 N	N16 4896	F5	8 40	008	* 4	A-BC	ABC	(BC)	** f
760	23145N6734	16666 N	167 1514	G8 *	4.86	022	* 5	AB-C	AB	AB	**N*
761	23161N3739	* N	37 4817	F5	5.80	029	* 1	ABC	A-B	*	****
762	23164N3453	16693 N	134 4904	K5	9.10	054	* 4	AB-C	A-B	*	****
763	23178N2001	16713 N	19 5093	GO	6.70	052	11 3	AC-B	AC-B	(AC)	**N0
764	23187N4514	16720 N	44 4399	KO	8.50	005	11 3	ABC	AB	*	**N*
765	23194N1356	16735 N	113 5105	F8	8.10	015	f 2	AB-C	AB	(AB)	***()
766	23218N0042	* N	100 4998	AЗ	4.90	036	63	ABC	A-B	*	**N*
767	23237N7333	16775 N	173 1035	FO	7.50	010	g 2	AB-C	A-B	*	****
768	23264N1540	16812 N	15 4837	F8	8.10	016	f 2	AB-C	AB	*	****
769	23323N0704	16873 N	106 5178	F5	9,30	006	* 5	AB-C	AB	AB	****
770	23355N4347	16916 N	43 4522	AO	4,30	012	73	ABC	AB-C	(AB)	**N*
771	23358N1949	16923 N	19 5135	KZ	8.70	045	12 7	AB-C	AB	(AB)	*GN*
112	23363N32U1	16928 N	131 4952	AU FO	7.40	006	6 2	AB-C	AD	(AB)	.ተተተተ ትትት
113	233/UN1945	10331 0	19 5130	FO	0.10 5.60	024	v 1	AD-C	AD .	↑. 	***
775	23420302/8	17021 0	22818252	7U 70	4 60	010	4 I	AC-R	ARC	(AC)	~ ***
776	2343732041	17021 2	JE4 1881	Alle	6 90	000	* 5	AB-C	AB-C	AR.	***0
777	23478N3808	17020 N	137 4901	*:::	8.80	027	f 2	AC-B	ABC	*	** f
778	2351350963	17107 9	510 6203	G5	9.00	021	* 3	AB-C	AB	(AB)	**N*
779	23530N2347	17131 N	123 4830	G5	8.50	030	7 3	AB-C	AB-C	*	A*NO
780	23539N5512	17140 N	154 3082	B2	5.00	006	f 2	AB-C	AB	*	***0
781	23544N3310	17149 N	132 4747	GOV	6.60	051	* 5	AB-C	ABC	AB	****
782	23575N6532	1 N	165 1987	GO	6.00	010	* 1	AB+C	AB	*	****
783	23576N0135	9 N	101 4820	GO	7.80	019	7 2	AB-C	AB-C	AB	***0

G. M. Popović

Table 2 001 ADS:dp=0.024arcsec(R&M);0.025arcsec (J&F);cpm:AB;HERTZSPRUNG E.1964: Mouv.relatif lineaire AB. Sp(A)=GO III;p:orbit (SCARDIA;1980) ADS:C probably belongs to the system. 004 006 Sp(A)=B8.5V009 JENKINS L.P.1952:p(tr.)=-0.002±007arcsec. 010 p:pair BC. 013 ADS: The p.m. of A is given as 0.024 arcsec in 243.1 degrees. If correct the star C is moving with it ADS:A is a spec.bynary. GLIESE W.1969:No 23; iden. p for AB. 014 015 ADS:C is independent.HERTZSPRUNG E.1964:Mouv.relatif lineare AB. 016 ADS:B is moving with A through space.p(sp.)=0.029arcsec(MtW) or(DAO). 018 GLIESE W.1969:No30. GLIESE G.1969:A is spec.bynary;No34.1 021 022 BAIZE P.1962: ... une binaire a eclipses (?). 025 Sp(A) = A1Vn027 BAIZE P.1962:A certainement var. 028 Sp(A)=B9IVn.ADS:Frost announced the primary to be a spec.bynary. 029 ANOSOVA J.P.1988:prob.phys.system (No1).POPOVIC G.:AB is optical. 032 ANOSOVA J.P.1988 real phys.system (No2). 033 HERTZSPRUNG E.1964: Mouv.relatif lineare AB. 038 JENKINS L.F.1952:p(tr.)=0.002arcsec. 039 ADS:RV of AB var. 040 IDS:C is a faint diffused nebula:Dreyer 42. 041 GLIESE W.1969:No56.3; iden.p for AB. 044 ANOSOVA J.P.1988: real phys.system (No3).GLIESE W.1969: No57.1; iden. p for ABC. 048 p:orbit (ERCEG; BC; 1976). 049 IDS:Mul.:ABCD.GLIESE W.1969:No60;iden. p for ABC. 050 GLIESE W.1969:No61. 054 ANOSOVA J.P.1988:real phys.system (No4). 055 p:orbit (SCARDIA;1982). 056 ADS: A is a spec.binary. 057 GLIESE W.1969:No68. JENKINS L.P.1952: Alf Tri spec.binary; 2 days.GLIESE W.1969: No78.1 060 061 HERTZSPRUNG E.1964: Mouv.relatif lineare AB. 062 ADS:cpm AB. 066 ADS: The close pair is undoubtedly a physical one. 068 ADS:RV=0.0 km/sec with a suspicion of var. 070 ANOSOVA J.P.1988:No7; real phys.system. 073 ADS:cpm ABC.POPOVIC G.:p:pair BC. 077 GLIESE W.1969:No87.1; iden.p for AB. 079 ADS:cpm AB.ANOSOVA J.P.1988:real phys.system (No8). 087 GLIESE W.1969:No107; iden. p for AB. 088 IDS:Mult.:AB;GLIESE W.1969:No 106.1; iden.p for ABC. 093 ADS: RV var. 094 IDS:Mult.:AB;GLIESE W.1969:No 118.2; iden.p for ABC. 095 ANOSOVA J.P.1988:real phys.system No 9.GLIESE W.1969:No120.1; iden. p for ABC. 101 p(orb.)=0.004 arcsec (HEINTZ;1963). 102 Sp(A)=F6 III. 103 GLIESE W.1969:No137. IDS:Mult.:AB;GLIESE W.1969:No 140; iden.p for ABC. 104p:orbit (SCARDIA;1980). 111 114 ANOSOVA J.P.1988:prob.phys.system No10. GLIESE W.1969:No153; iden.p for ABC. 116 123 ADS:AB a phys.one.ANOSOVA J.P.1988:prob.phys.No12.BAIZE P.1962:C var. GLIESE W.1969:No160. 125 ANOSOVA J.P.1988:real phys.system No 13. 126 ANOSOVA J.P.1988:prob.phys.system No 14. No BD is according to 127 the comp.B.

TRIPLE STAR SYSTEMS NEARER THAN 200 pc

129 ADS:cpm for AB. 132 ANOSOVA J.P.1988:real phys.system (No 16).IDS:Components P and Q exist too. Sp(A)=FOIV-V.IDS:Mult.:ABCD.GLIESE W.1969:No 168.3;phys. 135 p:orbit(Finsen W.S.1978). 137 136 HERTZSPRUNG E. 1964: Mouv.relatif lineare AB. 140 Sp(A)=AOIIIp 146 p:orbit (ERCEG V.1978). 147 ADS:AB optical. 150 p:orbit (HEINTZ; 1983). 153 ADS:cpm for ABC. A is a spec.binary. 154 ADS: An optical group.IDS: AB optical. 159 p:orbit (HEINTZ; 1983)
161 ADS:AB optical pair.GLIESE W.1069:No196.
162 JENKINS L.F. 1952:p(tr.)=0.014±0.014 arcsec.
163 RUSSEL H.N.& MOORE CH.1846:p(dyn)=0.002 arcsec. 164 ADS:cpm for ABC.GLIESE W.1969:No 200;p(A)=p(C). i i i i digita di fite Inggita i i i i i i i Na i i i i i i i i i i 165 A is a spec.binary.GLIESE W.1969:No198. 166 ANOSOVA J.P.1988:prob.physical;No 19. 167 p(orb.)=0.015 arcsec (BOS; orbit I; 1962). 168 ADS:H Ori.is a spec.binary. ANOSOVA J.P.1988:prob.phys.system; No 20.
ANOSOVA J.P.1988:real phys.system; No 22.
ADS:&Orionis is a spec.binary.
JENKINS L.F.1952:p(tr.)=0.002±0.007 arcsec.
ANOSOVA J.P.1988:prob.physical system; No 23. 179 GLIESE 69:A faint star(VBs;AJ61;528)to be a star of sim.p.m.Phys. conn. with AB uncer.No216; iden p for AB. And the Additional States and the Additional States and S 183 ADS:spec.binary. 184 ADS:cpm for AC. 185 ADS:cpm for AC but B is independent.
187 ADS:prob.cpm for ABC.
188 IDS:Mult.:ABCD.GLIESE W.1969:No 225.2;identical parall.for ABC. 189 ADS: A is short spec.binary star (FROST). i state j 190 Sp(A)=G8III.IDS:A & B spec.binarys. 194 ANOSOVA J.P.1988:real phys.system; No 24. 200 No BD refer to the component B. 203 ADS:cpm for ABC. 204 ADS:cpm for AB.HERTZSPRUNG E.1964:Mouv.relatif lineare AB. 205 ADS: The micrometer measures however favor the hypothesis that 20 Gem.is a phys.pair.. 206 ANOSOVA J.P.1988:prob.phys.system; No 26. 207 ANOSOVA J.P.1988:real phys.system; No 27. 209 ANOSOVA J.P.1988:prob.phys.system; No 28. 211 ANOSOVA J.P.1988:prob.phys.system; No 29. 212 HERTZSPRUNG E.1964: Mouv.relatif lineare AB. 213 ANOSOVA J.P.1988:real phys.system; No 30. 214 Sp(A)=G4III+A2V;p:orbit (HEINTZ;1963). 218 p:orbit (HOPMANN; 1952).HERTZSPRUNG E.1964:Mouv.relatif lineare AB AUSSEL H.N. & MUURE CH.1945:p:pair BC.
IDS:cpm for AB.HERTZSPRUNG E.1964:Mouv.relatif lineare AB.
ANOSOVA J.P.1988:real phys.system;No31.GLIESE W.1969:No264.1-264.
AREND S.1959:optical.
ADS:A is a spec.binary.p:orbit (BAIZE;1979)cal.by ZULEVIC D.
ADS:p(tr.)=0.005±0.010 arcsec.
ANOSOVA J.P.1969:optical system.
ANOSOVA J.P.1988:coob phys.system. 220 RUSSEL H.N. & MOORE CH.1946:p:pair BC. 232 ANOSOVA J.P.1988:prob.phys.system; No 32. 235 p:orbit (SCARDIA; 1983). 238 ANOSOVA J.P.1988:prob.phys.system; No 33.

G. M. Popović

239 ADS: RV is var. (LO); two spectra being visible. 243 ADS:cpm:ABC;all comp.spec.ANOSOVA 1988:real phys.system;No34.GLIESE W.1969: No278; iden.p for ABC. 248 ANOSOVA J.P.1988:real phys.system; No 35. 248 ADS:C is an independent star.POPOVIC G.:mag.(A)=mag.(B). 250 GLIESE W.1969:No293.1; common p for AB. 258 ANOSOVA 1988: real phys.system; No37.ADS: .an invis.comp.to C; WORLEY&HEINTZ 83: There are orbits AB AB-Cc Cc-P. 262 The measur, reported in B.O.A.Belg.No140;83 don't fit well.ANOSOVA 1988: real phys.system;No38. 265 ANOSOVA J.P.1988:prob.phys.system;No39. ANOSOVA J.P.1988:real phys.system No 40. 267 ADS:cpm for all components. 269 271 GLIESE W.1969:No 315. 272 No BD different in ADS and GLIESEs Cat. GLIESE W.1969:No314.ADS:RV var.? 273 GLIESE W.1969:No319; identical parallaxes for ABC.IDS:Mult.:AB. 274 JENKINS L.F.1952:p=0.002±0.010 arcsec. 278 Orbit exists(HEINTZ;1974).GLIESE W.1969:No 325; ident.parall.for AB. ANOSOVA J.P.1988:prob.phys.system; No41. 279 281 ANOSOVA 1988: real phys.system; No42.GLIESE W.1969: No331; iden.parall.for ABC. ANOSOVA 1988:prob.phys.system; No43.GLIESE W.1969:No335; ident.parall.for AB. 282 283 JENKINS L.F.1952:p(tr.)=0.001±0.005 arcsec. 287 ADS: A is a spec.binary.Component D exists (BOS: AJ 68;8). 288 ADS & IDS: An optical pair A-B. 291 ANOSOVA J.P.1988: real physical system; No44 295 ADS: The pair AB is doubtless a binary. $p(tr.)=-0.005\pm0.005$ arcsec (Yale). 298 ANOSOVA J.P. 1988: prob. phys. system; No45. 299 ADS:AB is a phys.pair. 300 ANOSOVA J.P.1988:real phys.system; No46. 301 ANOSOVA J.P. 1988: prob. phys. system; No47. ANOSOVA J.P. 1988: real physical system; No48. 303 310 GLIESE W.1969:No 380. 311 ADS:B & C independent stars. 313 ANOSOVA J.P. 1988: prob. phys. system; No49. 319 ADS:dp=0.003 arcsec (R.& M.). 320 p:pair BC. 323 ADS:p.m.=0.21 arcsec in 238.5 degrees. If real this applies to all, three comp. 324 ANOSOVA J.P.1988:real phys.system;No50. GLIESE W.1969:iden.p for AC.ADS:AC phys.pair;B an optical comp. 325 GLIESE W.1969:No419;Del Leo. 326 327 ANOSOVA J.P.1988:real phys.system;No51. ANOSOVA J.P.1988:real phys.system;No52. 328 329 GLIESE W.1969:No421; iden.parall.for ABC.B is a spec.binary. 330 p:orbit (ZULEVIC D;1980). 331 GLIESE W.1969:No429; iden.parall.for AB.HERTZSPRUNG E.1964: Mouv.relatif lineare AB. 332 BAIZE P.1962:B probablement var. 336 ANOSOVA J.P. 1988: prob. phys. system; No53. 337 p:orbit(HEINTZ;1985)calc.by POPOVIC G. 339 GLIESE W.1969:No449. 340 ANOSOVA J.P.1988:real phis.system; No54.POPOVIC G:Comp.C. exist ? 345 ANOSOVA J.P.1988:real phys.system;No55. 346 GLISE W.1969:No 459 348 ADS: It is a spec.bynary.p(sp)=0.036(DAO).ANOSOVA J.P.1988:prob. phys.system;No 56. 353 ANOSOVA J.P.L988:real phys.system; No57. 356 ADS:C is independent. 357 ANOSOVA J.P.1988:prob.phys.system; No 58. 359 RUSSEL H.N. & MOORE CH.1946:A & B spec. binaries.

TRIPLE STAR SYSTEMS NEARER THAN 200 pc

1

360 ANOSOVA J.P. 1988; prob. phys. system; No59. 362 ANOSOVA J.P. 1988: prob. phys. system; No60. 363 ANOSOVA J.P. 1988: prob. phys. system; No61. 364 p:orbit (SCHMEIDLER; 1939). Sp(A)=G8III. ADS: C is prob. phys. connected with the close pair. 366 ADS:d(AC)=33.9(1878);36.0(1912)arcsec.IDS:d(AC)=3.4(1878);3.6(1912)arcsec. 367 ANOSOVA J.P.1988:prob.phys.system;No62.
370 ADS:RV of 0Virginis var. ADS: RV of OVirginis var. GLIESE W.1969:No501;common p for AB. 300 GLIESE W.1969:No503.2;Sp(A)=G1.5 V. 30 1. K. S. S. S. 371 374 375 ANOSOVA J.P. 1988: prob. phys. system; No63. POPOVIC G. : C independent star. 376 The character of motion (elliptical hyperbolic or parabolic)uncertain. GLIESE W.1969:No505;common p for AB 378 ANOSOVA J.P. 1988: real physical system; No64. 380 Sp(A)=A6III. 381 BAIZE P.1962:C independent star; mag.(A) or mag.(B) var. 383 IDS:C is A of STF 1765 rej.ANOSOVA J.P.1988:prob.phys.system; No65. 384 IDS:Posit.angle of C:140(1918);240(1959)degrees;POPOVIC G.:Posit.angle of C:321(1981)degrees.Sp(A)=A7III. 385 GLIESE W.1969:No520;V(AB)=9.76.Range of mag.diff.estim.from 0.2 to 1.4.RV var.; iden.p: ABC. 389 ANOSOVA J.P. 1988: prob. phys. system; No66. 390 GLIESE W. 1969: No525. 394 The identification of this system in JENKINS Gen.Cat.(1951)uncertain. 401 GLIESE W.1969:No542.1; common p for AC. 405 p:pair BC.ADS:cpm for all stars. 406 GLIESE W.1969:No549;AB:182degrees;69.2arcsec(1854-1918);Approx.cpm with C about 1.5degrees N of AB. 413 GLIESE W.1969:No 557. 416 Alf Cen & Prox Cen. ANOSOVA J.P. 1988: real phys.system; No67. 417 ANOSOVA J.P. 1988: real phys.system; No68. 418 ADS: The pair prob.a phys.one. ANOSOVA 1988: prob.phys.system. HERTZSPRUNG 1964 :Mouv.relatif lin.AB. 419 Sp(A)=A2 III. 421 Russel&Moore 1946: Treated as a giant in calc.of dp.HERTZSPRUNG 1964: Mouv.rel.lin.AB. 424 ADS:cpm for AB. 429 GLIESE W.1969:p(C)=0.075±0.006 arcsec;No578. ANOSOVA J.P.1988:real phys.system;No71. 430 431 ANOSOVA J.P. 1988: real phys.system; No72. 435 ANOSOVA J.P.1988:prob.phys.system;No73. 436 ANOSOVA 1988: real ph.syst.; No74.ADS: BC& the bright staruBoo phys.connec. HERTZSPRUNG 1964:Mouv.rel.lin.BC 437 GLIESE W.1969:No586; iden/parall.for ABC. 441 BDS: It is probable that this is only an optical pair as the change corresponds very nearly to p.m.ofAB 450 GLIESE W.1969:Sp(A)=K2III E;No596.2. 451 GLIESE W.1969:No599;iden.p.for AB. 452 ANOSOVA J.P.1988:real phys.system;No75. 456 GLIESE W.1969:No 603. 463 ANOSOVA J.P.1988:real physical system; No 77. 466 ANOSOVA J.P.1988:prob.phys.system; No 78.POPOVIC G.:rectilinear traj.AB. 467 HERTZSPRUNG E. 1964: Mouv.relatif lineaire AB. 472 POPOVIC G.&TRAJKOVSKA V.1989:optical AC, 473 GLIESE W.1969:No 615.2; cpm AB with component C about 11 minarc distant. 478 GLIESE W.1969:No 623.JENKINS L.F.1952:No 3733 ? 479 ANOSOVA J.P.1988 real optical system.GLIESE W.1969:Sp(A)=G8III.BAIZE P. 1962:C parait varier sur 2 mag. 480 ADS:cpm AB. 481 GLIESE W.1969:No 627; iden.parall.for AB.

G. M. Popović

490 ANOSOVA J.P.1988:real phys.system; No 81. 12.5 GLIESE W.1969:No644; iden.p for ABC & Wolf 629; POPOVIC G.:C is a spec. 493 binary;B has a unseen comp. ANOSOVA J.P. 1988: real phys.system; No82. 494 GLIESE W.1969:No653;common p for AB. 495 496 ANOSOVA J.P.1988:prob.phys.system;No83. 501 POPOVIC G.&TRAJKOVSKA V.1989:optical? HERTZSPRUNG E.1964:Mouv.relatif lineaire AB. 502 GLIESE W.1969:No 661; iden.parall.for AB. 503 ANOSOVA J.P.1988:real phys.system;No84. GLIESE W 1969:No 667;iden.parall.for ABC. Ъ÷., 504 508 ADS: The pair BC independant, GLIESE W. 1869: No84 511 HERTZSPRUNG E.1964: Mouv.relatif lineaire AB. GLIESE W.1969:No 677; iden p to B and C. WORLEY C.E.& HEINTZ W.D.; 1983:Star A (9 arcsec)is physical. 512 515 ANOSOVA J.P. 1988: prob. phys. system; No85. 517 518 p:orbit (BAIZE;1956). 519 ANOSOVA J.P. 1988: prob. phys. system; No86. ANOSOVA J.P.1988:prob.phys.system;No86. ANOSOVA J.P.1988:real phys.system;No87. 521 523 GLIESE W.1969; No695; iden.p for ABC.A perturb.by orbit BC:P about 8 or 18y. IDS:Mult.:ABCD. 530 ADS:RV(A)=var.GLIESE W.1969:No700.1;iden.p for ABC.B is a spec.binary. 533 ADS:C (or B accor.ADS)is independent.GLIESE W.1969:No700.2. 535 ANOSOVA 88: real ph.s. No88. GLIESE 69: No702; iden.p for AB. IDS: Mult.: ABPQ RSTUVWX.POPOVIC:C is unseen comp. 539 GLIESE W.1969:No704; iden.p for AB. HERTZSPRUNG E.1964: Mouv.relatif lineaire AB. 540 p:orbit (VALBOUSQUET;1981). 541 542 ADS:cpm for A and B. 543 ADS:..it is probable that two stars are physically connected..B is a spec.binary.RV(A)=var. 545 Mag.(C)=?:here designate mult of the apparent configuration maybe in error! 546 p:calculation by POPOVIC G. p.m. of C ~0.6 arcsec/y. 552 ADS:cpm for AB; it prob.applies to C also.ANOSOVA J.P.1988 prob.phys. 553 system;No89. 554 ADS:59 Serpentis var.in mag. and RV.Two spectra visible.BAIZE P.1962: certainement variable. 555 ADS: The trree stars form a remarkably close visual triple system. GLIESE W.1969:No713. GLIESE W.1969:No713. 556 The observed relative motion of AC is resulting from the p.m. of A! 557 ADS:cpm for ABC. HERTZSPRUNG E.1964:Mouv.relatif lineaire AB. 559 · (* 560 p:orb.(WIERZB.58).ADS:p.m.(AB)=0.008 of C 0.068arcsec.The micr.meas.do not 561 confirm this.Sp(A)=KO III. 562 ADS:RV(A)=var.566 ADS:RV(A)=var. 569 Sp(A)=A1 12 - Ku 572 POPOVIC G.&TRAJKOVSKA V.1989:AC optical.POPOPVIC Galexists orbit s.system;No.90.25 State 10.00 (KISELEV A.1987): 573 ANOSOVA J.P. 1988: prob. phys. system; No. 90. 575 ADS: The primary is a spec.binary. POPOVIC G. & TRAJKOVSKA V. 1989: optical ? 577 ANOSOVA J.P.1969:phys.system(Contrib.I);phys.(Contrib@II);ADS:A_long+ 578 period spec.binary. Provide to the state of the state ANOSOVA J.P. 1988: real physical system; No91. HERTZSPRUNG E. 1964: Mouv. 579 relatif lineaire AB. . natu (a.<u>2</u>≊6.) POPOVIC G.& TRAJKOVSKA V.1989:optical.ADS:An optical pair. 582 584 ADS:RV var.; two spectra ?

TRIPLE STAR SYSTEMS NEARER THAN 200 pc

```
585 RUSSEL H.N.&MOORE CH. 1946: Treated as a giant in calculation of p.
586 ANOSOVA J.P.1988: real phys.system; No92, Sp(A)=A2 III.
587 ADS:p.m...indicating the physical connection of AB.
588 ADS: The change in AB is a result of the differences in the p.m.
589 IDS:cpm for AB.
593 ANOSOVA J.P.1988:real phys.system.No93.
595 ADS:Burnham regards the change as due to the relative p.m. of the
    two stars and this may be correct.
600 POPOVIC G.: AB optical!
601 ADS:A var.
603 p=-0.006±0.006 arcsec (Yale).
604 ADS:p=0.007 arcsec (R.& M.1946).Yale:p(tr.)=0.003±0.006 arcsec
607 GLIESE W.1969:No759
608 Yale:p(tr.)=-0.003±0.007arcsec.POPOVIC G.:The relative change in AB
    is not only due to p.m. of A.
610 ADS:U Aquilae is a Cepheid var. star.
613 ADS:cpm for AC.
618 GLIESE W.1969:No765;common p for AC.
620 p(tr.)=-0.004±0.005 arcsec (Yale).POPOVIC G.: The change in AB is not
    due to p.m. of A.
621 p:orbit (KNIPE;1961)
622 Sp(A)=B9.5IV.BAIZE P.1962:B prob.var.
624 GLIESE 69:No767.1; Comm.motion and p with No765.4(ADS12889AB). POPOVIC&
    TRAJKOVSKA 1989:optical.
629 JENKINS L.F. 1952: No4697; d(AB)=161.8 arcsec. IDS: d(AB)=61.8 arcsec.
630 ADS: The pair AC is a physical one.B:optical.GLIESE W.1969:No771;
    common p for AC.
                            632
    R.& M.1946:p=0.002 arcsec.
   R.& M.1946:p=0.003 arcsec.
634
635 Component D exists too.
638 GLIESE W/1969:No818.1; common p for ABC.POPOVIC G.: IDS No does not exist.
639 p:pair BC.ANOSOVA J.P.1969:p(A)=0.003.
641 p(B)=0.020±0.007 arcsec(JENKINS L.F.1952).
643 p:pair BC.
644
   BDS: The change (for AB) is due to p.m.
647 ADS:cpm for AB.
648 ANOSOVA J.P.1988:prob.phys.system; No96.POPOVIC G.: AB is phys.pair;
    C is independent.
649 HERTZSPRUNG E, 1964 Mouv.relatif lineare AB.

ANOSOVA J.P. 1988:prob.phys.system; No 97.
ANOSOVA J.P. 1988:prob.phys.system; No 98.

653 GLIESE W.1969:No788.3;VR(A)=var.
655 ADS:cpm for AB.
656 ADS:cpm for AB.POPOVIC G.:C is independent.
658 ADS:cpm for AB.
662 ADS: An optical pair.
666 ANOSOVA J.P.1988:prob.phys.system;No99.
667 R.& M.1946:p=0.004 arcsec.
   ANOSOVA J.P.1988:real phys.system;No100.
668
669 ANOSOVA J.P.1988:real phys.system; No102.GLIESE W.1968:No803-799; common p
    for ABC;C is flare star.
671 ADS: An optical pair.RV(A) var.GLIESE W.1969:Sp(A):KO III.
672 ADS:p(tr.)=0.001 arcsec; The star has been suspected of var.in brightness.
    JENKINS 1952:p=0.004±0.006 arcsec.
676 GLIESE W.1969:No809.
679 p:orbit (POPOVIC G.1969)
882 GLIESE W. 1969: No818.
683 ADS:C is evidently independent.
684 ANOSOVA J.P.1988:prob.phy.; No105.GLIESE W.1969:No820; common p for AB;
    astromet.binary (STRAND;AJ 62;1957)
```

ly.

or!

ot

G. M. Popović

ADS: The Struve companion (C) is evidently independent. 687 688 ANOSOVA J.P.1988:prob.phys.system;No106. C=Q(IDS); IDS: Mult.: ABCDPQR.GLIESE W.1969: No822.1; common p for ABC. 689 690 GLIESE W.1969:No825.3. 693 ADAMS W.S.& al.1935:p(sp.)=0.022 arcsec.JENKINS L.F.1952: p(tr.)=0.001±0.005 arcsec. 694 ADS:cpm for AB. HERTZSPRUNG E.1964: Mouv.relatif lineaire AB. R.& M.1946.Treated at p:orbit (POPOVIC G.;1987) 697 1.1.1 699 R.& M.1946:Treated as a giant in calculation of p.ANOSOVA J.P.1969: 702 physical; optical. 703 ANOSOVA J.P. 1988: prob. phys. system; No107. 705 R.& M.1946:p:0.004 arcsec. 707 ADS:A or B spec.binary. 709 ADS:A is spec.binary. ADS:cpm to AB.p:according to component B. 712 HERTZSPRUNG E.1964:Mouv.relatif lineaire AB. HERTZSPRUNG E.1964:Mouv.relatif lineaire AB. 713 717 GLIESE W.1969:No848.1; common p for ABC. 719 POPOVIC G.& TRAJKOVSKA V.1989:optical. 723 ADS: SCephei is the typ star of the Cepheid var. 727 IDS:Mult.:ABCDP.GLIESE 69:No863.1; common p for ABC.POPOVIC G.:C by (GLIESE 728 69) is not ident to the C in IDS. GLIESE 69:No867.1; comm.p for ABC.POPOVIC:C by GLIESE maybe not ident.with C 731 in IDS.HERTZSP.1964:Mouv.rel.lin.AB 732 p:pair BC. ADS: This is a remerkably close triple system. R.& M.; 1946:p=0.002 arcsec. 735 736 R.& M.1946: Treated as a giant in calculation of p. 738 IDS:ZZ Cephei eclipsing binary 9.3-10.1;2.14 days.ANOSOVA J.P.& al.1989: No110; physical. 739 ADS:cpm for AC.GLIESE W.1969:No872;common p for AC;Sp(A)=F6IV-V. 740 GLIESE W.1969:No873. 741 HERTZSPRUNG E.1964: Mouv.relatif lineaire AB. 746 ADS:RV(A)=var. 747 ADS: The components of β Pegasi are simply optical; RV(A) = var? 752 Sp(A)=G3 III.ADS:A is a spectr.binary. 755 R.& M.1946; Treated as a giant in calculation of p. ADS:A&B constitute a physical pair.RV(B)=var.POPOVIC G.:Mult.:ABb phys.? 756 GLIESE W.1969:No893.2; common p for ABC.ADS:91 Aquarii & BC constitute a 757 phys.system.IDS:Mult.:ABCDE. 760 Sp(A)=G8 III.HERTZSPRUNG E.1964:Mouv.relatif lineaire AB. 763 ADS:RV(A)=var.HERTZSPRUNG E.1964:Mouv.relatif lineaire AB. 764 ADS:cpm for A & B. 766 IDS: An optical pair. 770 BDS: The change in the distan. of C is due to the p.m. of A.ADS: The nearer comp.appar.shares the motion with A 771 GLIESE W.1969:No904.1; common p for AB. 778 p:p(AB)(Yale). ANOSOVA J.P.1988:prob.phys.system;No113. 779

and Ch. Moor; some spectroscopic parallaxes are from Adams et al. (1946). In cases when the parallax of A is catalogue instead of the error appears the grade as done unknown, that of B is presented which is followed by a note (Table 2). The orbital parallaxes, as a rule, are based on the most recent orbital elements presented in the Ephemeris Catalogue (Couteau et al., 1986). If the orbital parallax is based on another orbit (not present in the Ephemeris Catalogue), then a corresponding note follows.

In the case of the parallaxes from Russel-Moor's in the original catalogue.

Column 9 Sources of parallaxes: 1 - (Adams, W.S. at al., 1935) 2 - (Russell H. N, Moore Ch, 1946) 3 – (Jenkins L. F., 1952)

1932)

- 4 (Aitken R. G., 5 Autors of orbits
7 - (Gliese W., 1969)

Column 10 Apparent multiplicity of the system. This designation offers an insight into the apparent configuration of the components in the system. If there is a close pair AB and a distant component C, then the corresponding multiplicity is AB-C. If the apparent distances among the components are comparable, the multiplicity is ABC. In other words, the multiplicity allows to distinguish two types of triple systems: hierarchical and nonhierarchical, where the ratio of the smallest to the largest apparent distances among the components of 1:4 separates these two types of triple systems. Here, the designations A, B and C follow the magnitudes, so that A is always the brightest star. This was not always the case in the literature and, therefore, for many triple systems listed here corrections were necessary.

Column 11 Multiplicity of the physical connection among the components.

SE

h C

If it is necessary to emphasize that all three components are in a mutual physical connection, the designation ABC is used. If such a connection is absent, then the corresponding designation is A-B-C. Shortly speaking the letters written together without spacing means presence of a physical connection; the dashes between them means no physical connection.

The designations concerning the physical connection used here are based on numerous notes and conclusions of a number of authors from the system discovery up to nowadays. They do not follow from the application of a unique criterion of physical-component detection. Exceptions are almost all systems from the Leningrad Triple-System-Programme (Anosova, 1989) present here where a relatively rigorous dynamical criterion (Anosova & Popović, 1989) is applied. The systems from the Leningrad Programme are divided into four classes: 1=physical, 2=probably physical, 3=probably optical, 4=surely optical. In this column the first two classes are denoted as ABC and the other two as optical system.

Column 12 Multiplicity of component orbital motion in the system.

If a system, or a part of it (a subsystem) is known to be gravitationally bound, then this column gives the specification: for example BC means that the subsystem BC is bound with known orbital elements, (BC) means that the subsystem is bound but the orbital elements are still unknown; finally ABC means that the orbital elements are known for all three components.

Column 13 This column offers a possibility to write four signs in a row.

1. Letter A (Anosova) means that the system belongs to the Leningrad Programme of 113 Triple Systems (Anosova, 1989).

2. Letter G(Gliese) means that the system can be found in the Catalogue of Nearby Stars (Gliese, 1969). 3. Letter N means that there is a note (Table 2).
4. For the purpose of informing about a triple system according to Anosova (1969) four letters are used: F=physical system, f=probably physical system, O=optical system, o=probably optical system.

3. RECAPITULATION OF SOME DATA FROM TABLE 1

Column 11 of Table 1 allows to establish that out of 783 systems contained in the present survey there are 253 systems with physically connected components, denoted as ABC. In the case of 189 systems there is at leaset one independent component and for 341 systems it is uncertain whether they should be classified as physical or as optical systems. If among the 341 dynamically uncertain systems the rate of optical and physical systems (0.57:0.43), following from the data mentioned above, were preserved, then the number of 253 physical systems would be enlarged by other 194 systems, so that in this survey after a final analysis of dynamical states one could find about 450 physical systems.

The data mentioned above are sumarised in Table 3.

Table 3. Distribution of systems of this survey according to their dynamical state

Dinamical state	ni	%	phys./o	opt.=C	0.57/0.43
physical systems	253	32.3	+	194	= 447
optical systems	189	24.1	14 <u>1</u> 7		
?	341	43.6			

A. Physical Systems. From Columns 10 and 11 of the survey one can obtain the distribution of 253 physical systems according to their apparent configuration, Table 4:

Table 4. Distribution of 253 physical systems accordingto ther apparent configuration

Mult. of apparent configuration	n _i	%
AB – C	142	56.1
A - BC	55	21.7
AC – B	21	8.3
ABC	35	13.8
	N = 253	99.9%

orbit. mult.	 /	AB	C	AB	BC	(ABC)	(AB)	(BC)	(AC)	AB(C)	A(BC)
appconf.mult	 t.										· · · · · · · · · · · · · · · · · · ·
$\overrightarrow{AB} - C$			5	41	-	8	38	· · · · ·	2	10	_
A BC	1		1 ·	- 4	8	2	. 1	2.1	-		4
AC – B			1	1		3	4		5	, i	
ABC			1	_	1	2		- i - -	2	· · . —	tur T
total:			8	46	9	15	46	21	. 9	10	4
2.9 12 8		5.	1. 33 d	$(r_{1}) = (r_{1})$	· 21		. I., S	2. DO	÷ .	- 1. A.	

 Table 5. Distribution of Orbital Multiplicaties for the 168 Physical Systems according to the apparent configuration multiplicities

The hierarchical configuration type AB-C is also here very confirmed.

Out of the 253 physical systems there are 168 systems in the present survey with orbital motion (Column 13). The distribution of the orbital multiplicities with the apparent-configuration multiplicaty is presented in Table 5.

As could be expected, the orbital motion is clearly expressed between the components forming close subsystems: in the case AB-C between A and B, in the case A-BC between B and C. There are only eight systems where the orbital elements are known for all three components.

The parallaxes of the physical systems listed here enable to conclude that the spatial density of triple systems is maximal in the immediate vicinity (up to 20 pc). This finding can be, certainly, explained by the selective effect—the more distant a triple system is the more difficult is to prove the existence of a physical connection of its components. Assuming the volume of a heliocentric sphere whose radius 20 pc as unit volume Vo the variation in the number of triple systems with increasing volume is calculated (Fig. 1) for the systems closer than 74 pc. The rate of increase in the number of systems clearly decreases with increasing volume. The dashed line corresponds to the case of a constant spatial density, i. e. what the number of triple systems would be if the density preserved its value from the sphere of 20 pc.

B. Optical Systems. An optical system is here defined as any system having at least one physically independent component. Column 11 of this survey allows obtaining an insight into the connection and independence of components within this class of triple stars (Table 6).

Table 6. Distribution of 189 optical systems according to connection multiplicity (Column 11)

physical systems listed		······································
he spatial density of tri-	Connection multiplicity	n,
imediate vicinity (up to		1
ainly, explained by the	all three components	
t a triple system is the	independent: $A - B - C$	28
existence of a physical		
ssuming the volume of	two components dependent,	
is 20 pc as unit volume	third independent: $AB - C$,	97
of triple systems with	AC - B, A - BC	
Fig. 1) for the systems	an a	
crease in the number of	connection known for two	
increasing volume. The	system components only: A-B, B-C, A-C	64
		N = 180
i., i	fame. The state of grad	10)
6 a a ***		al.
3 3 2010 - 1		a ()
the second second second		
2 anno 2200 anno 2200 anno 2000		
Contraction and a second second	Fig. 1. The variation in nu	imber of
11	triple systems with increase	sing volume
	a farm o a Afala (ara	
	د میں اور منظور راہ اور اور ا	
	$\lambda \lambda \Lambda$	
77777777777777777777777777777777777777	40	
, v v v v		
57.7	73.7	

36

N

100

50

0

20.0

10

47.0

40.0

On the basis of Table 6 one may say: 1. the most frequent situation within the class of optical systems is a close physically double system with a distant independent component; 2. the probability of appearance of three independent components is very rare. Its value in the present paper is 0.036.

C. Systems of undetermined Dynamical State. The insufficient interest of observers in triple star systems is a consequence of a high percentage of systems for which has been impossible to conclude whether they are physical or optical.

Out of 341 such systems there are 284 ones for which the mutual connection of two components is known, while for the third one there is no conclusion. Any additional observations in these cases are necessary and urgent. The distribution of the bound components for the 284 systems mentioned above according to the apparent configuration is presented in Table 7.

Table 7.

Apparent	bound components					
configuration	AB	AC	BC	ni		
AB – C	206			206		
AC - B	11	10	_ ****	21		
A – BC	7		5	12		
ABC	40	1	1	42		
?	3		-	3		

N = 284

D. Systems from the Leningrad Programme of 113 Triple Stars. Out of 113 triple systems of the Lenin-

Table 8

No	ADS or IDS	Dinamical state according to Anosova	Physical connec- tion according to this paper
1.	818	II	A – B
2.	01347N3350	I	A - B
3.	1727	I	AB
4.	06319N1216	II	A - B - C
5.	5300	II	AC
6.	7071	II	AB
7.	11052N6633	I	A - B - C
8.	8355	I	AC
9.	12409N1042	II	*
10.	13101N6749	II	AB - C
11.	15180N6036	II	AB
12.	10332	Il	AC - B
13.	11853	I	AB
14.	17131	II	AB - C

grad Programme (Anosova, 1989) there are 93 in this survey, the rest of 20 systems is omitted due to the parallax limit.

Out of 93 common systems there are 79 coinciding in the dynamical-state specification with Anosova (78 physical and 1 optical), while in the case of 14 systems either there is no complete accordance, or the specifications of their dynamical states are discordant with those of Anosova. A comparable view of dynamical-state classification for these 14 systems by Anosova and in the present paper is presented in Table 8. The designations used in the table are: I = real physical system, II – probable physical system.

The analysis of these systems will be subject of another paper.

ACKNOWLEDGEMENT

The owes his sincere gratitude to Dr J. P. Anosova from the Cathedra of Celestial Mechanics and Stellar Astronomy of the Leningrad State University for the support and encouragement during the work on this programme. The essence of the support is in emphasizing the current interest of such a programme as a base for further investigations.

This work is realised within the framework of the scientific project of the Republican Science Fund of Serbia "Physics and Motion of Celestial Bodies and Artificial Satellites".

This paper was presented at the regular scientific conference named after K. F. Ogordnikov at the Leningrad State University on November 23, 1988.

REFERENCES

- Adams W. S., Joy A.H., Humason M.L., Brayton A.M.: 1935, Astrophys. J. 81, 187.
- Aitken R.G.: 1932, Carnegie Institution of Washington, Pub. No 417 Vol. 1, II.
- Anosova J.P.: 1969, Trudy GAO, LXXVII, Ser. II, 126.
- Anosova J.P.: 1988, Bull. Obs. Astron. Belgrade, 138, 13.
- Anosova J.P., Klioner S.A., Orlov V.V.: Bull. Obs. Astron. Belgrade, 140, 15.
- Anosova J.P., Orlov V.V.: 1985 Trudy Astron. Obs. LGU 40, 66.
- Anosova J.P., Popović G.M.: 1989, Kinematika i fizika nebesnykh tel. No 5684, B89.

Arend S.: 1959, Annales Obs. R. Belgique 8, 153.

Baize P.: 1962, J. Obs. 45, 117.

Couteau P., Morel P.J., Fulconis M.: 1986, Cinquième catalogue d'éphémérides d'étoiles doubles visuelles. Pub. Obs. Paris, Cerga, Obs de Nice,

Gliese W .: 1969, Veröff. Astron Rechen Instituts No 22.

Hertzsprung E.: 1964, J. Obs. 47, 27.

- Jenkins L.F.: 1952, General Catalogue of Trigonometric Stellar Parallaxes, Yale Univ. Observ.
- Jeffers H.M., Bos van den W.H., Greeby F.M.: 1963, Index Catalogue of visual Double Stars, 1961.0, Pub. Lick Observ. Vol. XXI, Part I, II.

Kiselev O.A., Kalinichenko G. A., Plygin G. A., Shakht N. A.,

Kiyaeva O.B., Firago B.A., Bykov O.P.: 1988, Katalog otnositel'nykh polozhenij i dvizhenij 200 vizual'no-dvojnykh zvezd po nablyudeniyam v Pulkove na 26" refraktore v 1960-1986 gg.

Popović G.M.: 1991, Astrophys. and Space Science 177, 365. Popović G.M., Trajkovska V.: 1989, Bull. Obs. Astron. Belgrade,

ЧС **1**

S:

38

N.

140, 43.

Russel H. N., Moore Ch.: 1946, The Masses of the Stars, Univ. of Chicago Press, Chicago.

Worley C.E., Heintz W.D.: 1983, Fourth Catalog of orbits of visual binary stars, Pub. US Naval Obser. Vol. XXIV, P. VII.

Karan, 194 (1997) - Standards (2)
 Standards - Standards (2)

defini aparis s

and a second

 $\frac{1}{2}$

n na s n na s tuto, ka a se occuer and digital for the second to calver ТРОСТРУКИ ЗВЕЗДАНИ СИСТЕМИ БЛИЖИ ОД 200 рс

Астрономска орсерbаторија, Волгина 7, 11050 Београд, Југославија

УДК 523.83 Прегледни чланак

Саопштава се Преглед 783 тројна звездана система Каталога IDS са растојањем главне компоненте до 200 парсека. Такође се саопштава ознака привидне конфигурације компонената у систему, податак о реалној повезаности компонената /динамичко стање/ а назначено је и постојање орбита међу компонентама система или тенденција ка орбиталном кретању. У циљу повезаности овог Прегледа са Лењинградским програмом тројних звезданих система и Каталогом блиских звезда Глизеа унете су у Преглед пригодне ознаке. Најпосле извршена је кратка рекапитулација података Прегледа. Констатовано је да Преглед садржи 253 система физички повезаних компонената уз констатацију да би се овај број после анализе система овог Прегледа могао увећати на око 450.

 $\exp((-1) + \frac{2}{2} \exp(-1)) + \frac{2}{2} \exp(-1)$

1000

ay shart in the argument

Bull. Obs. Astron. Belgrade N^O 144 (1991), 39-45

MICROMETER MEASUREMENTS OF DOUBLE STARS

-

(Series 45)

G. M. Popović

Astronomical Observatory, Volgina 7, 11050 Belgrade, Yugoslavia

(Received: September 26, 1990)

SUMMARY: The author presents the mean values of micrometer measurements for 149 systems (176 pairs) of double and multiple stars performed with the refractor Zeiss 65/1055 cm of Belgrade Astronomical Observatory. A total of 325 measurements is averaged.

This is the 45th series of micrometer measurements performed in Belgrade with the refractor Zeiss 65/1055 cm at the Astronomical Observatory. It is also a continuation of my measurements published in Series No 43(Popović and Zulević, 1989). Here the individual measurements are omitted from the series because they, have been sent to the Astronomical Data Center at Washington (Popović, 1990). Like the earlier ones, the present measurements were, as a rule, carried out together with my colleague Zulević. Therefore, many observations have only one or two measurements. No doubt, this series and Zulević's Series No 46(Zulević, 1991) are with regard to the choice of stars one entity.

The mean values are obtained, as earlier, taking into account the weights of individual measurements.

The present series contains 60 orbital pairs and also 26 triple systems from the Belgrade Survey of Triple Systems nearer than 200 pc(in the case of 13 systems all three components have been measured, in the case of the other 13 only pair AB has been measured).

In Table 1 a list of the mean values in the standard form is presented; notes and O--C for those pairs, for which in the last column of Table 1 existence of a note (N) or a comparison with the orbit (O) is indicated, are presented in Table 2. The observational comparisons for orbital pairs are based on the ephemeris (Couteau et al., 1986). The duplicity of the A component in the system ADS 13648 is here for the first time visually detected.

REFERENCES

Couteau P., Morel P.J., Filconis M.: 1986, Cinquième catalogue d'éphémérides d'étoiles doubles visuelles.

Popović G.M., Zulević D.J.: 1989, Bull. Obs. Astron. Belgrade, 140, 83.

Popović G.M.: 1990, Individual measurements of double stars--Series No 45, Astronomical Data Center, Washington.

Zulević D.J.: 1991, Bull. Obs. Astron. Belgrade, 144 (in this volume).

IDS	ADS	Nai	me	Mult	. t	Р	à	m or dm	n	N
00010N5753	61	STF	3062		89.924	307.3	1 49	0.8	4n	0
0005785717	134	KR	300£		89 975	188.2	1.56	0.3	10	0
00106N7624	207	STF	13		86.866	55.9	0.87	0.3	2n	0
00154N6707	283	нл	1018		86.639	87.0	1.57	0.5	4 n	0
00234N3645	382	Δ	1504	AB	86.791	39.3	0.58	0.0	10	N
00496N2305	755	STE	73	AB	89 802	285.4	0.90	0.3	2n	0
0059750561	888	STE	86	AB	87.539	141 0	15 81	0.4	5n	Ŭ
01003N2056	899	STF	88	AB	88 975	159 0	30.13	0.2	10	
01003N2056	899	STE	88	AC	88.975	123.4		0.2	10	
01344N3813	1310	BU	1167	ng	85 981	55 0	1 34	1 0	1 n	
01507N0121	1538	STF	186		86.588	56.7	1.27	0.0	4 n	0
02042N1952	1678	STE	221	AB	88.986	143.5	8.24	1.0	2n	U
02042N1952	1678	STF	221	AC	88.997	227.9	66.41	4.0	1n	
02216N4102	1859	A	658		84.837	216.4	2.19	9.0-10.5	1n	
02418N1857	2122	STF	305	AB	89.639	309.5	3.47	0.5	3n	0
02418N1857	2122	STF	305	AC	89.997	26.3	94.33		ln	
03113N3816	2446	STT	53		85.973	259.4	0.75	0.8	1n	0
03272N4817	2609	BU	787	AB	88.091	287.1	3.72	8.0-12.0	1n	
03285N2408	2616	STF	412	AB	89.021	0.6	0.86	0.1	2n	0
03285N2408	2616	STF	412	ABXC	88.998	55.3	22.45	5.8-10.0	1n	÷
03306N4747	2643	HLD	9	AB	89.975	53.9	1.20	9.0- 9.0	1n	
03317N0016	2644	STF	422		87.936	268.1	6.51	8,2-10.0	3n	0
03572N3742	2956	ES	2085		90.136	269.8	3.73	9.5-15.0	ln	
04008N3745	2992	BU	545	AB	90.136	316.7	0.99	9.0-11.0	ln	Ν
04009N3749	2995	STT	531	AB	89.018	5.5	1.69	2.2	4n	0
05097S0819	3823	STF	668	AB	90.046	203.2	8.32		ln	
05097N0819	3827	STF	664		90.082	176.6	4.87	0.5	2n	Ν
05179NC058	3968	STF	700		89.214	5.1	4.82	8.1- 8.4	2n	
05254N0552	4115	STF	728		90.101	44.5	1.03	0.7	ln	0
05304S0527	4186	STF	748	AE	90.216	349.0	4.13		ln	
05304S0527	4186	STF	748	CF	90.216	121.7	3.93		ln	
05304S0524		HJ	1157		90.216	305.6	7.98	13.1-13.0	ln	N
05357S0160	4263	STF	774	AB	90.097	166.3	2.52	3.5	2n	0
0535750160	4263	STF	774	AC	90.093	10.0	57.66	2.0-10.0	ln	Ν
05426N0625	4390	STF	795		90.216	217.1	1.44	0.0	ln	Ν
05584N1015	4644	J	310		90.105	320.5	2.32	9.0- 9.2	2n	
06088N2232	4841	BU	1008		90.136	253.2	1.38	3.0- 8.0	ln	0
06286N1449	5197	STF	932		88.403	311.2	1.74	0.2	3n	0
06374N5933	5400	STF	948	AB	90.133	75.7	1.80	0.4	3n	0
06374N5933	5400	STF	948	AC	90.130	309.3	8.65	1.5	3n	
06399N5549	5436	STF	958	AB	90.105	257.2	4.57	0.0	2n	
06399N5549	5436	STF	958	AC	90.103	268.0	175.32	6.0-10.0	ln	
06466N2465	5535	А	513	AB	90.136	221.3	0.50	10.0-10.1	ln	0
07066N2724	5871	STF	1037	AB	90.190	317.6	1.18	7.5-7.5	2n	0
07066N2724	5871	STT	166	AC	90.183	83.5		7.0-12.0	1/0n	
07162N3425	6019	HJ	757		90.193	107.0	5.23	9.4- 9.8	3n	Ν

Table 1. Micrometer Measurements of Double Stars

MICROMETER MEASUREMENTS OF DOUBLE STARS (Series 45)

Table 1. (continued)

IDS ADS Name Mult. t p d m or dm n N 07275N3552 6170 HJ 3294 90.136 184.4 4.62 0.2 1n N 07282N3166 6175 STF 1110 AC 90.106 163.8 71.24 - 9.0 1n 07595N2749 6569 STF 1110 AC 90.210 163.5 0.42 2n N 08332N3231 16623 STF 1177 86.552 351.1 3.35 0.4 2n N 08494N4364 7092 STF 120.4B 80.642 359.2 1.31 1.0 2n 08494N4364 7092 STF 1238 AB 90.172 136.7 4.40 7.0-9.0 1n 09092N0244 7253 HJ 2489 AB 88.321 220.4 21.1 4.0-12.0 1n 009147N337 7907 STF 1238 AB 90.211 31.1 9.0-10.5 1n 010391N726 7748 STF													
0 0 " m 07275N3552 6170 HJ 3294 90.136 184.4 4.62 0.2 1n N 07282N3166 6175 STF 1110 AB 90.105 75.8 2.98 0.8 2n 0 07282N3166 6175 STF 1117 88.552 351.1 3.35 0.4 2n N 08032N3231 6623 STF 1177 88.523 22.0 1.31 1.0 2n O 08460N7071 7067 STF 1280 AB 90.172 136.7 .440 7.0-9.0 1n 08453N3239 7137 STF 1289 AB 90.172 136.7 4.40 7.0-9.0 1n 09092N0244 7253 HJ<2489	IDS	ADS	Nar	ne 	Mul	t. 	t 	P	d 	m 	or dm	n	N
072781352 6170 HJ 2294 90.136 184.4 4.62 0.2-** In N 07282N3166 6175 STF 1110 AB 90.105 75.8 2.98 0.2** In N 07282N3166 6175 STF 1110 AB 90.106 163.8 71.24 -9.0 In 07382N3166 6175 STF 1187 90.231 26.6* 2.74 0.7 Zn 08460N701 7067 <stf< td=""> 1289 AB 90.212 163.5* 0.93 0.4 Zn 0 08453N3239 7137<stf< td=""> 1289 AB 80.642 359.2 1.31 1.0 2n 0 0573N3237 703<stf< td=""> 1388 AB 90.154 269.5 0.97 7.7-7.8 2n 0 0078N2755 7685<stt< td=""> 213 90.211 31.4 0.90.10.5 1n<0</stt<></stf<></stf<></stf<>								o	11		m		
07282N3166 6175 STF 1110 AB 90.105 75.8 2.98 0.8 2n 0 07282N3166 6175 STF 110 AC 90.106 163.8 71.24 -9.0 1n 0739SN2749 6569 STF 1177 88.552 351.1 3.55 0.4 2n N 08460N7071 7067 STF 1280 AB 90.210 163.5 0.93 0.4 2n O 08481N4358 7075 STF 1289 90.107 6.7 3.84 8.0-8.5 1n 08481N4358 7075 STF 1289 90.172 156.7 4.40 7.0-9.0 1n 08553N3239 7137 STF 1298 AB 90.154 269.5 0.97 7.7-7.8 2n O 00092N0244 725 HJ 2480 AB 80.154 269.5 0.97 7.7-7.8 2n O 10091N743 7695 STT 213 90.211 2.1 4.0-12.0 1n 0113N2064 7721 STF 1423 80.2123.2 4.62 0.8 2n O 1014N1951 7744 STF 1523 AB 90.211 313.5 5.8.	07275N3552	6170	HJ	3294		90	.136	184.4	4.62		0.2	ln	Ν
07282N3166 6175 STF 1110 AC 90.106 16.3.8 71.24 -9.0 In 07595N2749 6569 STF 1177 88.552 351.1 3.35 0.4 2n N 08032N3231 6623 STF 1187 90.210 163.5 0.93 0.4 2n O 08480N4358 7075 STF 1280 AB 80.642 259.2 1.31 1.0 2n 08494N4364 7092 STF 1280 AB 80.172 136.7 4.40 7.0-9.0 1n 09092N0244 7253 HJ 2489 AB 88.321 20.4 21.12 4.0-12.0 1n 09017N2755 7685 STT 213 90.211 31.6 0.97 7.7-7.8 2n N 101091N743 7040 STF 1243 B8.208 123.2 4.62 0.6 1.03 4.0 1n 0 1013N1765 7744 STF 1424 AB 88.208 123.2 4.62 0.5 1.0 <td>07282N3166</td> <td>6175</td> <td>STF</td> <td>1110</td> <td>AB</td> <td>90</td> <td>.105</td> <td>75.8</td> <td>2.98</td> <td></td> <td>0.8</td> <td>2n</td> <td>0</td>	07282N3166	6175	STF	1110	AB	90	.105	75.8	2.98		0.8	2n	0
07595N2749 6569 STF 1177 88.552 351.1 3.35 0.4 2n 08032N3231 6623 STF 1187 90.231 26.6 2.74 0.7 2n 08460N701 7067 STF 1280 AB 90.210 163.5 0.93 0.4 2n 0 08481N4368 7075 STF 1280 AB 90.107 6.7 3.84 8.0-8.5 1n 08553N3237 7137 STF 1284 AB 90.172 16.7 4.40 7.0-9.0 1n 09092N0244 7253 HJ 2489 AB 88.321 220.4 21.12 4.0-12.0 1n 00107N1755 7655 TT 133 AD 90.150 360.8 1.21 9.2-9.4 2n N 10107N1747 704 STT 124 AB 88.208 123.2 4.62 0.8 0.0 10 10137N264 80.2 A 0.7 9.0-10.0 1n 0 10157N564 80.2 A 0.2 1.0	07282N3166	6175	STF	1110	AC	90	.106	163.8	71.24		- 9.0	ln	
08032N321 6623 STF 1187 90.231 26.6 2.74 0.7 2n 08460N7071 7067 STF 1280 AB 90.210 163.5 0.93 0.4 2n 0 08481N4358 7075 STF 1280 AB 89.642 359.2 1.31 1.0 2n 0855N3239 7137 STF 1298 AB 90.154 269.5 0.97 7.7-7.8 2n 0 009147N3837 7007 STF 1238 AB 90.154 269.5 0.97 7.7-7.8 2n 0 100791N735 7685 STT 213 90.211 131.4 0.95 9.0-10.0 1n 0 10137N2064 7721 STF 1423 90.211 2.2 0.77 9.0-10.0 1n 0 10174N1551 7744 STF 1248 B8.208 1232 4.62 0.0 1.0 1128N146 0.5 1n<0	07595N2749	6569	STF	1177		88	.552	351.1	3.35		0.4	2n	N
08460N7071 7067 STF 1280 AB 90.210 163.5 0.93 0.4 2n 08481N4368 7075 STF 1220 AB 80.642 359.2 1.31 1.0 08553N3239 7137 STF 1220 AB 80.642 359.2 1.31 1.0 0909N0244 7253 HJ 2489 AB 83.321 220.4 21.12 4.0-7.0-9.0 1n 0909N0244 7253 HJ 2489 AB 83.321 220.4 21.12 4.0-7.0-8.0 1n 090147N337 7307 STF 1288 B0.5154 260.5 0.97 7.7-7.8 Zn 0 1009N1783 7692 L 10 90.211 31.33 0.4 20 0.4 2n 0 1013N2064 7724 STF 1423 90.211 31.3 54.31 -15.0 1n 0 10556N5464 8012 A 1500 90.21	08032N3231	6623	STF	1187		90	.231	26.6	2.74		0.7	2n	
084491N4368 7075 STT 1289 90.107 6.7 3.84 8.0-8.5 1n 08491N4364 7092 STF 3120 AB 89.642 359.2 1.31 1.0 2n 08553N329 7137 STF 1288 90.154 269.5 0.97 7.7-7.8 2n O 10091X755 7685 STT 213 90.211 131.4 0.95 9.0-10.5 1n O 10091N173 7692 L 10 90.150 360.8 1.21 9.2-9.4 2n N 10108N1774 7704 STT<1215	08460N7071	7067	STF	1280	AB	90	.210	163.5	0.93	1.4.4	0.4	2n	0
08494N4364 7092 STF 1208 89.642 359.2 1.31 1.0 2n 0855N3239 7137 STF 1298 AB 90.172 136.7 4.40 7.0-9.0 1n 09092N0244 7253 HJ 2489 B8.821 220.4 21.12 4.0-12.0 1n 09147N3837 7307 STF 1338 AB 90.154 269.5 0.97 7.7-7.8 2n 0 1007N2755 7685 STT 213 90.211 31.4 0.95 9.0-10.0 1n 0 10108N1774 7704 STT 1423 90.211 2.2 0.77 9.0-10.0 1n 0 10550K0764 8032 A 1590 90.211 329 1.38 8.5-9.0 1n<0	08481N4358	7075	STF	1289		90	.107	6.7	3.84	8.	0- 8.5	ln	
08553N3239 7137 STF 1298 AB 90.172 136.7 4.40 7.0-9.0 In 09092N0244 7253 HJ 2489 AB 88.321 220.4 21.12 4.0-12.0 In 00075N2755 7685 STT 213 90.211 131.4 0.95 9.0-10.5 In 0 10091N1733 7692 L 10 90.5150 360.8 1.21 9.2-9.4 2n N 10108N1774 7704 STT 1123 90.211 31.3 1.39 0.4 5n 0 1013N2064 7724 STF 1424 AB 88.208 123.2 4.62 0.8 2n 0 10556N0764 8032 A 1590 90.211 339.7 1,38 8.5-9.0 1n 0 1128N3166 8119 STF 1523 AB 90.211 313.5 54.31 -15.0 1n 0 1138N449 8128 STT 1527 90.211 124.5 1.09 2.5 1n 0	08494N4364	7092	STF	3120	AB	89	.642	359.2	1.31		1.0	2n	
09092N0244 7253 HJ 2489 AB 88.321 220.4 21.12 4.0-12.0 1n 09147N3837 7307 STF 1338 AB 90.154 269.5 0.97 7.7-7.8 2n 0 10075N2755 7685 STT 210 90.150 360.8 1.21 9.2-9.4 2n N 10108N1774 7704 STF 125 90.039 181.3 1.39 0.4 5n 0 10145N1981 724 STF 1424 AB 82.08 122.2 0.62 0.8 2n 0 10145N1981 7744 STT 216 90.211 339.7 1,38 8.5-9.0 1n 0 10576N5464 8032 A 1590 90.211 313.5 54.31 -15.0 1n 0 1128N1449 8128 STF 1527 90.211 24.6 1.39 1.30 0.48 8.6-9.7 5n 1 0	08553N3239	7137	STF	1298	AB	90	.172	136.7	4.40	7.	0- 9.0	ln	
09147N3837 7307 STF 1338 AB 90.154 269.5 0.97 7.7-7.8 2n 0 10075N2755 7685 STT 213 90.211 111.4 0.95 9.0-10.5 1n 0 10091N1783 7692 10 90.150 360.8 1.21 9.2-9.4 2n N 10108N1774 7704 STT 215 90.313 1.39 0.4 5n 0 10145N1981 7744 STT 125 90.313 1.39 8.5-11.0 1n 0 10566N0076 7982 BU 1076 90.216 61.6 1.03 4.0 1n 0 10566N0076 7982 BU 1076 90.211 339.7 1.38 8.5-9.0 1n 0 11128N3166 8119 STF 1527 90.211 313.5 54.31 -15.0 1n 0 1138N1449 8128 STF 1527 90.211 124.2 1.39 2.5 1n 0 1138N1449 8128 STF	09092N0244	7253	HJ	2489	AB	88	.321	220.4	21.12	4.	0-12.0	ln	
10075N2755 7685 STT 213 90.211 131.4 0.95 9.0-10.5 1n 0 1009IN1783 7692 L 10 90.150 360.8 1.21 9.2-9.4 2n N 10108N1774 7704 STT 215 90.039 181.3 1.39 0.4 5n 0 10137N2064 7721 STF 1424 AB 88.208 123.2 4.62 0.8 2n 0 10145N1981 7744 STT 216 90.216 61.6 1.03 4.0 1n 0 105605N266 8032 A 1590 90.211 313.5 54.31 -15.0 1n N 11128N3166 8119 AC 90.211 313.5 54.31 -15.0 1n N 11138N1465 8148 STF 1536 90.211 124.2 1.39 2.5 1n O 1135N142 8252 STT 237 87.103 0.48 8.6-9.7 5n N 12432N4358 <td< td=""><td>09147N3837</td><td>7307</td><td>STF</td><td>1338</td><td>AB</td><td>90</td><td>.154</td><td>269.5</td><td>0.97</td><td>7.</td><td>7- 7.8</td><td>2n</td><td>0</td></td<>	09147N3837	7307	STF	1338	AB	90	.154	269.5	0.97	7.	7- 7.8	2n	0
10091N1783 7692 L 10 90.150 360.8 1.21 9.2-9.4 2n N 10108N1774 7704 STF 125 90.039 181.3 1.39 0.4 5n O 10137N2064 7721 STF 1424 AB 88.208 12.2 0.77 9.0-10.0 1n O 10145N1981 7724 STF 1424 AB 88.208 12.2 0.77 9.0-10.0 1n O 10506N076 7982 BU 1076 90.216 61.6 1.03 4.0 1n O 1128N166 8119 AC 90.213 313.5 54.31 -15.0 1n N 11138N1449 8128 STF 1527 90.211 24.6 1.01 8.5- 8.8 1n O 1136N4142 8252 STT 237 87.429 130.3 0.48 8.6- 9.7 5n N 1255N3987 8446 STF 1606 84.369 245.1 0.50 1n O	10075N2755	7685	STT	213		90	.211	131.4	0.95	9.	0-10.5	ln	0
10108N1774 7704 STT 215 90.039 181.3 1.39 0.4 5n 0 10137N2064 7721 STF 1423 90.211 2.2 0.77 9.0-10.0 1n 0 10145N1981 7724 STF 1424 AB 88.208 123.2 4.62 0.8 2n 0 10174N1551 7744 STT 216 90.216 61.6 1.03 4.0 1n 0 10506N0076 7982 BU 1076 90.213 315.7 1.38 8.5-9.0 1n 0 11128N166 8119 AC 90.213 315.5 54.31 -15.0 1n N 11128N166 8119 AC 90.211 124.2 1.39 2.5 1n 0 11138N1449 8128 STT 1526 90.211 124.2 1.39 2.5 1n 0 1136N4142 8252 STT 237 87.103 48.0 1.88 8.0-8.2 1n 0 12458N2065 8680 <td< td=""><td>10091N1783</td><td>7692</td><td>L</td><td>10</td><td></td><td>90</td><td>.150</td><td>360.8</td><td>1.21</td><td>9.</td><td>2- 9.4</td><td>2n</td><td>N</td></td<>	10091N1783	7692	L	10		90	.150	360.8	1.21	9.	2- 9.4	2n	N
10137N2064 7721 STF 1423 90.211 2.2 0.77 9.0-10.0 1n 0 10145N1981 7724 STF 1424 AB 88.208 123.2 4.62 0.8 2n 0 10174N1551 7744 STT 216 90.180 244.5 1.39 8.5-11.0 1n 0 10506N0076 7982 BU 1076 90.216 61.6 1.03 4.0 1n 0 10576N5464 8032 A 1590 90.211 339.7 1.38 8.5-9.0 1n 0 11128N166 8119 STF 1523 AB 90.211 313.5 54.31 -15.0 1n 0 11138N1449 8128 STF 1536 90.211 124.2 1.39 2.5 1n 0 11350N4142 8252 STT 237 87.103 248.0 1.88 8.6-9.7 5n N 12058N3987 8446 STF 1606 84.369 245.1 0.50 1n 0 12458N2065 8680 HU 640 87.360 164.4 0.50 </td <td>10108N1774</td> <td>7704</td> <td>STT</td> <td>215</td> <td></td> <td>90</td> <td>.039</td> <td>181.3</td> <td>1.39</td> <td></td> <td>0.4</td> <td>5n</td> <td>0</td>	10108N1774	7704	STT	215		90	.039	181.3	1.39		0.4	5n	0
10145N1981 7724 STF 1424 AB 88.208 123.2 4.62 0.8 2n 0 10174N1551 7744 STT 216 90.180 244.5 1.39 8.5-11.0 1n 0 10506N0076 7982 BU 1076 90.216 61.6 1.03 8.5-9.0 1n 0 10576N5464 8032 A 1590 90.211 339.7 1.38 8.5-9.0 1n 0 11128N3166 8119 STF 1523 AB 90.213 313.5 54.31 -15.0 1n N 11138N1449 8128 STF 1527 90.211 124.2 1.39 2.5 1n 0 11138N1449 8189 STT 234 87.429 130.3 0.48 8.0-8.2 1n 0 11336N4142 8252 STT 237 87.103 245.1 0.50 1n 0 12458N2065 8680 HU 640 87.360 164.4 0.50 0.2 1n 0 12458N2065 8680 HU 640 87.463 16.23 7.7-10.	10137N2064	7721	STF	1423		90	.211	2.2	0.77	9.	0-10.0	ln	0
10174N1551 7744 STT 216 90.180 244.5 1.39 8.5-11.0 1n 0 10506N076 7982 BU 1076 90.216 61.6 1.03 4.0 1n 0 10576N5464 8032 A 1590 90.211 339.7 1.38 8.5-9.0 1n 0 11128N3166 8119 STF 1523 AB 90.213 313.5 54.31 -15.0 1n 0 11138N1449 8128 STF 1527 90.211 24.2 1.39 2.5 1n 0 1138N1449 8128 STF 1536 90.211 124.2 1.39 2.5 1n 0 1138N1449 8128 STF 1536 90.211 124.2 1.39 2.5 1n 0 1258N3067 8446 STF 1606 84.369 245.1 0.50 1n 0 12458N2065 8680 HU 640 87.360 164.4 0.50 0.2 1n 0 12458N2065 8680 HU 640 87.360 164.4 0.50 0.2 <	10145N1981	7724	STF	1424	AB	88	.208	123.2	4.62		0.8	2n	0
10506N0076 7982 BU 1076 90.216 61.6 1.03 4.0 1n 0 10576N5464 8032 A 1590 90.211 339.7 1,38 8.5-9.0 1n 0 11128N3166 8119 STF 1523 AB 90.213 313.5 54.31 -15.0 1n N 11138N1449 8128 STF 1527 90.211 146.6 1.01 8.5-8.8 1n 0 1138N1449 8128 STF 1536 90.211 124.2 1.39 2.5 1n 0 1135N1442 8252 STT 234 87.429 130.3 0.48 8.0-8.2 1n 0 1255N3987 8446 STF 1606 84.369 245.1 0.50 1n 0 12458N2065 8680 HU 640 85.428 150.1 0.71 -0.3 1n 0 12458N2065 8680 HU 640 87.360 164.4 0.50 0.2 1n 0 1218N1733 8841 BU 800 AB 90.385 103.9 6.97 7.7-10.0 </td <td>10174N1551</td> <td>7744</td> <td>STT</td> <td>216</td> <td></td> <td>90</td> <td>.180</td> <td>244.5</td> <td>1.39</td> <td>8.</td> <td>5-11.0</td> <td>ln</td> <td>0</td>	10174N1551	7744	STT	216		90	.180	244.5	1.39	8.	5-11.0	ln	0
10576N5464 8032 A 1590 90.211 339.7 1,38 8.5-9.0 1n 0 11128N3166 8119 STF 1523 AB 90.313 55.8 1.34 0.5 3n 0 11128N3166 8119 AC 90.213 313.5 54.31 -15.0 1n N 11138N1449 8128 STF 1527 90.211 124.2 1.39 2.5 1n 0 11254N4150 8189 STT 234 87.429 130.3 0.48 8.0-8.2 1n 0 11336N4142 8252 STT 237 87.103 248.0 1.88 8.6-9.7 5n N 12058N3987 8446 STF 1606 84.369 245.1 0.50 1n 0 12458N2065 8680 HU 640 87.360 16.4 0.50 0.2 1n 0 12458N2065 8680 HU 640 87.360 164.4 0.50 0.2 1n 0 13118N1733 8841 BU 800 AB 90.385 103.9 6.97 7.7-10.5 3n 13118N1733 88	10506N0076	7982	BU	1076		90	.216	61.6	1.03		4.0	ln	0
11128N3166 8119 STF 1523 AB 90.313 55.8 1.34 0.5 3n 0 11128N3166 8119 AC 90.213 313.5 54.31 -15.0 1n N 11138N1449 8128 STF 1527 90.211 124.2 1.39 2.5 1n 0 11137N1065 8148 STF 1536 90.211 124.2 1.39 2.5 1n 0 11254N150 8189 STT 234 87.429 130.3 0.48 8.0-8.2 1n 0 12058N3987 8446 STF 1606 84.369 245.1 0.50 1n 0 12420N4358 8655 A 1783 87.244 217.3 1.73 0.1 5n N 12458N2065 8680 HU 640 85.428 150.1 0.71 -0.3 1n 0 12458N2065 8680 HU 640 87.360 164.4 0.50 0.2 1n N 13118N1733 8841 BU<	10576N5464	8032	А	1590		90	.211	339.7	1,38	8.	5- 9.0	1n	0
11128N3166 8119 AC 90.213 313.5 54.31 -15.0 1n N 11138N1449 8128 STF 1527 90.211 46.6 1.01 8.5-8.8 1n O 11137N1065 8148 STF 1536 90.211 124.2 1.39 2.5 1n O 11254N4150 8189 STT 234 87.429 130.3 0.48 8.0-8.2 1n O 11336N4142 8252 STT 237 87.103 248.0 1.88 8.6-9.7 5n N 12058N3987 8446 STF 1606 84.369 245.1 0.71 -0.3 1n O 12458N2065 8680 HU 640 87.360 164.4 0.50 0.2 1n O 12458N2065 8680 HU 640 87.360 164.4 0.50 0.2 1n O 12458N2065 8680 HU 640 87.360 164.4 0.50 0.2 1n O 12517N433 8709 A 2000 83.401 53.9 0.96 0.7 1n 13118N1733	11128N3166	8119	STF	1523	AB	90	.313	55.8	1.34		0.5	3n	0
11138N1449 8128 STF 1527 90.211 46.6 1.01 8.5-8.8 1n 0 11187N1065 8148 STF 1536 90.211 124.2 1.39 2.5 1n 0 11254N4150 8189 STT 234 87.429 130.3 0.48 8.0-8.2 1n 0 11336N4142 8252 STT 237 87.103 248.0 1.88 8.6-9.7 5n N 12056N3987 8446 STF 1606 84.369 245.1 0.50 1n 0 12452N2065 8680 HU 640 85.428 150.1 0.71 -0.3 1n 0 12458N2065 8680 HU 640 87.360 164.4 0.50 0.2 1n 0 12517N4333 8709 A 2000 88.401 53.9 0.96 0.7 1n 13118N1733 8841 BU 800 AC 90.385 341.5 116.23 7.7-10.0 3n 13118N1733 8841 BU 800 AC 90.413 88.4 50.79	11128N3166	8119			AC	90	.213	313.5	54.31		-15.0	ln	Ν
11187N1065 8148 STF 1536 90.211 124.2 1.39 2.5 1n 0 11254N4150 8189 STT 234 87.429 130.3 0.48 8.0-8.2 1n 0 11336N4142 8252 STT 237 87.103 248.0 1.88 8.6-9.7 5n N 12058N3987 8446 STF 1606 84.369 245.1 0.50 1n 0 12402N4358 8655 A 1783 87.244 217.3 1.73 0.1 5n N 12458N2065 8680 HU 640 85.428 150.1 0.71 -0.3 1n 0 12458N2065 8680 HU 640 87.360 164.4 0.50 0.2 1n 0 12517N4333 8709 A 2000 88.401 53.9 0.96 0.7 1n 13118N1733 8841 BU 800 AC 90.385 103.9 6.97 7.7-10.0 3n 14095N2934 9174 STF 1816 88.193 86.3 0.74 0.2 2n 14364N1	11138N1449	8128	STF	1527		90	.211	46.6	1.01	8.	5- 8.8	ln	0
11254N4150 8189 STT 234 87.429 130.3 0.48 8.0-8.2 1n 0 11336N4142 8252 STT 237 87.103 248.0 1.88 8.6-9.7 5n N 12058N3987 8446 STF 1606 84.369 245.1 0.50 1n 0 12402N4358 8655 A 1783 87.244 217.3 1.73 0.1 5n N 12458N2065 8680 HU 640 85.428 150.1 0.71 -0.3 1n 0 12458N2065 8680 HU 640 87.360 164.4 0.50 0.2 1n 0 1251N4333 8709 A 2000 88.401 53.9 0.96 0.7 1n 13118N1733 8841 BU 800 AC 90.385 103.9 6.97 7.0-10.0 3n 13118N1733 8841 BU 800 AC 90.385 31.5 116.23 7.7-10.5 3n 14095N2934 9174 STF 1816 88.193 86.3 0.74 0.2 2n	11187N1065	8148	ŞTF	1536		90	.211	124.2	1.39		2.5	ln	0
11336N4142 8252 STT 237 87.103 248.0 1.88 8.6-9.7 5n N 12058N3987 8446 STF 1606 84.369 245.1 0.50 1n O 12402N4358 8655 A 1783 87.244 217.3 1.73 0.1 5n N 12458N2065 8680 HU 640 85.428 150.1 0.71 -0.3 1n O 12458N2065 8680 HU 640 87.360 164.4 0.50 0.2 1n O 12517N4333 8709 A 2000 88.401 53.9 0.96 0.7 1n 13118N1733 8841 BU 800 AB 90.385 116.23 7.7-10.0 3n 13118N1733 8841 BU 800 AC 90.385 341.5 116.23 7.7-10.0 1n N 13518N3536 ALI 126 85.448 106.0 4.99 9.0-9.4 1n N 14095N2934 9174 STF 1816 88.193 86.3 0.74 0.2 2n 14364N1369 9343 H 104 </td <td>11254N4150</td> <td>8189</td> <td>STT</td> <td>234</td> <td></td> <td>87</td> <td>.429</td> <td>130.3</td> <td>0.48</td> <td>8.</td> <td>0- 8.2</td> <td>1n</td> <td>0</td>	11254N4150	8189	STT	234		87	.429	130.3	0.48	8.	0- 8.2	1n	0
12058N3987 8446 STF 1606 84.369 245.1 0.50 1n 0 12402N4358 8655 A 1783 87.244 217.3 1.73 0.1 5n N 12458N2065 8680 HU 640 85.428 150.1 0.71 -0.3 1n 0 12458N2065 8680 HU 640 87.360 164.4 0.50 0.2 1n 0 12517N4333 8709 A 2000 88.401 53.9 0.96 0.7 1n 13118N1733 8841 BU 800 AB 90.385 116.23 7.7-10.0 3n 13118N1733 8841 BU 800 AC 90.385 341.5 116.23 7.7-10.5 3n 13118N1733 8841 BU 800 AC 90.413 88.4 50.79 7.0-11.0 1n N 13518N3536 ALI 126 85.448 106.0 4.99 9.0-9.4 1n N 14095N2934 9174 STF 1816 88.193 86.3 0.74 0.2 2n 14364N1369 9343 H 104<	11336N4142	8252	STT	237		87	.103	248.0	1.88	8.	6- 9.7	5n	N
12402N4358 8655 A 1783 87.244 217.3 1.73 0.1 5n N 12458N2065 8680 HU 640 85.428 150.1 0.71 -0.3 1n O 12458N2065 8680 HU 640 87.360 164.4 0.50 0.2 1n O 12517N4333 8709 A 2000 88.401 53.9 0.96 0.7 1n 13118N1733 8841 BU 800 AB 90.385 103.9 6.97 7.7-10.0 3n 13118N1733 8841 BU 800 AC 90.385 341.5 116.23 7.7-10.5 3n 13118N1733 8841 BU 800 AC 90.385 341.5 116.23 7.7-10.0 1n N 13518N3536 ALI 126 85.448 106.0 4.99 9.0-9.4 1n N 14095N2934 9174 STF 1816 88.193 86.3 0.74 0.2 2n 14364N1369 9343 H 104 AC 89.474 300.1 1.17 -0.3 1n 14479N1869 <td>12058N3987</td> <td>8446</td> <td>STF</td> <td>1606</td> <td></td> <td>84</td> <td>.369</td> <td>245.1</td> <td>0.50</td> <td></td> <td></td> <td>ln</td> <td>0</td>	12058N3987	8446	STF	1606		84	.369	245.1	0.50			ln	0
12458N2065 8680 HU 640 85.428 150.1 0.71 -0.3 1n 0 12458N2065 8680 HU 640 87.360 164.4 0.50 0.2 1n 0 12517N4333 8709 A 2000 88.401 53.9 0.96 0.7 1n 13118N1733 8841 BU 800 AB 90.385 103.9 6.97 7.7-10.0 3n 13118N1733 8841 BU 800 AC 90.385 341.5 116.23 7.7-10.5 3n 13118N1733 8841 BU 800 AC 90.413 88.4 50.79 7.0-11.0 1n N 13518N3536 ALI 126 85.448 106.0 4.99 9.0-9.4 1n N 14095N2934 9174 STF 1816 88.193 86.3 0.74 0.2 2n 14364N1369 9343 H 104 AC 89.474 300.1 1.17 -0.3 1n 14468N1931 9413 STF 1888 AB 87.448 328.	12402N4358	8655	Α	1783		87	.244	217.3	1.73		0.1	5n	N
12458N20658680HU64087.360164.40.500.21n 012517N43338709A200088.40153.90.960.71n13118N17338841BU800 AB90.385103.96.977.7-10.03n13118N17338841BU800 AC90.385341.5116.237.7-10.53n13118N17338841AD90.41388.450.797.0-11.01n N13518N3536ALI12685.448106.04.999.0-9.41n N14095N29349174STF 181688.19386.30.740.22n14364N13699343H104 AC89.474300.11.17-0.31n O14364N13699343H104 AC89.474258.9103.80-10.01n14468N19319413STF1888AB87.448328.37.226.5-8.53n O14479N18699423BU31AB87.445169.28.058.5-14.52n15122N34409563A136686.99379.03.389.0-10.83n15126N33619566STF192987.4379.96.408.5-9.62n15300N10529701STF1954AB90.524176.93.980.93n O15562N13339880BUAC88.35413.482.031n N15569N1041FOX90.520	12458N2065	8680	HU	640		85	.428	150.1	0.71	-	0.3	ln	0
12517N4333 8709 Å 2000 88.401 53.9 0.96 0.7 1n 13118N1733 8841 BU 800 AB 90.385 103.9 6.97 7.7-10.0 3n 13118N1733 8841 BU 800 AC 90.385 341.5 116.23 7.7-10.5 3n 13118N1733 8841 BU 800 AC 90.385 341.5 116.23 7.7-10.5 3n 13118N1733 8841 AD 90.413 88.4 50.79 7.0-11.0 1n N 13518N3536 ALI 126 85.448 106.0 4.99 9.0-9.4 1n N 14095N2934 9174 STF 1816 88.193 86.3 0.74 0.2 2n 14364N1369 9343 STF 1865 AB 89.474 300.1 1.17 -0.3 1n O 14364N1369 9343 H 104 AC 89.474 258.9 103.80 -10.0 1n 14468N1931 9413 STF 1888 AB 87.448 328.3 7.22 6.5- 8.5 3n O 14479N1869 9423 BU 31 AC </td <td>12458N2065</td> <td>8680</td> <td>HU</td> <td>640</td> <td></td> <td>87</td> <td>.360</td> <td>164.4</td> <td>0.50</td> <td></td> <td>0.2</td> <td>ln</td> <td>0</td>	12458N2065	8680	HU	640		87	.360	164.4	0.50		0.2	ln	0
13118N1733 8841 BU 800 AB 90.385 103.9 6.97 7.7-10.0 3n 13118N1733 8841 BU 800 AC 90.385 341.5 116.23 7.7-10.5 3n 13118N1733 8841 AD 90.413 88.4 50.79 7.0-11.0 1n N 13518N3536 ALI 126 85.448 106.0 4.99 9.0-9.4 1n N 14095N2934 9174 STF 1816 88.193 86.3 0.74 0.2 2n 14364N1369 9343 STF 1865 AB 89.474 300.1 1.17 -0.3 1n O 14364N1369 9343 H 104 AC 89.474 300.1 1.17 -0.0 1n 14468N1931 9413 STF 1888 AB 87.448 328.3 7.22 6.5-8.5 3n O 14479N1869 9423 BU 31 AC 87.445 169.2 8.05 8.5-14.5 2n 15122N3440 <t< td=""><td>12517N4333</td><td>8709</td><td>A</td><td>2000</td><td></td><td>88</td><td>.401</td><td>53.9</td><td>0.96</td><td></td><td>0.7</td><td>1n</td><td></td></t<>	12517N4333	8709	A	2000		88	.401	53.9	0.96		0.7	1n	
13118N17338841BU800AC90.385341.5116.237.7-10.53n13118N17338841AD90.41388.450.797.0-11.01nN13518N3536ALI12685.448106.04.999.0-9.41nN14095N29349174STF181688.19386.30.740.22n14364N13699343STF1865AB89.474300.11.17-0.31nO14364N13699343H104AC89.474258.9103.80-10.01n14468N19319413STF1888AB87.448328.37.226.5-8.53nO14479N18699423BU31AB87.476218.01.838.7-10.15nN14479N18699423BU31AC86.99379.03.389.0-10.83n15122N34409563A136686.99379.03.389.0-10.83n15126N33619566STF192987.4379.96.408.5+9.62n15300N10529701STF1954AB90.524176.93.980.93n015562N13339880BUAC88.35413.482.031nN15569N1041FOX90.52018.510.969.5-9.61n15584N14169904STF200088.423 <t< td=""><td>13118N1733</td><td>8841</td><td>BU</td><td>800</td><td>AB</td><td>90</td><td>.385</td><td>103.9</td><td>6.97</td><td>7.</td><td>7-10.0</td><td>3n</td><td></td></t<>	13118N1733	8841	BU	800	AB	90	.385	103.9	6.97	7.	7-10.0	3n	
13118N17338841AD90.41388.450.797.0-11.01n N13518N3536ALI12685.448106.04.999.0-9.41n N14095N29349174STF 181688.19386.30.740.22n14364N13699343STF 1865AB89.474300.11.17-0.31n O14364N13699343H104AC89.474258.9103.80-10.01n14468N19319413STF 1888AB87.448328.37.226.5-8.53n O14479N18699423BU31AB87.476218.01.838.7-10.15n N14479N18699423BU31AC87.445169.28.058.5-14.52n15122N34409563A136686.99379.03.389.0-10.83n15126N33619566STF 192987.4379.96.408.5+9.62n15300N10529701STF 1954AB90.524176.93.980.93n O15562N13339880BUAC88.35413.482.031n N15569N1041FOX90.52018.510.969.5-9.61n15584N14169904STF 200088.423227.42.430.64n N	13118N1733	8841	BU	800	AC	90	.385	341.5	116.23	7.	7-10.5	3n	
13518N3536ALI12685.448106.04.999.0-9.41n N14095N29349174STF181688.19386.30.740.22n14364N13699343STF1865 AB89.474300.11.17-0.31n O14364N13699343H104 AC89.474258.9103.80-10.01n14468N19319413STF1888 AB87.448328.37.226.5-8.53n O14479N18699423BU31 AB87.476218.01.838.7-10.15n N14479N18699423BU31 AC87.445169.28.058.5-14.52n15122N34409563A136686.99379.03.389.0-10.83n15126N33619566STF192987.4379.96.408.5+9.62n15300N10529701STF1954 AB90.524176.93.980.93n O15562N13339880BUAC88.35413.482.031n N15569N1041FOX90.52018.510.969.5+9.61n15584N14169904STF200088.423227.42.430.64p N	13118N1733	8841			AD	90	.413	88.4	50.79	7.	0-11.0	ln	Ν
14095N29349174STF181688.19386.30.740.22n14364N13699343STF1865AB89.474300.11.17-0.31n014364N13699343H104AC89.474258.9103.80-10.01n14468N19319413STF1888AB87.448328.37.226.5-8.53n014479N18699423BU31AB87.476218.01.838.7-10.15nN14479N18699423BU31AC87.445169.28.058.5-14.52n15122N34409563A136686.99379.03.389.0-10.83n15126N33619566STF192987.4379.96.408.5-9.62n15300N10529701STF1954AB90.524176.93.980.93n015562N13339880STT303AB89.811172.41.390.22nN15569N1041FOX90.52018.510.969.5-9.61n15584N14169904STF200088.423227.42.430.64n	13518N3536		ALI	126		85	.448	106.0	4.99	9.	0- 9.4	ln	Ν
14364N13699343STF1865AB89.474300.11.17-0.31n014364N13699343H104AC89.474258.9103.80-10.01n14468N19319413STF1888AB87.448328.37.226.5-8.53n014479N18699423BU31AB87.476218.01.838.7-10.15nN14479N18699423BU31AC87.445169.28.058.5-14.52n15122N34409563A136686.99379.03.389.0-10.83n15126N33619566STF192987.4379.96.408.5+9.62n15300N10529701STF1954AB90.524176.93.980.93n015562N13339880BUAC88.35413.482.031nN15569N1041FOX90.52018.510.969.5+9.61n15584N14169904STF200088.423227.42.430.64n	14095N2934	9174	STF	1816		88	.193	86.3	0.74		0.2	2n	
14364N13699343 H104 AC89.474258.9103.80-10.0In14468N19319413 STF1888 AB87.448328.37.226.5-8.53n O14479N18699423 BU31 AB87.476218.01.838.7-10.15n N14479N18699423 BU31 AC87.445169.28.058.5-14.52n15122N34409563 A136686.99379.03.389.0-10.83n15126N33619566 STF192987.4379.96.408.5+9.62n15300N10529701 STF1954 AB90.524176.93.980.93n O15562N13339880 BUAC88.35413.482.031n N15569N1041FOX90.52018.510.969.5+9.61n15584N14169904STF200088.423227.42.430.64p N	14364N1369	9343	STF	1865	AB	89	.474	300.1	1.17	-	0.3	1n	0
14468N19319413STF1888AB87.448328.37.226.5-8.53n O14479N18699423BU31 AB87.476218.01.838.7-10.15n N14479N18699423BU31 AC87.445169.28.058.5-14.52n15122N34409563A136686.99379.03.389.0-10.83n15126N33619566STF192987.4379.96.408.5+9.62n15300N10529701STF1954AB90.524176.93.980.93n O15562N13339880STT303AB89.811172.41.390.22n N15569N1041FOX90.52018.510.969.5+9.61n15584N14169904STF200088.423227.42.430.64n N	14364N1369	9343	H	104	AC	89	.474	258.9	103.80		-10.0	1n	
14479N18699423BU31AB87.476218.01.838.7-10.15nN14479N18699423BU31AC87.445169.28.058.5-14.52n15122N34409563A136686.99379.03.389.0-10.83n15126N33619566STF192987.4379.96.408.5-9.62n15300N10529701STF1954AB90.524176.93.980.93n015562N13339880STT303AB89.811172.41.390.22nN15569N1041FOX90.52018.510.969.5-9.61n15584N14169904STF200088.423227.42.430.64n	14468N1931	.9413	STF	1888	AB	87	.448	328.3	7.22	6.	5- 8.5	3n	0
14479N18699423BU31AC87.445169.28.058.5-14.52n15122N34409563A136686.99379.03.389.0-10.83n15126N33619566STF192987.4379.96.408.5+9.62n15300N10529701STF1954AB90.524176.93.980.93n015562N13339880STT303AB89.811172.41.390.22nN15562N13339880BUAC88.35413.482.031nN15569N1041FOX90.52018.510.969.5+9.61n15584N14169904STF200088.423227.42.430.64n	14479N1869	9423	BU	31	AB	87	.476	218.0	1.83	8.	7-10.1	5n	N
15122N3440 9563 A 1366 86.993 79.0 3.38 9.0-10.8 3n 15126N3361 9566 STF 1929 87.437 9.9 6.40 8.5+ 9.6 2n 15300N1052 9701 STF 1954 AB 90.524 176.9 3.98 0.9 3n 0 15562N1333 9880 STT 303 AB 89.811 172.4 1.39 0.2 2n N 15562N1333 9880 BU AC 88.354 13.4 82.03 1n N 15569N1041 FOX 90.520 18.5 10.96 9.5+ 9.6 1n 15584N1416 9904 STF 2000 88.423 227.4 2.43 0.6 4n N	14479N1869	9423	BU	31	AC	87	.445	169.2	8.05	8.	5-14.5	2n	
15126N3361 9566 STF 1929 87.437 9.9 6.40 8.5+ 9.6 2n 15300N1052 9701 STF 1954 AB 90.524 176.9 3.98 0.9 3n 0 15562N1333 9880 STT 303 AB 89.811 172.4 1.39 0.2 2n N 15562N1333 9880 BU AC 88.354 13.4 82.03 1n N 15569N1041 FOX 90.520 18.5 10.96 9.5+ 9.6 1n 15584N1416 9904 STF 2000 88.423 227.4 2.43 0.6 4n N	15122N3440	9563	A	1366		86	.993	79.0	3.38	9.	0-10.8	3n	
15300N10529701STF1954AB90.524176.93.980.93n O15562N13339880STT303AB89.811172.41.390.22n N15562N13339880BUAC88.35413.482.031n N15569N1041FOX90.52018.510.969.5-9.61n15584N14169904STF200088.423227.42.430.64n N	15126N3361	9566	STF	1929		87	.437	9.9	6.40	8.	5- 9.6	2n	
15562N1333 9880 STT 303 AB 89.811 172.4 1.39 0.2 2n N 15562N1333 9880 BU AC 88.354 13.4 82.03 1n N 15569N1041 FOX 90.520 18.5 10.96 9.5- 9.6 1n 15584N1416 9904 STE 2000 88.423 227.4 2.43 0.6 4n N	15300N1052	9701	STF	1954	AB	90	. 524	176.9	3.98		0.9	3n	0
15562N1333 9880 BU AC 88.354 13.4 82.03 In N 15569N1041 FOX 90.520 18.5 10.96 9.5- 9.6 In 15584N1416 9904 STE 2000 88.423 227.4 2.43 0.6 4n N	15562N1333	9880	STT	303	AB	89	.811	172.4	1.39		0.2	2n	N
15569N1041 FOX 90.520 18.5 10.96 9.5- 9.6 1n 15584N1416 9904 STE 2000 88.423 227.4 2.43 0.6 4n N	15562N1333	9880	BU		AC	88	.354	13.4	82.03			ln	N
15584N1416 9904 STF 2000 88.423 227.4 2.43 0.6 4n N	15569N1041		FOX			90	.520	18.5	10.96	9.	5- 9.6	ln	
	15584N1416	9904	STF	2000		88	.423	227.4	2.43		0.6	4n	Ν

Norway (Sector Constant) (G. M. Popović (M. J. 1999) (C. 1999) (C. 1999)

Table 1. (continued)

IDS	ADS	Nai	me 	Mul	t.	t .	P	d	m or dm	" n	N
							0	н	m		
15586N1042	9905	J	446		8	38.502	181.4	4.20	10.2-10.0	21	n
1558951110	9910	STF	1999	AB	8	37.429	99.4	11.79	8.0- 8.5	1)	n
16539N0367	10285	STF	3107	AB	8	38.291	76.0	1.45	0.1	31	n N
16539N0367	10285	STF	3107	AD	. (38.571	42.6	73.36	0.2	21	n -
16559N6511	10279	STF	2118		.8	37.224	69.1	1.15	0.2	21	n 0
1711450020	10429	A	2984		. (37.751	360.9	1.04	3.0	21	n N
17155N3227	10472	BU	630		. (37.506	225.4	1.52	9.0-10.5	21	n N
17181N2611	10504	но	414	AB	8	37.987	101.0	0.80	0.3	21	n N
17181N2611	10504	HO	414	AC	9	90.539	303.6	30.62	9.0-11.0	11	n
17270N1115	10612	AG		:	\$	90.233	53.2	2.32	0.4	21	n
17584N4011	11001	STF	2267		8	38.571	261.7	0.73	0.1	21	n N
17596N4414	11010	BU	1127	979 a.	. 8	39.485	73.0	0.81	8.5-10.0	. 11	n O
18011N1200	11056	STF	2276	AB		39.634	256.9	6.88	0.1	31	n N
18011N1200	11056	STF	2276	AC	1	39.634	305.4	63.03	-10.1	31	n N
18072N5023	11128	HU	674		8	35.519	228.8	0.78	0.7	11	n N
18094N0009	11186	STF	2294		8	38.467	91.4	1.18	0.3	41	n
18148N4348	11247	Α	578	AB	5	36.708	262.7	0.3		11	n O
18272N0643	11432	STT	354	2 ¹ 2	8	36.706	201.3	0.77	8.8- 9.0	11	n N
18314N2331	11479	STT	359			36.709	12.2	0.87	0.3	11	n O
18314N1654	11483	STT	358	AB	5	90.082	159.1	1.66	0.2	21	n O
18455N5913	11697	STF	2410		8	38.665	86.4	1.65	8.2- 8.6	2/11	n
18490N3254	11788	BAR		AB	9	90.539	320.3	2.15	11.5-11.5	11	n
18499N3721	11805	но	89	3	8	38.573	173.4	4.64	8.0-10.5	11	n N
18576S0051	11971	STF	2434	AB	8	39.696	96.0	26.08	8.5- 9.0	11	n N
18576S0051	11971	STF	2434	BC	5	39.572	316.8	0.58	9.0-10.7	31	n N
19029N2226	12053	STF	2457		ξ	39.708	201.1	9.92	1.5	21	n
19225N2707	12447	STF	2525	: 8 k	È	39.696	290.6	1.88	8.5- 8.0	11	0 1
19305N4208	12618	Α	597		8	36.791	96.9	1.59	2.0	11	лN
19418N3322	12889	STF	2576		ં દ	37.830	170.0	2.23	8.5- 8.6	11	10
19450N3504	12972	STT	387	i.	8	38.737	154.3	0.71	7.5- 8.5	11	10
19462N1010	13012	J	124	AC	2	35.716	223.5	21.58		lr	n N
19540N2152	13184	AG	244	AB	8	36.706	271.4	1.54	9.0-10.2	11	n
19547N2150	13200	HO	583	. E	ξ	35.702	257.4	1.26	9.0-10.5	11	n
20025N3437	13383	SEI	870	10	Ę	37.711	307.1	6.34	12.0-12.5	11	n N
20134N2850	13648			AP	ε	39.696	216.5	0.40	i.	11	n N
20134N2604	13649	BU	984		Ē	36.776	251.9	0.68	0.3	21	n N
20141N2854	13665	Α	1205		8	38.355	99.6	0.87	8.9- 9.4	31	n O
20151N2856	271	COU	1477	5 E	8	38.590	104.6	0.56	0.1	31	n
20173N2327	13750	STF	2672		ξ	39.619	336.2	0.82	9.0- 9.5	11	n N
20217N3943	13842	MLB	22		ε	39.682	225.9	5.70	11.2-12.2	21	h
20219N3946	13847	D	22	AB	Ę	39.675	157.7	2.78	7.8- 8.8	31	n N
20219N3946	13847	D	22	AC	ξ	39.649	98.3	73.37	7.5- 9.0	11	a °
20222N0948	13863	J	1343		ε	38.748	94.9	2.26	10.0-10.5	11	n N
20223N0928	13866	J	559		ξ	36.777	272.0	2.25	11.0-11.2	11	n N
20231N0938	13878	AG	256	AB	8	38.748	355.0	5.00	9.0-10.0	- 11	n
20247N3945		COU	2538	е 1	8	39.691	32.4	0.97	9.6- 9.7	31	n
20259N1344	13928	AG	11 11		5	35.803	288.5	****		1/01	n N
								4 975			

MICROMETER MEASUREMENTS OF DOUBLE STARS (Series 45)

Table 1. (continued)

IDS	ADS	Name	Mult.	t	Р	d	m or dm	n	N
					0	H	m		
20261N1327	13929	STF 2688	8	5.735	176.1	6.78	8.0- 9.0	ln	
20403N1222	14238	BU 64	AB 8	9.783	168.6	0.69	0.2	ln	0
20416N1532	14270	STF 2725	8	7.672	10.5	5.98	0.5	2n	0
20508N2743	14424	BU 367	AB 8	6.865	120.0	0.52	0.1	ln	0
20508N2743	14424	BU 367	AB 8	9.778	126.3	0.61	0.3	ln	0
20541N0355	14499	STF 2737	AB 8	6.944	285.5	0.98	0.3	5n	0
20541N0355	14499	STF 2737	AC 8	7.123	66.0	10.27	0.8	2n	
20580N0108	14573	STF 2744	AB 8	9.686	124.5	1.43	0.8	2n	0
21036N3522	14667	ES 2254	8	5.814	276.5	8.16	9.2-10.0	ln	Ν
21112N3519	14792	SEI 1475	8	9.788	267.4	5.31	10.0-10.6	2n	
21130N3521	14822	BU 162	AB 8	9.721	251.6	1.34	0.4	4n	
21130N3521	14822	BU 162	AC 8	9.742	133.6	15.71	8.0-13.3	2n	
21159N0242	14880	BU 838	. 8	8.094	141.1	1.43	8.2-10.7	2n	N
21166N3202	14889	STT 437	AB 8	9.752	24.6	2.16	0.1	2n	Ν
21166N3202	14889	STT 437	AC 8	9.752	141.8	81.11	7.0-11.0	2n	
21397N2817	15270	STF 2822	AB 8	7.953	300.1	1.98	1.6	5n	0
21397N2817	15270	STF 2822	AC 8	7.814	289	68.2		ln	Ν
21506N1025	15447	BU 75	AB 8	9.797	7.0	0.64	8.5- 8.8	ln	0
22052N5848	15670	STF 2872	BC 8	8.248	302.3	0.96	-0.1	2n	Ν
22100N2905	15769	STF 2881	8	7.035	78.5	1.33	0.5	6n	Ν
22231N1154	15961	J 580	8	6.774	108.7	4.14	0.5	2n	
22235N2301	15966	STF 2910	8	9.778	332.7	5.23		ln	Ν
2223750032	15971	STF 2909	8	7.536	208.4	1.95	0.1	3n	0
22249N0355	15988	STF 2912	8	8.424	117.2	0.64	0.9	3n	0
22365S0265	16183	BU 709	8	5.817	3.6	2.35	9.0-9.5	ln	
22370N2054	16185	STF 2934	AB 8	9.794	69.9	0.94	8.5-9.2	ln	0
22405N1040	16242	BU 711	8	9.720	357.3	2.12	10.0-11.2	1n	0
22474N6109	16317	STF 2950	AB 8	9.811	283.8	1.63	1.0	ln	Ν
22492N4413	16345	BU 382	AB 8	9.808	214.7	1.09	7.0- 8.0	ln	0
22492N4413	16345	HJ 1828	AC 8	9.808	358.7	29.06	7.0- 8.5	ln	
22498N1740	16360	J 621	AB 8	6.777	123.2	1.96	11.7-12.0	ln	Ν
23138N0452	16665	BU 80	AB 8	9.797	324.9	0.69	8.5- 9.0	ln	0
23370N1945	16937	STT 503	AB 8	9.786	132.5	1.24	0.4	2n	
23404N1952	16970	STT 505	8	9.625	62.4	2.12	7.5-11.0	ln	
23544N3310	17149	STF 3050	8	9.797	318.6	1.82	0.0	2n	0
23563N3905	17178	HLD 60	8	9.797	176.6	1.06	9.8-10.1	2n	0
23596N3737	34	BU 862	8	9.800	14.2	0.57	9.6-10.1	2n	0
23597N4325	39	A 203	.8	9.894	344.6	1.77	8.7- 9.5	2n	
						21 A.I			
							2 (1) 2		

43

. s..

HERE G. M. Popović BARENDA HEREDA H

1 -

Table 2. Not	es	en an	Table 2. (continued)
		0120	Hopmann 1960:+10 7 -0 17
61	Baize 1957 -0.9 +0.02	8148	Heintz 1985: -0.3 -0.06
207	Heintz $1960: \pm 0.8, 0.00$	8180	$\begin{array}{c} 1965: -10, 1, +0, 07 \\ 1965: -10, 1, +0, 07 \\ \end{array}$
207	$Muller = 1957: \pm 0.7 \pm 0.06$	0107	The angle has decreased by 30°
203	The angle has increased by 41°	8252	since 1845
302 AD	in 80 years Orbital motion	9446	V = 1045.
755	$\frac{11}{100} = \frac{1057}{100} = \frac{100}{100}$	0440	V.u. WIEIE, 19745.0, +0.17
1520	Muller, $1957: -6.4, +0.15$	8600	Point $1022 \cdot -63 \pm 0.14$
1000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2122 AD	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8841 AD	First measure of the mair AD
2440 2616 NB	19462.5, -0.05	12519N2526	Identification uncertain
2010 AD	Hopmann $1964: \pm 0.6 = 0.13$	13319M3230	Wiorzbincki 1956; -2 5 +0 19
2044	mbe recoverents in the posi-	9343 AD	Wielen $1950: -2.5, +0.19$
2992 AB	tien engle and discordant	9413	Wielen, 1962. +0.7, +0.12
2005 ND	tion angle are discordanc.	9423 AB	The angle has increased by 36
2995 AB	Heintz, 1985: +2.0, -0.13	0701 10	Since 1874.
3827	The angle has decreased by only	9701 AB	Hopmann, $19/3: +0.4, -0.24$
	10 in 60 years but there is	9880 AB	with increase in distance the
4116	Some reduction in distance.		angle has increased by 61 since
4115	Siegrist, $1951: +2.3, +0.04$	0000 10	1040.
0530450524	Place according to ADS 4186:+4.	9880 AC	In ADS a Cripie System, but in
4263 AB	Hopmann, 1967: +2.0, +0.19	9.	IDS only a double star. Incre-
4263 AC	No material change in this pair		ase in distance.
4390	Slow motion in angle and dis -	9904	No change.
1013	tance decreasing.	10285 AB	The angle has decreased by 37
4841	Balze, 1980: -5.3, -0.18		since 1831.
5197	Hopmann, 1960: +2.1, 0.00	10279	Scardia, $1981: -0.1, -0.05$
5400 AB	Brosche, 1957: +2.0, +0.11	10429	The angle has increased by 63
5535 AB	Heintz, 1963: -3.6, -0.04	Maria - 184	since 1915.
5871 AB	Karmel, 1939: +0.7, -0.11	10472	No change.
6019	ADS 6019 is not the star	10504 AB	The angle has increased by 16
	BD+34 1589, but the brighter	· · · · ·	since 1891.
	star NE from it.	11001	The angle has increased by 28
6170	Slow direct motion in angle.	ik (j. j. j	since 1830.
	Position angle AC:312.6.	11010	Popovic, 1970: -2.3, -0.29
6175 AB	Muller, 1956: -2.7, -0.20	11056 AB	No change.
	Rabe, $1958: +2.0, -0.01$	11056 AC	No change.
6569	No change.	11128	Decrease in angle of 50 since
7067	Heintz, 1974: -0.9, -0.13		1904 with little change in
7307	Arend, 1953: -2.3, -0.08		distance.
7685	Heintz, 1962: +7.7, +0.02	11247 AB	Zulevic, 1977: -3.0, -
7692	Slow retrograde motion.	11432	Increase in angle of 47 since
7704	Wierzbinski, 1956: -0.2, -0.05	and a second second	1846.
7721	Heintz, 1960: +1.5, -0.24	11479	Symms, 1963: +3.9, +0.23
7724 AB	Rabe, 1958: -0.9, +0.27	11483	Heintz, 1954: +4.6, +0.21
7744	Heintz, 1978: -1.3, -0.28	11805	Identification uncertain.
7982	Morel, 1970: +2.7, -0.07	11971 AB	The angle has decreased by 51
8032	Baize, 1985: +2.4, +0.15		since 1831.
8119 AB	Heintz, 1967: -2.4, +0.10	11971 BC	The angle has decreased by 128
8119 AC	This is the first measure of		since 1831 and the distance has
	companion C.		decreased.

۰.

MICROMETER MEASUREMENTS OF DOUBLE STARS (Series 45)

	Table 2. (continued)		Table 2. (continued)
12447	Tamburini, 1967: -1.3, -0.07	14889 AB	The angle has decreased by 43
12618	The angle has decreased by 57 $^{\circ}$		since 1845.
	since 1903.	15270 AB	Heintz, 1966: -4.6. +0.38
12889	Rabe, 1948: +0.2, -0.06	15270 AC	C probably optical!
12972	Rabe, 1948: +1.9, +0.15	15447 AB	Baize, 1974: +4.1. +0.09
13012 AC	AB: a very difficult pair.	15670 BC	The angle has decreased by 32
13383	Place according to ADS 13391:		since 1833.
	-22 s, +1 .	15769	The angle has decreased by 33
13648 AP	First visual measurement.		since 1830.
13649	The angle has increased by 48 $^{\circ}$	15966	The angle has decreased by 14
	since 1880.		since 1832.
13665	Heintz, 1978: +1.0, +0.17	15971	Harrington, 1968: -3.8, 40.10
13750	The angle has increased by 58	15988	Knipe, 1960: -0.4, -0.31
	since 1831.	16185 AB	Heintz, 1981: +2.2, -0.16
13847 AB	Direct motion.	16242	Popovic-Catovic 90: +0.4, -0.18
13863	The angle has increased by 49	16317 AB	The angle has decreased by 35
	since 1914. Probably optical!		since 1832.
13866	The angle has increased by 56	16345 AB	Rabe, 1961: -0.7, +0.06
	since 1911.	16360 AB	The angle has increased by 78
13928	Clouds.		since 1911 but the distance is
14238 AB	Baize, 1957: +0.3, +0.14		closing in. Optical or physical
14270	Hopmann, 1973: +1.2, +0.01		pair ?
14424 AB	Heintz, 1962: -4.1, +0.02	16665 AB	Couteau, 1984: -7.4, +0.04
14424 AB	Heintz, 1962: -0.3, +0.11	17149	Heintz, 1974: -3.8, +0.18
14499 AB	Van den Bos, 1933: +0.4, -0.04	17178	Heintz, 1963: -1.4, -0.06
14573 AB	Hopmann, 1960: +2.6, -0.01	34	Couteau, 1986: +0.3, -0.05
14667	Certainly dm > 0.2 .		
14880	The angle has increased by 51°		
	since 1881.		

МИКРОМЕТАРСКА МЕРЕЊА ДВОЈНИХ ЗВЕЗДА

(Серија 45)

Г. М. Поповић

Астрономска опсерваторија, Волгина 7, 11050 Београд Југославија

> УДК 524.383 Претходно саопштење

Саопштавају се средње вредности 325 микрометарских мерења за 149 двојних или вишеструких звезда (176 парова) добијених на рефрактору Zeiss 65/

L7

L4)6

19

24

ce

1

2

)5

I

5

:9

3

1

S

/1055 ст. Астрономске опсерваторије у Београду. Појединачна мерења послата су Центру за астрономске податке у Вашинггону. Bull. Obs. Astron. Belgrade Nº 144 (1991), 47-60.

Sec.

server all all the structure and the server of the server

760.68 805.68

MICROMETER MEASUREMENTS OF DOUBLE STARS

(Series 46)

D. J. Zulević

Astronomical Observatory, Volgina 7, 11050, Beograd, Yugoslavia

(Received: October 22, 1990)

SUMMARY: Here are presented 250 measurements of 132 double stars made with 65/1055 cm refractor of Belgrade Observatory.

The present series of measurements is the continuation of my own measurements published under Series 44 (D.J. Zulević, 1989). The measurements were made with the 65/1055 cm refractor of the Belgrade Observatory between 1989 January 17 and 1990 Mars 20. In Table I the columns give ADS number, double star designation, position for 1900 (IDS), multiple, epoch omitting the century, position angle, separation, estimated magnitudes, number of nights and notes. In notes comparisons have been made with the latest available orbits (P. Couteau et al., 1986).

NALS ALST STADA

Distances

In the present work the distribution of 250 measurements of distance is as follows:

Number of measurements

ACKNOWLEDGEMENTS

This work has been supported by Republic Association for Science in Serbia through the project "Physics and Motions of Celestial Bodies and Artificial Satelites".

REFERENCES

Zulević, D.J.: 1989, Bull. Obs. Astron. Belgrade, 140, 99. Jeffers, H.M., Van den Bos, W.H., Greeby, F.M.: 1963, Index catalogue of visual double stars, 1961. O, Publ. of the Lick Obs. 21.

Couteau, P., Morel, P.J., Fulconis, M.: 1986, Cinquième Catalogue d'Ephemeride d'Etoiles Doubles Visuelles.

0.51 to 1.00	S	4 RELEASE AND RECEIPTION OF THE STATE
1.01 to 1.50 1.51 to 2.00 2.01 or greater	1	1.54 53 76 76
	1	-250 Sie-ein weiche god festief ga Gwall son isti
	\$	0.8-0.1 88.0 \$110 "0.945" 311.4 3.45 1.5-8.0
	Í.	83.969 399.3 354 8 3 54
	£	89.972 309.4 0.46 7.94
	1. August 1.4.5	and and a second
	÷.	12.2 8 8.200 808.08
	t.	1.5-0.5 01.1 0.860 050.06 0.4 000 MIR. 1301 2005MIR165

D. J. Zulević Spanner Charles and the second states and the second second

ADS	Disc. IDS	mult	. Epoch 1900+	Р	r	Est.Mag.	Night	Notes
				o	11			
34	BU 862		89.797	13.6	0.60	9.5-10	.0 1	
	23596N3737		89.808	9.7	0.53	9.0-9.	51	
						-		
			89.802	11.6	0.56	5	2	
39	A 203		89.811	348.2	1.67	8.3-8.	71	
	23597N4325		89.936	343.1	1.70	8.5-9.	0 1	
						•	 	
			89.873	345.6	1.69)	2	
61	STF 3062		89.778	305.5	1.55	6.0-7.	0 1	
	00010N5753		89.947	310.1	1.49	7.0-8.	0 1	
			89.953	311.0	1.49	7.0-8.	0 1	· ·
			89.969	309.2	1.54	6.5-7.	51	
			89.972	309.4	1.63	7.0-8.	0 1	
								o "
			89.924	309.0	1.54	in an	5	Baize,57:+0.8;+0.07
134	KR 1	· , .'	89.972	190.4	1.95	9.0-9.	4 1	•
	00057N5717						5	
263	KD V		89 947	182 1	1 96	8 5-9	२ 1	
205	00138N5909		07.947	102.1	1.90	,	5 1	
755	STF 73	AB	89.764	289.1	0.77	6.0-6.	4 1	
	00496N2305		89.797	286.2	0.74	6.5-6.	7 1	
			89.808	286.0	0.74	6.0-6.	4 1	
						· · · · · · · · · · · · · · · · · · ·		о ^и
			89.791	286.9	0.75	; 	3	Muller, 57:-4.8; 0.00
888	STF 86	AB	89.936	140.8	18.36	8.5-8.	B 1	· · ·
	0059780561		89.972	140.4	15.93	8.0-8.	3 1	
						•		
			89.954	140.6	15.15	5	2	
953	AG 15		89.969	250.6	2.63	9.0-9.	1 1	
	01042N3939							
2122	STF 305	AB	89.729	309.5	3.58	7.5-8.1	2 1	
	02418N1857		89.945	311.4	3.45	7.5-8.	0 1	
			89.969	309.3	3.54	7.5-8.	2 1	
			89.972	309.4	3.46	7.5-8.	0 1	
						•		o "
			89.904	309.9	3.51		4	Rabe,61:+1.9;-0.17
2257	STF 333 02535N2056	AB	89.969	208.3	1.18	6.0-6.	31	

Table I Micrometer Measurements of Double Stars

MICROMETER MEASUREMENTS OF DOUBLE STARS (Series 46)

,

Table I(continued)

ADS	Disc.	Mult.	Epoch	Р	r F	Est.Mag. Ni	ght	t Notes
	IDS		1900+					23 2 ³ 2 .
				0	11			
2397	STT 5:	1	89.969	327.0	1.00	8.0-8.3	1	
	03062N4355	5						
2491	STF 380)	89.969	21.4	0.99	8.5-9.5	1	
	03164N0824	1	÷ .					
			7					3 · · · · ·
2643	HLD 9	AB	89.969	51.7	1.52	8.5-8.6	1	
	03306N4747	7	89.972	51.4	1.45	9.0-9.0	_1	_
			89.970	51.6	1.49		2	-
								0 "
2644	STF 422	2 、	89.972	268.9	6.42	7.0-9.0	1	Hopmann, 61:+1.3;+0.23
	03317N0016	5						
		_	ę		·		-	
2956	Es 2085	5	90.136	267.6	4.50	7.9-10.5	1	
	03572N3742	2						
2992	BU 545	5 AB	90.136	312.5	1.01	9.0-11.5	1	
2,772	04008N3745	5					-	
				w.,				
2995	STT 531	AB	89.047	6.5	1.73	7.0-9.0	: 1	
	04009N3727	7	89.945	4.5	1.76	7.5-10.5	1	
			89.970	2.5	1.94	6.9-8.5	1	
			90.136	3.8	1.77	8.5-10.5	1	
				4 2				- 0 "
			09.//4	4.5	1.00		4	nernez, 85.+1.5, -0.04
3082	STT 77	AB	89.047	276.2	0.83	8.0-8.0	1	
	04096N3127	7						
								0 "
3264	STF 554	1	89.970	17.4	1.66	6.5-9.0	1	Baize,80:-0.7;-0.09
	04244N1525	5						Kuiper,37:+2.0;-0.13
3300	<u>ርጥፑ 557</u>	7	89 047	194 4	1 10	8 5-8 5	1	Hock Flipper 70.
3390	04355N3719	,)	09.047	194.4	1.10	0.0 0.0	*	+4.1:-0.01
	0400010722					ĩ		
3823	STF 668	B AB	90.046	201.8	8.85	0.3-10.0	1	
	0509750819	•						
					1945 1940			
3827	STF 664	1	90.046	174.7	4.83	7.5-8.0	1	
	05097N0819	Ð	90.106	175.2	4.85	7.5-7.7	1	
				175 0				-
			90.075	1/5.9	4.84		2	o "
4115	CMF 730	2	90 101	12 7	1.08	5 2-6-7	1	Siegr 51.+0 5.+0 09
4110	05254N055	2	90.101	42 • 1	1,00	5.2 0-1		51091., 51. 10. 5, 10. 09
	0020400000	-			y van de la se			0 "
4200	STF 742	2	90.092	270.8	3.98	7.5-7.8	1	Hopmann, 73:-1.5;-0.07
	05304N215	5						

Table I (Continued)

ADS	Disc. Mu IDS	lt.	Epoch 1900+	P	r E	St.Mag. Ni	ght	Notes
				0	11		1. T.	na fer an eine an
4208	STF 749 05309N2652	AB	89.970	325.7	1.22	7.1-7.0	1	
4263	STF 774	AB	90.093	164.5	2.47	2.6-4.0	1	
4200	05357S0160	111/	90.101	166.0	2.32	2.0-4.0	1	
								o "
			90.097	165.2	2.40		2	Hopmann,67:+0.9;+0.07
4349	STF 781 05400N2117	AB	90.104	55.7	<u> </u>	8.1-8.5	1	
4644	J 310		90,104	312.1	2.16	8.6-9.0	1	
1011	05584N1015		90.106	318.8	2.19	8.6-8.7	1	
			90.105	315.4	2.18		2	
4841	BU 1008		90.136	259.3	1.58	3.5-8.5	- 1	
1011	06088N2232		90.183	263.4	1.53	3.8-8.0	1	
								o "
			90.160	261.4	1.55		2	Baize,80:+2.9;-0.01
5197	STF 932		90.101	311.6	1.56	8.0-8.2	1	
	06286N1449		90.183	312.4	1.57	8.0-8.2	1	
			90.199	312.0	1.66	8.3-8.5	1	
								0 "
			90.161	312.0	1.60		3	Hopmann,60:+3.3;-0.01 o "
5234	STT 149 06302N2722		90.183	310.4	0.60	6.5-8.8	1	Heintz,67:+2.6;-0.00
5400	STF 948	AB	90.101	77.1	1.68	5.2-5.7	1	
	06374N5933		90.106	75.9	1.73	5.5-6.0	1	
			90.183	76.9	1.66	5.2-6.1	1	o "
			90.130	76.5	1.69		3	Broche, 57:+2.8; 0.00
5400	STF 948	AC	90.101	308.6	8.75	5.2-6.4	1	
5400	06374N5933	110	90.101	309.0	8.46		1	
	0007 1100000		90.183	301.1	8.43	7.2-8.5	1	
								• 16 am
			90.130	309.2	8.55		3	
5436	STF 958	AB	90.104	258.7	4.72	7.0-7.0	1	
	06399N3549		90.106	257.2	4.51	6.0-6.0	1	
			90.105	258.0	4.61		2	

MICROMETER MEASUREMENTS OF DOUBLE STARS (Series 46)

Table I (continued)

ADS	Disc. IDS	Mult.	Epoch 1900+	P	r E	St.Mag. N	ight	Notes		
						•				
		-		0	"				0	
5469	A 273	1	90.210	61.5	1.00	8.5-9.5	1	Muller,57:	-4.1;	-0.06
	06432N074	4								
		, , , ,	00 100		0.45			Wedness Co.	0	
5535	A 51	3 AB -	90.136	222.0	0.45	9.7-9.8	Ŧ	Heintz,63:	-2.9;	-0.09
	06466N246	5								
									0	н
5559	STF 98	2 AB	90.207	147.1	6.78	8.5-8.5	1	Hopmann,74:	-25.0	;1.39
	06490N131	8				* 				
		 				•				
5871	STF 103	7 AB	89.700	317.4	1.21	7.0-7.0	1			
	07066N272	4	90.183	317.3	1.21	7.5-7.5	1			
			90.191	317.7	1.21	7.5-7.5	1			
			90.197	317.5	1.26	8.0-8.0	1			
								•	0	u
			90.068	317.5	1.22		4	Karmel, 39:+0	0.5;-	0.07
					,÷				0	11
5983	STF 106	6	90.207	220.5	5.80	3.5-8.5	1	Hopmann,60:	-3.2;	-0.13
	07142N217	0								
						10 10				
6170	HJ 329	4	90.136	182.4	4.87	9.8-9.9	1			
	07275N355	2								
6175	STF 111	O AB	90.104	80.0	2.95	2.7-4.7	1			
	07282N316	6	90.106	77.7	2.91	2.7-3.7	1			
			90.191	76.3	2.94	2.7-3.7	1		0	
								Muller, 56:-	0.5;-	0.18
			90.134	78.0	2.93		3	Rabe, 58:+4.	2;-0.	08
6532	STF 117	5	90.191	230.8	1.13	8.0-9.5	1			
	07572N042	6	90.210	273.5	1.22	7.9-9.5	1			
								-	0	н
			90.200	272.1	1.20		2	Hopmann,64:	-5.7;	+0.02
6569	STF 117	7	90.106	350.1	3.21	6.5-7.0	1			
	07591N274	9								
6582	A 197	1	90.191	11.6	0.87	9.0-9.2	1			
	080105002	9	90.210	12.6	0.84		1			
		2				19		-	0	н
			90.200	12.1	0.85		2	Zulevic,90:	0.0;-	0.06
6623	ፍጥፑ 110	7	90.213	25 5	2.64	7 5-8 5	1			
0025	08032N323	1		23.5	2.03	,	-			

51

D. J. Zulević

Table I (continued)

ADS	Disc. Mult. IDS	Epoch 1900+	Р	r	Est.Mag. 1	Night	Notes
		•		11			
7044	VDK 3	90 191	138 9	2 20	8 8-9 0	1	
7044	08453N0774	90.207	139.8	2.19	9.5-9.7	1	
					• • • • • • • • • • • • • • • • • • •		0 "
		90.199	139.4	2.00)	2	Wiele,74:+2.7;-0.33
7067	STF 1280 BC	90.200	163.1	0.95	8.5-8.7	1	
	08460N7071	90.216	162.2	0.95	8.1-8.3	1	
							0 "
		90,208	162.6	0.95	5	2	Heintz,74:-2.1;-0.11
7075	STF 1284	90.107	5.2	3.75	8.0-8.5	1	
	08481N4358						
7000		00 107	257 5	7 4 4	7 0 0 0	1	
7092	08494N4364	90.107	221.2	1.44	1.0-0.5	1	
	0049414904						
7139	STF 1300	90.208	182.3	5,08	8.8-8.8	1	
	08558N1540						
7307	STF 1338 AB	90.136	270.6	0.91	7.5-7.6	1	s.
	09147N3837	90.178	270.6	1.03	3 7.0-7.0	1	
					•	·	0 "
		90.157	270.6	0.97	7	2	Arend, 53:+0.7;-0.08
7685	STT 213	90.191	129.0	0.83	8.0-10.	0 1	
, 095	10075N2755	90.211	128.2	0.84	8.5-9.5	1	
					-		0 "
		90.20	128.6	0.84	т. ₁₀ ж.	2	Heintz,62:+4.8;-0.08
7692	L 16	90,136	357.9	1.34	9.0-9.3	1	
	10091N1783	90.181	357.1	1.29	9.5-9.7	1	
					-		
		90.158	357.5	1.32	2	2	
7704	STT 215	90.136	181.8	1.35	5 7.5-7.6	1	
	10108N1774	90.178	181.3	1.33	8 8.0-8.2	1	
		90.181	181.0	1.49	7.5-7.7	1	
		90.191	181.5	1.38	3 7.5-7.7	1	
		90.213	181.3	1.42	- 1.5-1.1	1	Wierzhinski 56.
		90.180	181.4	1.39	•	5	-0.1;-0.05
7721	STF 1423	90,192	359.7	0.92	8.6-9.2	1	
, , , , ,	10137N2064	90.210	0.9	0.93	8.5-9.2	1	
							О В
		90.201	0.3	0.93	3	2	Heintz,60:-0.4;-0.08

MICROMETER MEASUREMENTS OF DOUBLE STARS (Series 46)

Table I (continued)

ADS	Disc.	Mu	lt.	Epoch	P	r E	st.Mag.	Nigh	t Notes
6.000	IDS		. * •	1900+	* .	1		e de	
					0	11			· · · · · · · · · · · · · · · · · · ·
7724	STF 1	424	AB	90.178	124.1	4.46	2.2-3.	5 1	
5 at	10195N1	981		90.208	125.0	4.41	2.2-3.	5. 1	· .
- 1. cg 4	А								- 0 1
				90.193	124.6	4.43		2	Rabe,58:+0.3;+0.07
7744	STT	216		90.180	248.5	1.31	7.0-9.	51	
	10174N1	551		90.192	245.0	1.50	8.0-10	.5 1	
							an an a		O ¹¹
				90.186	247.7	1.40		2	Heintz,78:+0.9;-0.27
7758	STF 1 10195N2	429 468	•	90.192	173.0	0.61	8.7-8.	7 1	Zulevic,81:-3.0;-0.02
7929	STT	229		90.208	275.3	0.76	7.0-7.	1 1	
	10423N4	138							
7002		076		00 216		0 00	6 0-0	E 1	0 "
1982	10506N0	076		90.210	00.4	0.80	6.0-9.	5 1	MOIEL, /0:+/.5;-0.30
	1000000	070							
8032	A 1	590		90.208	341.1	1.43	8.7-9.	2 1	
	10576N5	464		90.211	341.2	1.40	8.0-8.	5 1	o "
									- Heintz,63:+3.9:+0.18
				90.210	341.2	1.41	î s	2	Baize,85:-0.2;-0.01
8119	STF 1	523		90.213	54.8	1.24	4.5-5.	0 1	
	11128N3	166		90.216	56.7	1.21		1	
							• 1 10 1		- 0 "
				90.215	55.7	1.22		2	Heintz,67:-1.9;-0.01
								<i>.</i> .	
8128	STF 1	527		90.208	45.2	1.01	6.9-8.	0.1	
	11128111	449		90.211	44.9	1.06	/.5-8.	5 I 	
				90.210	45.0	1.03		2	Hopmann, 60:+9.1;-0.15
8148	<u> ና</u> ጥፑ 1	536		90.211	128 1	1 39	3 9-7	1 1	Heintz 85:+3.6:-0.06
0140	1118781	065		90.211	120.1	1.39	.5.9-7.		neinez, 65. (5. 6, 6. 66
	1110/111	000							0 "
8949	STF 1	757	AB	89.453	120.1	2.36	8.9-9.	9 1	Heintz, 56:-1.0;+0.42
	13292N0	012							
				••••					o "
9031	STF 1 13445N2	785 689	× .	89.453	165.3	3.30	8.0-8.	2 1	Strand, 55:-0.9;-0.12
								1.8	
9174	STF 1 14095N2	815 934		89.441	84.0	0.86	7.5-7.	6 1	e njëre i
					19.00			÷	
9343	STF 1	865	AB	89.474	304.9	1.14	3.5-3.	9 1	Wierzbinski,56:
	14364N1	369					a 32		+2.3;+0.16

53

1

ALW ADDING TOTAL

ķ

ADS	Disc. Mu IDS	ult.	Epoch 1900+	Р	r	Est.Mag. N	ight	Notes		<u></u>
				0			. 0		. o	11
9425	STT 288 14487N1567	fer s	89.453	170.5	1.40	7.5-8.2	1	Heintz,5 Zulevic,	6:+5.8; 90:+0.7	+0.35 ;+0.02
9578	STF 1932 15140N2672		89.453	255.3	-	7.2-7.5	1	Heintz,	65:+0.3	;
9626	STF 1938 15207N3742	BC	89.515 89.542	12.4 11.0	2.10 2.28	8.0-8.8	1 1			
	. • 1 *** 1	с. 1 — 5	89.528	11.7	2.19	i ^{Na} ra ar a	2	- Baize,5	0 2:-0.3;	-0.04
9904	STF 2000 15584N1416	`	89.441 89.474	228.6	2.51	8.0-8.4 8.4-9.0	1 1 		, e e 1	
10075	STF 2052 16245N1837	AB	89.549 89.553	128.8	1.49	7.8-7.8	1			
			89.551	129.4	1.00		 2	Scardia,	0 84:+6.0	" ;-0.17
10188	D 15 16408N4340		89.549 89.553	131.7 132.9	0.89	9.1-9.2 9.1-9.2	1 1	-	· .	
			89.551	132.3	0.88	• • • • • •	2	Wierzbi	nski,57 -0.4;-	0.08
10235	STF 2107 16479N2850	AB	89.515 89.542	99.6 96.5	1.31 1.27	7.2-8.7 7.0-8.5	1 1 		0	и "
			89.528	98.0	1.29	Na na na	2	Rabe,27	:+5.1;-	0.12
10279	STF 2118 16559N6511	 Isa	89.549 89.553	69.0 67.1	1.10	7.0-7.5 7.0-7.3	1		0	. 0
			89.551	68.0	1.13		2	Scardia,	81:-0.9	;-0.09
10345	STF 2130 17033N5436	AB	89.549 89.553	32.9 31.6	2.15 2.10	6.0-6.0 6.0-6.0	· 1 1		• • • • •	 2
2		U Lui	89.551	32.2	2.12	1. T. S. S.	2	Heintz,	0 81:+0.5	;+0.01
10429	A 2984 17114S0020		89.485	0.7	1.04	∠m=3.0	1	: *	2012 	
10472	BU 630 17155N3227		89.485 89.562-	223.8 222.7	1.49 1.45	9.0-10.8 9.0-11.0	1	al da a	Б	
			90 573	 222 2						

Table I (continued)

54

•

MICROMETER MEASUREMENTS OF DOUBLE STARS (Series 46)

and a second state of the second state of the

Table I (continued)

ADS	Disc. IDS	Mult.	Epoch 1900+	P	r	Est.Mag.	Night	Notes
				0	11			
11010	BU 11	27	89.485	70.3	1.01	8.5-10.0) 1	
	17596N44	14	89.562	69.1	0.97	7.5-9.5	1	
			89.523	 69.7	0.99		 2 F	o " Popovic,70:-5.1;-0.11
11046	c		00 515	225 0	1 77	1065	7	
11040	J2004N02	72 AD	89.515	233.3	1 80	4.0-0.5	1	
	10004102	22	89 556	237.3	1 78	4.1-6.3	1	
						4.1 0.5		0 "
			89.538	2368	1.78		3 H	leintz,73:+4.8;+0.25
11483	STT 3	58 AB	89.474	158.9	1.81	7.5-7.6	1	
	18314N16	54	89.515	158.9	1.84	6.9-7.0	l	
			89.542	157.0	1.75	7.0-7.3	1	
			89.556	157.6	1.71	7.0-7.4	1	
								0 "
			89.522	158.1	1.78		4 H	leintz,54:+3.3;+0.33
11635	STF 23	82 AB	89.515	352.1	2.68	5.0-6.0	1	
	18410N39	34	89.542	351.0	2.69	5.1-6.1	1	
			89.548	353.1	2.52	5.1-6.1	1	
			89.535	352.1	2.63		3	Guntzel-Lingner,56: -0.7; 0.00
11635	STF 23	83 CD	89.515	88.6	2.44	5.2-5.3	1	
	18410N39	34	89.543	86.9	2.51	5.2-5.2	1	
			89.548	87.5	2.35	5.2-5.2	1	
								Guntzel-Lingner, 56:
			89.535	87.7	2.4	3	3	+1.4;+0.14
11897	STF 24	38	89.556	1.6	0.81	7.0-7.3	1	
	18558N58	05	89.562	1.5	0.90	6.8-7.4	1	
								Jastrzebski,59:
			89.558	1.5	0.85		2	+1.0;-0.07
11971	STF 24	34 BC	89.474	307.7	0.49	8.4-10.3	3 1	
	18576S00	51	89.485	331.6	0.60	8.9-10.5	5 1	
			89.696	307.4	0.53	8.5-10.0) 1	
			89.552	315.6	0.54		3	0 "
12040	STF 24 19023N30	54 AB 17	89.780	285.8	1.22	8.0-9.0	1	Baize,76:+3.8;-0.03
12053	STF 24	57	89.701	200.6	9.77	7.0-8.1	1	
12000	19029N22	26	89.715	200.1	10.06	7.5-9.0	1	
			89.708	200.3	9.91	-	2	

 (\cdot,\cdot) = \mathbb{E} = (\cdot,\cdot) = (\cdot,\cdot) = $(\mathbf{D},\mathbf{J},\mathbf{Z}u)$ evíč (\cdot,\cdot,\cdot) = (\cdot,\cdot) = (\cdot,\cdot) = (\cdot,\cdot)

Table I (continued)

ADS	Disc. IDS	Mult.	Epoch 1900+	Р	r	Est.Mag.	Nig	ht Notes
				0	11			
12201	STF 2484	1	89.728	236.9	2.18	8.5-9.5	1	
	19099N1854	1	89.764	237.6	2.17	8.5-9.5	1	
								н
			89.746	237.2	2.17		2	Hopmann,73:?;+0.50
12447	STF 252	5	89.543	292.5	1.80	8.5-8.7	1	
10117	19225N270	7	89.548	293 4	1 83	8 5-8.7	1	
	1922311270	· ·	89 696	291 8	1 82	8 5-8 6	. 1	
			89 726	292.8	1 79	8 5-8 9	. 1	
			09.720	292.0	1.12	0.9 0.9		_
1.1.1		÷.,	89.648	292.6	1.81		4	
		`						
12618	A 597	7	89.562	98.0	1.56	8.4-10.5	· 1	
	19305N4208	3	بعالي ا					
			- · · · ·	c.	:		8	
12880	STF 2579)	89.549	231.3	2.25	3.0-7.9	1	
	19418N4453	3	89.553	230.4	2.33	3.0-7.9	1	
						• • ×		- 0 "
			89.551	230.8	2.29		2	Baize,73:+3.6;-0.13
			19 (ce)					
12889	STF 2576	5 AB	89.543	171.2	2.35	9.0-9.0	1	
	19418N3322	2	89.548	169.1	2.42	9.0-9.0	1	
			89.549	170.9	2.47	9.3-9.3	1	
	4 2						`	0 "
			89.547	170.4	2.41		3	Rabe,48:+1.8;+0.06
12930	HU 758	3	89.562	148.6	0.85	9.7-9.9	. 1	
	19432N330	7				1.8	e e	
		x 42 y				a 10 a 10 a		0 "
12972	STT 387 19450N3504	7 1	89.780	155.8	0.69	7.2-7.7	1	Rabe,48:+5.4;+0.13 Baize,61:+4.2;+0.09
13665	A 1205	5	89.696	105.2	0.91	9.5-10.0	1	
	20141N2854	t i i	89.720	104.4	0.80	9.0-9.6	1	
			89.708	104.8	0.86			- 0 " Heintz.78:+6.6:+0.14
0			0	101.0	0.00	5 4 5	~	
39 4203	COU 2538	3	89.696	31.9	1.04	9.5-9.6	1	
	20247N3945	5	89.715	29.9	0.93	9.5-9.6	1	
		-						_
0			89.706	30.9	0.98		2	
28 2702	COU 1475	1	89 696	106 0	0 15	10 0-10	6 1	
20 3705	2015112956	144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144	89.090	104.2	0.40	11.0-11	51	
	2010102026	,	07.720	104.3	0.39	TT.0-11.) I 	
			89.708	105.1	0.52	×	2	. I
			в ⁴ - ч		et and			. · ·
13648	BU 441	AB	89.696	220.0	0.44	a — aa	. 1	
	20134N2850)				an Mila		

-56

MICROMETER MEASUREMENTS OF DOUBLE STARS (Series 46)

Table I (continued)

ADS	Disc. IDS	Mult.	Epoch 1900+	Р	r	Est.Mag.	Night	t Notes
	······································			0	11			с
13842	MLB 22 20217N3943	2 3	89.715	226.8	-	10.0-12	.0 1	*
13847	D 22	AB	89.685	160.0	2.77	7.9-9.0	1	
	20219N3946	⁵	89,696	159.1	2.81	8.5-9.3	1	
			89,690	159.6	2.79		2	
13878	AG 256 20231N0938	5 AB	89.726	351.3	5.01	9.5-9.8	1	
14194	1PG 39	AR'	89 723	174 3	12 43	8 5-8 6	r	
14194	20393N4854		89.728	174.3	12.45	8.5-8.7	1	
			89.726	174.3	12.44		2	
e et als this iss								0 "
14238	BU 64 20403N1222	AB	89.783	167.1	0.66	9.0-9.1	11	Baize,57:-1.2;+0.11
14270	STF 2725	5	89.728	9.7	5.94	8.0-8.5	1	
110/0	20416N1532	2	89.764	9.5	5.88	8.0-8.5	1	<i>x</i>
						•		o "
			89.756	9.6	5.91		2	Hopmann,73:+0.1;-0.07
14296	STT 413	3	89.549	15.0	0.97	4.8-6.1	1	
	20435N3607		89.553	14.5	0.98	5.0-6.2	1	
			89.728	13.0	0.85	5.0-6.0	1	
			89.610	14.2	0.93			o " Baize,83:+1.6;+0.02
								1. Strong and starting a strong as the start and starting and start and s
14424	BU 367	AB	89.764	132.0	0.57	8.9-9.3	1	
	20508N2743	3	89.778	128.6	0.61	9.0-9.5	1	2. ²
				100 0				
			89.771	130.3	0.59		2	Heintz, 62:+3.7;+0.09
14499	STF 2737	AB	89.553	284.8	0.99	6.0-6.5	1	
	20541N0355	5	89.562	287.3	0.96	5.8-6.0	1	
	an an an an an		89.729	286.7	1.01	6.0-6.5	l	
			89.615	286.3	0.99		3	o" Bos,33:+1.3;-0.01
14573	STF 2744	AB	89.543	125.1	1.30	7.0-7.3	1	
2.0.0	20580N0108	3	89.548	123.2	1.24	7.0-7.3	1	
			89.549	123.0	1.21	7.0-7.5	1	
			89.778	124.5	1.25	7.5-8.0	1	* . ·
								o "
			89.604	124.0	1.25		4	Hopmann, 60:+2.1;-0.19

57

ř.

ł

-

D. J. Zulević

Table I (continued)

ADS	Disc. IDS	Mult.	Epoch 1900+	P	r	Est.Mag. 1	light	Notes
						n an		
1:702	CET 147	5	00 702	0	1 00	0 5-10 5	1	
14/92	0E1 147	0	89.783	201.1	4.00	9.5-10.5 9.5-10.5	1	
	211120351	2	09./94	204.0	J .1J.	. 9.0-10.0	J.	
			20 700	265 0	E 01		2	
			09.709	200.0	5.01		2	
14822	BU 16	2 AB	89.715	250.0	1.26	8.5-8.7	1	
	21130N352	1	89.783	253.2	1.38	9.0-9.5	1	
			89.794	249.9	1.23	8.0-8.5	1	
			89.764	251.0	1.28		3	
14889	STT 43	7 AB	89.720	24.3	2.16	7.0-7.3	1	
	21166N320	2	89.723	25.0	2.24	7.0-7.2	1	
			89.783	23.1	2.20	7.0-7.2	1	
			89.742	24.1	2.20		3	o "
14926	A 764 21194N570	4 - 8	89.764	8.7	1.03	8.5-9.5	l Ba	aize,81:+0.3;+0.08
15270	STF 2823	2	89.543	299.6	1.70	4.7-6.1	1	
	21397N281	7	89.548	299.6	1.78	5.0-6.3	1	
			89.549	300.0	1.69	5.0-6.3	1	
			89.726	300.7	1.77	5.0-6.0	1	
			89.764	302.0	1.87	4.7-6.1	1	
			89.778	299.9	1.76	4.7-6.1	1	
			20 (51		1 70			o "
			89.051	300.3	1.70		о пе	incz, 66: -6.0; +0.22
15331	HO 460 21431N3429	5 5	89.808	139.7	1.97	8.5-9.5	1	
34 4536	COU		89.808	127.4	0.53	9.3-9.5	1	
	21471N343	7						
15447	BU 75	5 AB	89.764	7.6	0.68	8,5-8.9	1	
	21506N102	5	89.797	7.5	0.56	8.5-8.3	1	
								o "
		3	89.780	7.6	0.62		2 Ba	ize,74:+4.7;+0.06
15670	STF 287	2 BC	89.715	302.4	0.92	8.1-8.2	1	
	22052N584	В	89.729	302.6	0.89	8.0-8.0	1	
					~ ~		-~-	
			89.722	302.5	0.90		2	
15769	A 2599	9	89.726	80.0	1.32	7.7-8.2	1	
	22100N290	5	89.729	80.4	1.45	8.0-8.4	1	
			**-*					
			89.728	80.2	1.38		2	

MICROMETER MEASUREMENTS OF DOUBLE STARS (Series 46)

Table I (continued)

ADS	Disc. M IDS	ult.	Epoch 1900+	Р	r	Est.Mag. 1	Night	Notes
					••			
15066			00 700	0	5 95		•	
12966	STF 2910		89.726	334.6	5.35	8.3-8.8	1	
	22235N2301		89.778	334.1	5.37	8.5-8.8	-	1 - A ⁿ - ^{An}
			89.808	334.1	5.43	8.0-8.2	· 1	
			00 770		=	•••••••••••••••••••••••••••••••••••••••	~~~	
			89.770	554.5	5.30		2	
15071	CTT 2000	λR	90 549	205 7	1 90	1 1-1 5	.7	
109/1	31F 2909	AD	09.040	205.7	1 90	4.4-4.6	1	
	2223730032		89.710	204.1	1 93	4.4-4.6	1	
				200.2	1.95	4.4-4.0		
		`	89 664	205 3	1 91		з	Harrington 68:
			00.004	203+5	1.71		2	-2.6:+0.03
16131.	HO 479		89 764	109.2	0.50	8 2-9 7	1 711]	evic 79:+4.6:-0.05
10131	22334N0147		05.704	103.2	0.50	0.2 5.7	1 043	
	22334110147							
16185	STE 2910	۵B	89.729	64.6	1.08	8.2-9.2	1	
10100	22370N2301	ΠIJ	89.764	66.0	1.14	8.8-9.2	1	
	2257012501		89.794	67.0	1,11	8.5-9.3	ĩ	
								" 0
			89.762	65.9	1.11		3 He	eintz,81:-1.9;+0.01
16242	BU 711		89.720	354.0	2.32	8.6-10.0	1	5 _{1.1} 3
	22405N1040		89.808	354.4	2.32	8.5-9.5	1	
			89.764	354.2	2.32		2	
16317	STF 2950	AB	89.811	285.6	1.50	6.1-7.1	1	
	22474N6109							
								o "
16345	BU 382		89.808	212.1	0.91	6.0-8.5	1 Mu	uller,54:-2.4;-0.07
	22492N4413							
								o "
16665	BU 80	AB	89.797	326.1	0.62	8.5-9.0	1 Cou	uteau,84:-6.2;-0.03
	23138N0452							
16666	STF 3001	AB	89.726	221.1	2.85	5.2-7.8	1 W:	ierzbinski,56:
	23145N6734							+1.3;+0.00
20								
16686	STT 494		89.726	82.8	3.25	7.4-8.1	1	
	23158N2124							
								0 "
16914	HU 1325		89.764	359.7	0.65	9.5-10.5	1 Zu:	levic,69:+2.1;-0.06
	23350N1225							

59

;

· • • • • • •

Table I (continued)

ADS	Disc. IDS	Mult.	Epoch 1900+	Р	r	Est.Mag.	Nig	nt Notes
				0	17			
17149	STF 30	50 AB	89.726	320.3	1.86	6.5-6.5	1	
	23544N33	10	89.729	320.2	1.78	6.5-6.8	1	
			89.764	320.3	1.66	6.5-6.7	1	
			89.794	318.4	1.75	6.5-6.6	1	
			89.800	319.3	1.71	6.8-7.0	1	
								0 "
			89.763	319.7	1.75		5	Heintz,74:-2.8;-0.11
17178	HLD	60	89.729	175.5	1.18	8.5-8.9	- 1	
	23563N39	05	89.794	177.2	1.25	9.0-9.2	1	
i.	S		89.800	177.4	1.27	9.0-9.2	1	
- ² 4	1.97							o "
	- 'i -		89.774	176.7	1.23		. 3	Heintz,63:-1.3;+0.11

РЕЗУЛТАТИ МИКРОМЕТАРСКИХ МЕРЕЊА ДВОЈНИХ ЗВЕЗДА

(Серија 46)

Д. J. Зулевић

Астрономска опсерваторија, Волгина 7, 11050 Београд, Југославија

УДК 524.383

Предходно саотштење

У раду су саопштена 250 мерења релагивних поларних координата за 132 визуелно двојне звезде. Мерења су извршена са рефрактором (65/1055 сm) Београдске Опсерваторије између 17 јануара 1989. год и 20 марта 1990. год. За орбиталне нарове изврцена је анализа њихових положаја за посматрачки тренутак. За сваку компоненту визуелно двојне звезде измерена је привидна звездана величина. Bull. Obs. Astron. Belgrade Nº 144(1991), 61-63.

UDC 520.252-14/-323.2 Preliminary report

THE COMPARISON OF THE ACCURACY OF THE DETERMINATION OF RIGHT ASCENSION BY MEANS OF TRANSIT INSTRUMENTS OF DIFFERENT TYPES

R.S. Izmailov¹, N.G. Litkevich¹, S.N. Sadžakova², V.D. Simonenko¹, T.I. Suchkova¹, S.A. Tolchel'nikova–Murri³, V.I. Turenko¹

 ¹Astronomical Observatory of the Harkov University, Harkov, USSR
 ²Astronomical Observatory, Volgina 7, 11050 Beograd, Yugoslavia
 ³Main Astronomical Observatory of the USSR Academy of Sciences, Pulkovo, 196140, Leningrad, USSR

(Received: May 25, 1990)

SUMMARY: A special series of observations of the groups of stars performed in Pulkovo, Chile, Kharkov and Belgrade were used to compare the mean errors of the right ascension by means of the method eliminating the influence of the errors of the source catalogue. The results show the advantage of the small transit instruments over transit circles of the classical type.

The optical instruments formerly used for the determination of Earth rotation (OIER) are considered in Tolchel'nikova--Murri (1989) to be the most efficient for the simultaneous solution of two problems: the determination of absolute coordinates of bright stars (α , δ) and those of the instruments (λ . φ). This statement has no serious objections as far as the δ and φ coordinates are concerned, but for the coordinates α and λ the solution is more complicated since the method of determination of their values depends on the solution of the time problem as is shown in Tolchel'nikova-Murri (1981) and Eichhorn (1987).

Due to the changes firstly in the practice of the transmission and determination of time and later in the practice of timekceping, changes in the methods for the determination of R.A. in Fundamental Astrometry (FA) became inevitable. As far back as 1936 Kopff wrote (p 724) that a sufficiently good clock might help in obtaining independent (absolute) R.A. if the stars are devided into groups, if the groups are connected with

each other and if their observations are connected by adjustment.

At Pulkovo the group method of observation and the chain method of reduction gained a foothold in FA thanks to A.A. Nemiro. Nevertheless, as is shown in Tolchel'nikova-Murri (1986), many new methods of FA do not satisfy the definition of an absolute method since the derived R.A. s deviate from their absolute values by $C+C_1 f(\delta)$, where C and C_1 depend on the source catalogue.

Up to now the contribution to Fundamental Catalogues of astrolabes and transit circles (TC) of the Time service is of no importance in comparison with instruments of classical type. Which type of instrument is more efficient for the new epoch of absolute observations?

To answer this question, the special series of 4-hour observations of the groups of stars within 70° of the zenith were performed in Pulkovo, Kharkov and Belgrade. It was possible to use observations in Chile corrected for azimuth by means of observations of

Instrument	Number of stars of	Number of observation	Number of s series	Their duration	Period	μ
TC, Pulkovo	68	316	5	3 ^h .3	1960	0.°010
	62	280	5	4	1984	16
	73	360	7	4	1986	11
TC, Kharkov	64	896	12	4	1985	14
			5	1.5		13
	68	585	8	4	1986	12
			4	2		12
Large TC						
Chile-Pulkovo	68	340	, ,5 yr ,	. 4	1972	26
MC of Belgrade	1(78	310	4	4	1987	39
MC of Pulkovo	25	70	8	3	1962	50

marks since there was a similar group program. It was difficult to use observations of the Küstner series with Pulkovo meridian circle (MC) for the purpose since the stars were changed from night to night there. The results are shown in the table.

1100

The method proposed by Varina et all (1985) was used for the determination of the error of unit weight by means of the least square solution, were μ is independent of the source catalogue; it depends on the program: on the distribution of stars in Z and the duration of the observations. Since the programs are similar the Table shows the advantages of smaller instruments (OIER) over instruments of FA (see also Kopff, 1936, p 717).

The Belgrade and Pulkovo MCs are sutable for differential observations in narrow zones; our are was 140° . Since μ is not an error of absolute coordinates our results are not enought indicate definitely which of the instruments is better for absolute observations. If one has to return to Struve's method the use of OIER is out of the question, but if one prefers new methods which require a stability of the instrument and of the atmosphere for two hours or less (see Tolchel'nikova, Krejnin, 1980), then the superiority of OIER over the instruments of FA is obvious from our results.

We want to stress that the shain method of reduction is valid for current determinations of changes in Earth rotation only, and might be replaced by global least square solution of the observational equations for coordinate determination. The solution is greatly simplified if group observations are secured.

We express our gratitude to M.P. Varin, V.A. Varina, A.P. Chelombit'ko, P.M. Afanas'eva and A.A. Popov whose observations were used.

REFERENCES

Eichhorn, H.: 1987, Celest. Mech., 43, 237.

M 11

1716 e

Kopff, A.: 1936, M.N. R.A.S., 96, 714.

Krejnin, E.I., Tolchel'nikova-Murri, S.A.: 1981, Astron. Astroph., Kiev, 44, 60.

- Tolchel'nikova-Murri, S.A., Krejnin, E.I.: 1980, *Izv. GAO*, 198, 66.
- Tolchel'nikova-Murri, S.A.: 1986, Bull. Obs. Astron. Belgrade, 136, 20.

Tolchel'nikova-Murri, S.A.: 1989, in: Problems of Construction

of Coordinate Systems in Astronomy, Leningrad, 176. Varina, V.A., Tolchel'nikova-Murri, S.A., Fomin, V.A.: 1985, in: Physical Aspects of Modern Astronomy, Leningrad, 52.

 $(\alpha_{1},\beta_{2}) = 1$

14

si, na kaiskarsti

, the st

THE COMPARISON OF THE ACCURACY OF THE DETERMINATION OF RIGHT ASCENSION BY MEANS OF TRANSIT INSTRUMENTS OF DIFFERENT TYPES

ПОРЕЂЕЊЕ ТАЧНОСТИ ОДРЕЂИВАЊА РЕКТАСЦЕНЗИЈЕ ПОМОЂУ ПАСАЖНИХ ИНСТРУМЕНАТА РАЗЛИЧИТИХ ТИПОВА

Р.С. Измаилов¹, Н.Г. Литкевич¹, С.Н. Саџакова², В.Д. Симоненко¹, Т.И. Сучкова¹, С.А. Толчељникова-Мури³, В.И. Туренко¹

¹ Астрономска опсерваторија Харковског државног Универзитета, Харков, СССР

² Астрономска опсерваторија, Волгина 7, 11050 Београд, Југославија ³ Главна астрономска опсерваторија АН СССР у Пулкову, 196140 Лењинград, СССР

> УДК 520.252-14/-323.2 Претходно саопштење

Коришћене су специјалне серије посматрања група звезда обављених у Пулкову, Чилеу, Харкову и Београду за поређење средњих грешака у ректасцензији методом која елиминише утицај грешака изворног каталога. Резултати показују предност малих пасажних инструмената над пасажним инструментима класичног типа. ÷.

UDC 52-355.3 Preliminary report

STARK BROADENING PARAMETER TABLES FOR SPECTRAL LINES OF MULTICHARGED IONS OF ASTROPHYSICAL INTEREST. I: C IV LINES

M. S. Dimitrijević¹, S. Sahal -Bréchot² and V. Bommier²

¹Astronomical Observatory,

Volgina 7, 11050 Beograd, Yugoslavia

²Laboratoire "Astrophysique, Atomes et Molécules"

Département Atomes et Molécules en Astrophysique

Unité associée au C.N.R.S. No 812

Observatoire de Paris-Meudon, 92190 Meudon, France

(Received: November 26, 1990)

SUMMARY: Using a semiclassical approach, we have calculated electron-, proton-, and ionized helium-impact line widths and shifts for 39 C IV multiplets as a function of temperature for perturber densities 10^{15} cm⁻³ and $10^{18}-10^{21}$ cm⁻³.

1. INTRODUCTION

This paper is the first one of a series devoted to the calculation of Stark broadening parameters of isolated spectral lines of multicharged ions. As a matter of fact. Stark broadening of spectral lines has been taking a new interest in astrophysics (Seaton, 1987), owing to the recent development of researches on the physics of stellar interiors: in subphotospheric layers, the modellisation of energy transport needs the knowledge of radiative opacities and thus, certain atomic processes must be known with accuracy. At these high temperatures (10^5 K or more) and densities ($10^{17} - 10^{22}$ cm⁻³) the matter is mostly ionized: therefore Stark broadening of strong multicharged ionic lines plays a non-negligible role in the calculation of the opacities, especially in the UV.

The present paper concerns triply ionized carbon. Beyond the interest for the modellisation of stellar interiors, the knowledge of C IV Stark broadening parameters is of great importance for a number of problems in astrophysics and plasma physics, since carbon has a high cosmical abundance and is present as impurity in many laboratory plasma sources. In order to provide reliable data for C IV lines broadened by collisions with charged perturbers in stellar plasmas. we have calculated electron--, proton--, and ionized helium--impact line widths and shifts for 39 C IV multiplets, using the semiclassical--perturbation formalism (Sahal--Bréchot, 1969ab).

The obtained results for perturber density of 10^{17} cm⁻³, together with discussion, analysis and comparison with existing experimental and theoretical data will be published in the principal article elsewhere (Dimitrijević, Sahal-Bréchot, Bommier, 1991). Since data are not linear with perturber density (N), due to the Debye screening effect, which is often important at high densities of interest for subphotospheric layers, we will present here the data for N = $10^{18} - 10^{21}$ cm⁻³. Moreover, we will give also the data for N = 10^{15} cm⁻³.

2. RESULTS AND DISCUSSION

All details of the calculation procedure has been described in details in Dimitrijević, Sahal-Bréchot,

Bommier (1991) and will not be repeated here. Energy levels for C IV lines have been taken from Bashkin and Stoner (1975). Oscillator strengths have been calculated using the method of Bates and Damgaard (1949) and tables of Oertel and Shomo (1968). For higher levels, the method described by Van Regemorter et al. (1979) has been used.

利二 正常 回急

66

In addition to the electron-impact full halfwidths and shifts, Stark broadening parameters due to proton-, and ionized helium-impact have been calculated. In such a way we provide Stark broadening data for all important charged perturbers in stellar plasma. Our results are shown in Table 1 for a perturber density 10^{15} cm⁻³ and temperatures of T = 10,000; 20,000; 50,000; 100,000; 150,000 and 200,000 K. We also specify a parameter c (Dimitrijević and Sahal-Bréchot, 1984) which gives an estimate for the maximum perturber density for which the line may be treated as isolated when it is divided by 2W. In Table 2 are given the corresponding results for N = $10^{18} - 10^{21}$ cm⁻³ and temperatures from 20,000 to 800,000 K.

For each value given in Table 1, the collision volume (V) multiplied by the perturber density (N) is much less than one and the impact approximation is valid (Sahal-Bréchot, 1969ab). Values for NV > 0.5 are not given in Table 1; values for $0.1 < NV \le 0.5$ are denoted by an asterisk. When the impact approximation is not valid, the ion broadening contribution may be estimated by using quasistatic formulae (cf. Dimitrijević, Sahal-Bréchot and Bommier (1991)).

The analysis of present results and comparison with available experimental and theoretical data is given in Dimitrijević, Sahal – Bréchot and Bommier (1991).

ACKNOWLEDGEMENTS

One of us (M.D.) has been supported by the Observatory of Paris – Meudon. This work has also been supported by C.N.R.S. and is a part of French-Yugoslav collaboration through the project "L'éllargissement Stark des raies spectrales des plasmas astrophysiques et de laboratoire". This study has also been supported in part by RFN under the project "Physics and dynamics of celestial bodies". Calculations have been performed on the Vax 8600 of the Observatory of Paris-Meudon.

the state of the second

REFERENCES

- Bashkin, S., and Stoner, J.O.Jr.: 1975, Atomic Energy Levels and Grotrian Diagrams, Vol. 1, North Holland, Amsterdam.
- Bates, D. R., and Damgaard, A.: 1949, Trans. Roy. Soc. London, Ser. A 242, 101.
- Dimitrijević, M.S., and Sahal-Brechot, S.: 1984a, JOSRT 31, 301.
- Dimitrijević, M.S., Sahal-Brechot, S., and Bommier, V.: 1991, Astron. Astrophys. Suppl. Series (submitted).
- Oertel. G.K., and Shomo, L.P.: 1968, Astrophys. J. Suppl. Series 16, 175.
- Sahal-Bréchot, S.: 1969a, Astron. Astrophys. 1, 91.
- Sahal-Bréchot, S.: 1969b. Astron. Astrophys. 2, 322.
- Sahal-Brechot, S.: 1974, Astron. Astrophys. 35, 319.
- Seaton, M.J.: 1987, J. Phys. B 20, 6363.

1.1. 1. 1.1.

Van Regemorter, H., Hoang Binh Dy, and Prud'homme, M.: 1979, J. Phys. B 12, 1073.

STARK BROADENING PARAMETER TABLES FOR SPECTRAL LINES OF MULTICHARGED IONS OF ASTROPHYSICAL INTEREST. I: C IV LINES

Table 1. This table gives electron-, proton-, and ionized-helium- impact broadening parameters for C IV lines, for perturber densities of 10¹⁵ cm⁻³ and temperatures from 10,000 K to 200,000 K. Transitions and averaged wavelengths for the multiplet (in Å) are also given. By dividing c and 2W, we obtain an estimate for the maximum perturber density for which the line may be treated as isolated and tabulated data may be used. The asterisk identifies cases for which the collision volume multiplied by the perturber denity (the condition for validity of the impact approximation) lies between 0.1 and 0.5.

PERTUR	BER DENS	ITY = 0.1D	+16	PROTONS		TONIZED HELTUM
TRANSITION	T(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A) SHIFT(A)
CIV 2S-2P (1.6.6.1549.1.A 6.3(1) C= 0.15D+19 6.3(1) E) 9.3(1) E) 9.3(1) E) 9.3(1) E) 9.3(1) E)	10000. 20000. 50000. 100000. 150000. 200000.	0.234E-03 0.114E-03 0.723E-04- 0.520E-04- 0.432E-04- 0.382E-04-	0.546E-04 0.205E-05 -0.179E-05 -0.179E-05 -0.192E-05 -0.216E-05	$\begin{array}{c} 0.545E-07\\ 0.158E-06\\ 0.642E-06\\ 0.152E-05\\ 0.226E-05\\ 0.268E-05\\ \end{array}$	-0.196E-06 -0.395E-06 -0.967E-06 -0.170E-05 -0.222E-05 -0.253E-05	0.981E-07-0.196E-06 0.279E-06-0.395E-06 0.992E-06-0.943E-06 0.199E-05-0.159E-05 0.254E-05-0.195E-05 0.304E-05-0.226E-05
CIV 2S-3P 312.4 A C= 0.47D+16	10000. 20000. 50000. 100000. 150000. 200000.	0.243E-04 0.178E-04 0.121E-04 0.929E-05 0.804E-05 0.730E-05	$\begin{array}{c} 0.782 \pm -07\\ 0.249 \pm -06\\ 0.398 \pm -06\\ 0.328 \pm -06\\ 0.313 \pm -06\\ 0.310 \pm -06 \end{array}$	0.947E-07 0.269E-06 0.679E-06 0.108E-05 0.126E-05 0.138E-05	0.214E-06 0.405E-06 0.724E-06 0.990E-06 0.110E-05 0.118E-05	0.157E-06 0.212E-06 0.367E-06 0.381E+06 0.757E-06 0.644E-06 0.105E-05 0.829E-06 0.119E-05 0.927E-06 0.128E-05 0.993E-06
CIV 2S-4P 244.9 A C= 0.12D+16	10000. 20000. 50000. 100000. 150000. 200000.	$\begin{array}{c} 0.432 \pm -04 \\ 0.331 \pm -04 \\ 0.240 \pm -04 \\ 0.192 \pm -04 \\ 0.169 \pm -04 \\ 0.155 \pm -04 \end{array}$	$\begin{array}{c} 0.537 \pm -06\\ 0.152 \pm -05\\ 0.141 \pm -05\\ 0.134 \pm -05\\ 0.128 \pm -05\\ 0.116 \pm -05 \end{array}$	0.761E-06 0.155E-05 0.281E-05 0.353E-05 0.400E-05 0.444E-05	0.123E-05 0.186E-05 0.267E-05 0.320E-05 0.354E-05 0.387E-05	0.985E-06 0.115E-05 0.169E-05 0.166E-05 0.265E-05 0.227E-05 0.323E-05 0.270E-05 0.349E-05 0.298E-05 0.377E-05 0.320E-05
CIV 2S-5P 222.8 A C= 0.51D+15	10000. 20000. 50000. 100000. 150000. 200000.	0.749E-04 0.616E-04 0.487E-04 0.407E-04 0.366E-04 0.338E-04	0.326E-05 0.449E-05 0.396E-05 0.369E-05 0.317E-05 0.279E-05	0.335E-05 0.558E-05 0.794E-05 0.973E-05 0.106E-04 0.117E-04	0.414E-05 0.573E-05 0.728E-05 0.877E-05 0.931E-05 0.976E-05	0.357E-05 0.369E-05 0.530E-05 0.479E-05 0.711E-05 0.609E-05 0.824E-05 0.709E-05 0.924E-05 0.782E-05 0.104E-04 0.825E-05
CIV 2P-3S 419.6 A C= 0.30D+17	10000. 20000. 50000. 100000. 150000. 200000.	0.408E-04 0.241E-04 0.153E-04 0.114E-04 0.980E-05 0.883E-05	-0.232E-05 0.128E-05 0.144E-05 0.171E-05 0.160E-05 0.159E-05	0.199E-07 0.122E-06 0.605E-06 0.109E-05 0.146E-05 0.166E-05	0.294E-06 0.563E-06 0.106E-05 0.145E-05 0.162E-05 0.176E-05	0.331E-07 0.291E-06 0.169E-06 0.538E-06 0.583E-06 0.924E-06 0.107E-05 0.124E-05 0.129E-05 0.137E-05 0.142E-05 0.148E-05
CIV 2P-4S 296.9 A C= 0.61D+16	10000. 20000. 50000. 100000. 150000. 200000.	0.442E-04 0.318E-04 0.225E-04 0.180E-04 0.158E-04 0.144E-04	0.641E-05 0.472E-05 0.404E-05 0.375E-05 0.359E-05 0.345E-05	0.290E-06 0.947E-06 0.220E-05 0.308E-05 0.363E-05 0.395E-05	0.113E-05 0.182E-05 0.273E-05 0.327E-05 0.363E-05 0.388E-05	0.364E-06 0.105E-05 0.967E-06 0.159E-05 0.202E-05 0.227E-05 0.266E-05 0.277E-05 0.300E-05 0.304E-05 0.351E-05 0.325E-05
CIV 2P-5S 262.6 A C= 0.24D+16	10000. 20000. 50000. 100000. 150000. 200000.	0.761E-04 0.568E-04 0.433E-04 0.358E-04 0.321E-04 0.297E-04	0.178E-04 0.139E-04 0.115E-04 0.963E-05 0.892E-05 0.846E-05	0.182E-05 0.352E-05 0.630E-05 0.790E-05 0.935E-05 0.954E-05	0.361E-05 0.507E-05 0.664E-05 0.798E-05 0.856E-05 0.923E-05	0.192E-05 0.317E-05 0.348E-05 0.438E-05 0.543E-05 0.558E-05 0.673E-05 0.670E-05 0.750E-05 0.711E-05 0.847E-05 0.751E-05
CIV 2P-3D 384.1 A C= 0.71D+16	10000. 20000. 50000. 100000. 150000. 200000.	0.229E-04- 0.164E-04- 0.109E-04- 0.815E-05- 0.696E-05- 0.628E-05-	-0.911E-06 -0.412E-06 -0.280E-06 -0.198E-06 -0.196E-06 -0.158E-06	Q.473E-07- 0.165E-06- 0.581E-06- 0.985E-06- 0.125E-05- 0.140E-05-	-0.218E-06 -0.419E-06 -0.803E-06 -0.111E-05 -0.125E-05 -0.135E-05	0.812E-07-0.216E-06 0.241E-06-0.403E-06 0.610E-06-0.701E-06 0.995E-06-0.950E-06 0.116E-05-0.106E-05 0.127E-05-0.114E-05
CIV 2P-4D 289.2 A C= 0.80D+14	10000. 20000. 50000. 100000. 150000. 200000.	0.644E-04 0.495E-04 0.368E-04 0.296E-04 0.261E-04 0.238E-04	0.626E-06 0.217E-05 0.156E-05 0.105E-05 0.866E-06 0.713E-06	0.917E-05 0.154E-04 0.217E-04 0.286E-04 0.297E-04 0.306E-04	0.135E-04 0.172E-04 0.220E-04 0.256E-04 0.272E-04 0.284E-04	0.895E-05 0.117E-04 0.137E-04 0.145E-04 0.189E-04 0.185E-04 0.231E-04 0.210E-04 0.265E-04 0.216E-04 0.292E-04 0.239E-04

PERTURI	BER DENS	ITY = 0.1D + 16		
TRANSITION	Т(К)	ELECTRONS WIDTH(A) SHIFT(A)	PROTONS WIDTH(A) SHIFT(A)	IONIZED HELIUM WIDTH(A) SHIFT(A)
CIV 2P-5D 259.5 A C= 0.34D+14	$ \begin{array}{r} 10000.\\ 20000.\\ 50000.\\ 100000.\\ 150000.\\ 200000. \end{array} $	$\begin{array}{c} 0.153E-03 & 0.712E-05\\ 0.123E-03 & 0.725E-05\\ 0.935E-04 & 0.484E-05\\ 0.756E-04 & 0.340E-05\\ 0.665E-04 & 0.242E-05\\ 0.605E-04 & 0.191E-05\\ \end{array}$	0.405E-04 0.437E-04 0.524E-04 0.540E-04 0.693E-04 0.656E-04 0.788E-04 0.755E-04 0.900E-04 0.799E-04 0.994E-04 0.876E-04	0.357E-04 0.366E-04 0.453E-04 0.445E-04 0.586E-04 0.551E-04 0.700E-04 0.591E-04 0.714E+04 0.699E-04 0.767E+04 0.653E-04
CIV 3S-3P 5801.0 A C= 0.16D+19	$\begin{array}{c} 10000.\\ 20000.\\ 50000.\\ 100000.\\ 150000.\\ 200000. \end{array}$	$\begin{array}{c} 0.123E-01 & 0.280E-03 \\ 0.893E-02-0.135E-03 \\ 0.603E-02-0.995E-04 \\ 0.463E-02-0.181E-03 \\ 0.402E-02-0.166E-03 \\ 0.366E-02-0.162E-03 \end{array}$	0.287E-04 0.209E-04 0.724E-04 0.416E-04 0.172E-03 0.878E-04 0.251E-03 0.128E-03 0.290E-03 0.154E-03 0.309E-03 0.167E-03	0.490E-04 0.209E-04 0.109E-03 0.408E-04 0.206E-03 0.811E-04 0.277E-03 0.113E-03 0.302E-03 0.130E-03 0.319E-03 0.141E-03
CIV 3S-4P 948.1 A C= 0.18D+17	10000. 20000. 50000. 100000. 150000. 200000.	0.748E-03 0.161E-04 0.569E-03 0.172E-04 0.407E-03 0.151E-04 0.324E-03 0.122E-04 0.286E-03 0.120E-04 0.263E-03 0.103E-04	0.110E-04 0.173E-04 0.225E-04 0.264E-04 0.405E-04 0.382E-04 0.515E-04 0.460E-04 0.587E-04 0.506E-04 0.627E-04 0.551E-04	0.143E-04 0.161E-04 0.245E-04 0.235E-04 0.381E-04 0.323E-04 0.468E-04 0.383E-04 0.516E-04 0.420E-04 0.544E-04 0.447E-04
CIV 3S-5P 684.9 A C= 0.48D+16	10000. 20000. 50000. 100000. 150000. 200000.	0.761E-03 0.337E-04 0.620E-03 0.393E-04 0.485E-03 0.341E-04 0.404E-03 0.307E-04 0.363E-03 0.261E-04 0.335E-03 0.226E-04	0.314E-04 0.388E-04 0.523E-04 0.537E-04 0.746E-04 0.683E-04 0.907E-04 0.819E-04 0.990E-04 0.870E-04 0.110E-03 0.919E-04	0.335E-04 0.345E-04 0.499E-04 0.449E-04 0.668E-04 0.570E-04 0.782E-04 0.663E-04 0.862E-04 0.733E-04 0.981E-04 0.775E-04
CIV 3P-4S 1230.0 A C= 0.73D+17	$\begin{array}{c} 10000.\\ 20000.\\ 50000.\\ 100000.\\ 150000.\\ 200000. \end{array}$	$\begin{array}{c} 0.975 \pm -03 & 0.534 \pm -04 \\ 0.715 \pm -03 & 0.578 \pm -04 \\ 0.514 \pm -03 & 0.603 \pm -04 \\ 0.411 \pm -03 & 0.571 \pm -04 \\ 0.363 \pm -03 & 0.548 \pm -04 \\ 0.333 \pm -03 & 0.525 \pm -04 \end{array}$	$\begin{array}{cccccc} 0.476E-05 & 0.163E-04 \\ 0.147E-04 & 0.269E-04 \\ 0.337E-04 & 0.411E-04 \\ 0.481E-04 & 0.493E-04 \\ 0.549E-04 & 0.542E-04 \\ 0.601E-04 & 0.583E-04 \end{array}$	0.644E-05 0.154E-04 0.160E-04 0.237E-04 0.322E-04 0.344E-04 0.419E-04 0.411E-04 0.486E-04 0.459E-04 0.505E-04 0.493E-04
CIV 3P-5S 798.1 A C= 0.22D+17	10000. 20000. 50000. 100000. 150000. 200000.	$\begin{array}{c} 0.777 \pm -03 & 0.159 \pm -03 \\ 0.584 \pm -03 & 0.124 \pm -03 \\ 0.446 \pm -03 & 0.102 \pm -03 \\ 0.370 \pm -03 & 0.855 \pm -04 \\ 0.332 \pm -03 & 0.787 \pm -04 \\ 0.308 \pm -03 & 0.736 \pm -04 \end{array}$	0.164E-04 0.324E-04 0.318E-04 0.456E-04 0.568E-04 0.599E-04 0.706E-04 0.714E-04 0.836E-04 0.783E-04 0.864E-04 0.823E-04	0.175E-04 0.285E-04 0.315E-04 0.396E-0 0.487E-04 0.503E-14 0.606E-04 0.604E-04 0.680E-04 0.641E-04 0.774E-04 0.692E-04
CIV 3P-3D 20754.0 A C= 0.21D+20	10000. 20000. 50000. 100000. 150000. 200000.	0.125 0.375E-02 0.924E-01-0.228E-02 0.630E-01-0.300E-02 0.486E-01-0.241E-02 0.423E-01-0.236E-02 0.385E-01-0.227E-02	0.397E-03-0.160E-02 0.135E-02-0.289E-02 0.366E-02-0.491E-02 0.612E-02-0.635E-02 0.713E-02-0.708E-02 0.789E-02-0.763E-02	0.627E-03-0.157E-0 0.168E-02-0.270E-0 0.383E-02-0.433E-0 0.556E-02-0.536E-0 0.641E-02-0.597E-0 0.712E-02-0.642E-0
CIV 3P-4D 1107.6 A C= 0.12D+16	10000. 20000. 50000. 100000. 150000. 200000.	0.105E-02 0.237E-04 0.822E-03 0.282E-04 0.608E-03 0.165E-04 0.489E-03 0.102E-04 0.431E-03 0.759E-05 0.394E-03 0.530E-05	0.133E-03 0.196E-03 0.224E-03 0.251E-03 0.316E-03 0.321E-03 0.415E-03 0.374E-03 0.436E-03 0.396E-03 0.448E-03 0.412E-03	0.130E-03 0.171E-03 0.200E-03 0.212E-03 0.275E-03 0.269E-03 0.338E-03 0.307E-03 0.393E-03 0.317E-03 0.423E-03 0.351E-03
CIV 3P-5D 770.3 A C= 0.30D+15	10000. 20000. 50000. 100000. 150000. 200000.	0.141E-02 0.664E-04 0.113E-02 0.618E-04 0.857E-03 0.395E-04 0.693E-03 0.273E-04 0.609E-03 0.188E-04 0.555E-03 0.143E-04	0.356E-03 0.384E-03 0.461E-03 0.475E-03 0.609E-03 0.578E-03 0.692E-03 0.665E-03 0.793E-03 0.704E-03 0.875E-03 0.773E-03	0.314E-03 0.323E-03 0.399E-03 0.391E-03 0.515E-03 0.485E-03 0.617E-03 0.521E-03 0.627E-03 0.615E-03 0.676E-03 0.575E-03

STARK BROADENING PARAMETER TABLES FOR SPECTRAL LINES OF MULTICHARGED IONS OF ASTROPHYSICAL INTEREST. 1: C IV LINES

3

......

PERTUR	BER DENS	ITY = 0.1D+16	DROMONIC	LONTZED HELLIM
TRANSITION	T(K)	WIDTH(A) SHIFT(A)	WIDTH(A) SHIFT(A)	WIDTH(A) SHIFT(A)
CIV 3P-47 1106.5 A C= 0.12D+16	10000. 20000. 50000. 100000. 150000. 200000.	0.562E-03-0.279E-04 0.511E-03-0.321E-04 0.371E-03-0.234E-04 0.296E-03-0.176E-04 0.260E-03-0.132E-04 0.237E-03-0.101E-04	0.101E-03-0.159E-03 0.183E-03-0.207E-03 0.266E-03-0.264E-03 0.324E-03-0.306E-03 0.355E-03-0.335E-03 0.407E-03-0.365E-03	$\begin{array}{c} 0.988\pm -04-0.140\pm -03\\ 0.159\pm -03-0.175\pm -03\\ 0.222\pm -03-0.223\pm -03\\ 0.266\pm -03-0.259\pm -03\\ 0.303\pm -03-0.279\pm -03\\ 0.315\pm -03-0.304\pm -03 \end{array}$
CIV 3D-4P 1198.6 A C= 0.29D+17	$\begin{array}{c} 10000.\\ 20000.\\ 50000.\\ 100000.\\ 150000.\\ 200000. \end{array}$	0.110E-02 0.680E-05 0.835E-03 0.403E-04 0.603E-03 0.381E-04 0.482E-03 0.352E-04 0.426E-03 0.340E-04 0.391E-03 0.308E-04	0.174E-04 0.311E-04 0.366E-04 0.467E-04 0.677E-04 0.670E-04 0.872E-04 0.815E-04 0.973E-04 0.897E-04 0.112E-03 0.954E-04	0.222E-04 0.290E-04 0.392E-04 0.418E-04 0.631E-04 0.566E-04 0.780E-04 0.674E-04 0.868E-04 0.753E-04 0.954E-04 0.806E-04
CIV 3D-5P 806.6 A C= 0.67D+16	$\begin{array}{c} 10000.\\ 20000.\\ 50000.\\ 100000.\\ 150000.\\ 200000. \end{array}$	0.101E-02 0.438E-04 0.827E-03 0.605E-04 0.651E-03 0.538E-04 0.545E-03 0.498E-04 0.489E-03 0.430E-04 0.452E-03 0.379E-04	0.434E-04 0.548E-04 0.728E-04 0.758E-04 0.104E-03 0.961E-04 0.129E-03 0.116E-03 0.138E-03 0.123E-03 0.152E-03 0.129E-03	0.459E-04 0.488E-04 0.688E-04 0.633E-04 0.927E-04 0.807E-04 0.108E-03 0.943E-04 0.121E-03 0.103E-03 0.138E-03 0.109E-03
CIV 3D-4F 1169.0 A C= 0.13D+16	10000. 20000. 50000. 100000. 150000. 200000.	0.657E-03-0.484E-04 0.502E-03-0.314E-04 0.365E-03-0.182E-04 0.290E-03-0.130E-04 0.255E-03-0.799E-05 0.233E-03-0.468E-05	0.111E-03-0.174E-03 0.200E-03-0.228E-03 0.292E-03-0.292E-03 0.364E-03-0.338E-03 0.391E-03-0.368E-03 0.440E-03-0.400E-03	0.108E-03-0.154E-03 0.174E-03-0.193E-03 0.242E-03-0.245E-03 0.293E-03-0.283E-03 0.334E-03-0.306E-03 0.339E-03-0.334E-03
CIV 3D-5F 799.7 A C= 0.55D+14	10000. 20000. 50000. 100000. 150000. 200000.	0.136E+02-0.139E-04 0.113E-02-0.407E-05 0.866E-03-0.295E-05 0.697E-03-0.490E-05 0.609E-03-0.568E-05 0.553E-03-0.684E-05	0.797E-03 0.793E-03 0.101E-02 0.977E-03 0.125E-02 0.118E-02 0.153E-02 0.135E-02 0.172E-02 0.145E-02 0.164E-02 0.148E-02	*0.681E-03*0.663E-03 0.860E-03 0.810E-03 0.103E-02 0.939E-03 0.114E-02 0.111E-02 0.131E-02 0.113E-02 0.161E-02 0.127E-02
CIV 4S-4P 14343.7 A C= 0.42D+19	10000. 20000. 50000. 100000. 150000. 200000.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.188E-02 0.189E-02 0.374E-02 0.318E-02 0.649E-02 0.491E-02 0.797E-02 0.592E-02 0.891E-02 0.659E-02 0.968E-02 0.715E-02	0.264E-02 0.181E-02 0.434E-02 0.283E-02 0.651E-02 0.416E-02 0.773E-02 0.499E-02 0.840E-02 0.548E-02 0.898E-02 0.589E-02
CIV 4S-5P 2104.7 A C= 0.46D+17	10000. 20000. 50000. 100000. 150000. 200000.	0.826E-02 0.216E-03 0.670E-02 0.247E-03 0.525E-02 0.171E-03 0.439E-02 0.153E-03 0.394E-02 0.112E-03 0.365E-02 0.839E-04	0.281E-03 0.339E-03 0.463E-03 0.471E-03 0.666E-03 0.600E-03 0.795E-03 0.703E-03 0.905E-03 0.748E-03 0.949E-03 0.827E-03	0.300E-03 0.299E-03 0.448E-03 0.395E-03 0.603E-03 0.509E-03 0.712E-03 0.589E-03 0.767E-03 0.631E-03 0.836E-03 0.690E-03
C IV 4P-5S 2698.0 A C= 0.15D+18	10000. 20000. 50000. 100000. 150000. 200000.	0.117E-01 0.137E-02 0.900E-02 0.104E-02 0.691E-02 0.927E-03 0.577E-02 0.786E-03 0.520E-02 0.740E-03 0.482E-02 0.714E-03	0.150E-03 0.270E-03 0.296E-03 0.389E-03 0.522E-03 0.525E-03 0.665E-03 0.626E-03 0.745E-03 0.701E-03 0.829E-03 0.739E-03	0.179E-03 0.244E-03 0.304E-03 0.341E-03 0.470E-03 0.443E-03 0.573E-03 0.527E-03 0.625E-03 0.567E-03 0.702E-03 0.599E-03
CIV 4P-5D 2405.0 A C= 0.29D+16	10000. 20000. 50000. 100000. 150000. 200000.	0.156E-01 0.594E-03 0.125E-01 0.467E-03 0.953E-02 0.270E-03 0.772E-02 0.156E-03 0.680E-02 0.774E-04 0.620E-02 0.452E-04	0.345E-02 0.372E-02 0.445E-02 0.459E-02 0.589E-02 0.557E-02 0.666E-02 0.638E-02 0.764E-02 0.684E-02 0.844E-02 0.749E-02	0.303E-02 0.312E-02 0.386E-02 0.379E-02 0.493E-02 0.469E-02 0.606E-02 0.508E-02 0.597E-02 0.594E-02 0.659E-02 0.557E-02

M.S. Dimitrijević, S. Sahal-Bréchot, V. Bommier

PERTURB	ER DENSI	TY = 0.1D + 16		
TRANSITION	т(К)	ELECTRONS WIDTH(A) SHIFT(A)	PROTONS WIDTH(A) SHIFT(A)	IONIZED HELIUM WIDTH(A) SHIFT(A)
CIV 4D-5P 2595.1 A C= 0.64D+16	10000. 20000. 50000. 100000. 150000. 200000.	0.136E-01 0.290E-03 0.111E-01 0.435E-03 0.876E-02 0.419E-03 0.730E-02 0.422E-03 0.654E-02 0.366E-03 0.603E-02 0.328E-03	0.497E-03-0.682E-03 0.864E-03-0.927E-03 0.124E-02-0.118E-02 0.154E-02-0.139E-02 0.173E-02-0.151E-02 0.180E-02-0.160E-02	0.519E-03-0.607E-03 0.787E-03-0.775E-03 0.107E-02-0.991E-03 0.138E-02-0.115E-02 0.142E-02-0.123E-02 0.146E-02-0.129E-02
CIV 4D-5P 2595.1 A C= 0.64D+16	10000. 20000. 50000. 100000. 150000. 200000.	0.136E-01 0.290E-03 0.111E-01 0.435E-03 0.876E-02 0.419E-03 0.730E-02 0.422E-03 0.654E-02 0.366E-03 0.603E-02 0.328E-03	0.497E-03-0.682E-03 0.864E-03-0.927E-03 0.124E-02-0.118E-02 0.154E-02-0.139E-02 0.173E-02-0.151E-02 0.180E-02-0.160E-02	0.519E-03-0.607E-03 0.787E-03-0.775E-03 0.107E-02-0.991E-03 0.138E-02-0.115E-02 0.142E-02-0.123E-02 0.146E-02-0.129E-02
CIV 4D-5F 2524.4 A C= 0.55D+15	10000. 20000. 50000. 100000. 150000. 200000.	$\begin{array}{c} 0.163E-01-0.504E-03\\ 0.135E-01-0.228E-03\\ 0.105E-01-0.164E-03\\ 0.845E-02-0.139E-03\\ 0.741E-02-0.132E-03\\ 0.674E-02-0.130E-03 \end{array}$	$\begin{array}{c} 0.757E-02 & 0.760E-02 \\ 0.946E-02 & 0.941E-02 \\ 0.121E-01 & 0.113E+01 \\ 0.141E-01 & 0.128E-01 \\ 0.166E-01 & 0.141E-01 \\ 0.154E-01 & 0.141E-01 \end{array}$	*0.653E-02*0.632E-02 0.815E-02 0.774E-02 0.103E-01 0.884E-02 0.111E-01 0.104E-01 0.123E-01 0.111E-01 0.151E-01 0.127E-01
CIV 4F-5D 2534.5 A C= 0.33D+16	10000. 20000. 50000. 100000. 150000. 200000.	0.159E-01 0.906E-03 0.128E-01 0.860E-03 0.982E-02 0.561E-03 0.797E-02 0.395E-03 0.702E-02 0.277E-03 0.640E-02 0.211E-03	0.415E-02 0.449E-02 0.554E-02 0.548E-02 0.700E-02 0.676E-02 0.811E-02 0.797E-02 0.918E-02 0.836E-02 0.104E-01 0.894E-02	0.367E-02 0.373E-02 0.467E-02 0.464E-02 0.634E-02 0.555E-02 0.681E-02 0.633E-02 0.783E-02 0.706E-02 0.768E-02 0.709E-02
CIV 55-5P 28649.2 A C= 0.84D+19	10000. 20000. 50000. 100000. 150000. 200000.	$\begin{array}{rrrr} 1.94 & -0.612E-01 \\ 1.56 & -0.388E-01 \\ 1.24 & -0.481E-01 \\ 1.06 & -0.439E-01 \\ 0.955 & -0.472E-01 \\ 0.887 & -0.493E-01 \end{array}$	0.381E-01 0.367E-01 0.599E-01 0.517E-01 0.857E-01 0.687E-01 0.106 0.824E-01 0.115 0.901E-01 0.119 0.936E-01	0.437E-01 0.325E-01 0.643E-01 0.453E-01 0.823E-01 0.580E-01 0.962E-01 0.680E-01 0.108 0.752E-01 0.106 0.784E-01
CIV 5S-6P 3936.0 A C= 0.92D+17	10000. 20000. 50000. 100000. 150000. 200000.	0.581E-01 0.159E-02 0.484E-01 0.139E-02 0.400E-01 0.106E-02 0.345E-01 0.637E-03 0.314E-01 0.301E-03 0.292E-01 0.159E-03	0.307E-02 0.329E-02 0.439E-02 0.414E-02 0.585E-02 0.521E-02 0.705E-02 0.615E-02 0.759E-02 0.662E-02 0.822E-02 0.716E-02	0.315E-02 0.283E-02 0.400E-02 0.345E-02 0.526E-02 0.440E-02 0.606E-02 0.492E-02 0.610E-02 0.539E-02 0.676E-02 0.563E-02
CIV 5P-6S 5022.2 A C= 0.26D+18	10000. 20000. 50000. 100000. 150000. 200000.	0.744E-01 0.137E-01 0.634E-01 0.108E-01 0.536E-01 0.810E-02 0.468E-01 0.649E-02 0.429E-01 0.606E-02 0.400E-01 0.564E-02	0.172E-02 0.214E-02 0.288E-02 0.296E-02 0.406E-02 0.375E-02 0.508E-02 0.452E-02 0.546E-02 0.484E-02 0.596E-02 0.505E-02	0.183E-02 0.191E-02 0.271E-02 0.247E-02 0.364E-02 0.315E-02 0.423E-02 0.369E-02 0.477E-02 0.405E-02 0.543E-02 0.425E-02
CIV 5P-5D 97210.1 A C= 0.48D+19	10000. 20000. 50000. 100000. 150000. 200000.	31.7 0.463 26.1 0.153 20.4 -0.877E-01 16.8 -0.235 14.9 -0.274 13.7 -0.274	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4.754.896.196.007.787.269.688.109.269.0710.98.94
CIV 5P-6D 4441.8 A C= 0.64D+16	10000. 20000. 50000. 100000. 150000.	0.122 0.437E-02 0.101 0.347E-02 0.783E-01 0.191E-02 0.641E-01 0.759E-03 0.566E-01 0.301E-03 0 517E-01 0 122E-03	0.322E-01 0.319E-01* 0.414E-01 0.399E-01* 0.557E-01 0.476E-01* 0.603E-01 0.525E-01 0.618E-01 0.538E-01 0.691E-01 0.659E-01	0.277E-01*0.268E-01 0.335E-01*0.331E-01 0.444E-01*0.406E-01 0.532E-01 0.447E-01 0.484E-01 0.511E-01 0.600E-01 0.460E-01

70

STARK BROADENING PARAMETER TABLES FOR SPECTRAL LINES OF MULTICHARGED IONS OF ASTROPHYSICAL INTEREST. I: C IV LINES

PERTURI	BER DENS	ITY = 0.1D-	+16	DDOTIONS			
TRANSITION	T(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
CIV 5D-6P 4789.0 A C= 0.12D+17	10000. 20000. 50000. 100000. 150000. 200000.	0.107 0.906E-01 0.734E-01 0.620E-01 0.557E-01 0.513E-01	0.259E-02 0.262E-02 0.313E-02 0.278E-02 0.249E-02 0.234E-02	0.115E-01 0.152E-01 0.203E-01 0.239E-01 0.255E-01 0.261E-01	-0.121E-01 -0.150E-01 -0.187E-01 -0.201E-01 -0.230E-01 -0.235E-01	0.102E-01- 0.128E-01- 0.171E-01- 0.205E-01- 0.214E-01- 0.249E-01-	-0.103E-01 -0.124E-01 -0.153E-01 -0.178E-01 -0.184E-01 -0.197E-01
CIV 5D-6F 4647.0 A C≈ 0.64D+15	$\begin{array}{c} 10000.\\ 20000.\\ 50000.\\ 100000.\\ 150000.\\ 200000. \end{array}$	0.158 - 0.133 - 0.102 - 0.821E-01- 0.716E-01- 0.648E-01-	-0.542E-02 -0.221E-02 -0.158E-02 -0.216E-02 -0.183E-02 -0.147E-02	0.198 0.282 0.237 0.286	*0.198 *0.219 *0.248 *0.251	*0.227 *0.252	*0.197 *0.175
CIV 5F-6D 4665.0 A C= 0.19D+16	10000. 20000. 50000. 100000. 150000. 200000.	0.148 0.122 0.947E-01 0.768E-01 0.674E-01 0.612E-01	0.764E-02 0.608E-02 0.404E-02 0.268E-02 0.197E-02 0.164E-02	0.160E-01 0.207E-01 0.278E-01 0.331E-01 0.350E-01 0.390E-01	0.168E-01 0.205E-01 0.254E-01 0.293E-01 0.302E-01 0.328E-01	0.138E-01 0.175E-01 0.225E-01 0.265E-01 0.302E-01 0.282E-01	0.141E-01 0.171E-01 0.205E-01 0.235E-01 0.259E-01 0.258E-01

i

)1)1)1)1)1)1

× .

•

Table 2. Same as Table 1 but for perturber denities $10^{18} - 10^{21}$ cm⁻³ and temperatures from 20,000 K to 800,000 K.

PERTURE	SER DENSITY = 0	1D+19	BBORONE	ter an N te	TONTZED HELTIM
TRANSITION	T(K) WIDTH(A) SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A) SHIFT(A)
CIV 2S-2P 1549.1 A C= 0.15D+22	20000.0.117 50000.0.723E 80000.0.577E 100000.0.520E 150000.0.432E 200000.0.382E	0.679E-02 01-0.181E-02 01-0.192E-02 01-0.176E-02 01-0.196E-02 01-0.217E-02	0.155E-03 0.641E-03 0.120E-02 0.152E-02 0.226E-02 0.268E-02	-0.323E+03 -0.924E+03 -0.143E+02 -0.168E-02 -0.222E-02 -0.252E-02	$\begin{array}{c} 0.275 \pm -03 - 0.323 \pm -03 \\ 0.990 \pm -03 - 0.900 \pm -03 \\ 0.161 \pm -02 - 0.134 \pm -02 \\ 0.199 \pm -02 - 0.157 \pm -02 \\ 0.254 \pm -02 - 0.195 \pm -02 \\ 0.304 \pm -02 - 0.226 \pm -02 \end{array}$
CIV 2S-3P2 312.4 A C= 0.47D+19	20000. 0.179E 50000. 0.121E 80000. 0.101E 100000. 0.929E 150000. 0.804E 200000. 0.730E	01 0.126E-03 01 0.352E-03 01 0.321E-03 02 0.308E-03 02 0.309E-03 02 0.306E-03	$\begin{array}{c} 0.265E-03\\ 0.678E-03\\ 0.943E-03\\ 0.108E-02\\ 0.126E-02\\ 0.138E-02 \end{array}$	0.325E-03 0.677E-03 0.886E-03 0.970E-03 0.110E-02 0.118E+02	0.360E-03 0.301E-03 0.755E+03 0.597E-03 0.980E-03 0.762E-03 0.105E-02 0.809E-03 0.119E-02 0.923E-03 0.128E-02 0.990E-03
CIV 2S-4P 244.9 A C= 0.12D+19	20000. 0.331E- 50000. 0.239E- 80000. 0.205E- 100000. 0.192E- 150000. 0.169E- 200000. 0.155E-	01 0.825E-03 01 0.109E-02 01 0.120E-02 01 0.120E-02 01 0.120E-02 01 0.126E-02 01 0.114E-02	*0.152E-02 *0.281E-02 *0.332E-02 *0.352E-02 0.400E-02 0.444E-02	*0.134E-02* *0.237E-02* *0.290E-02* *0.307E-02* 0.351E-02* 0.384E-02*	0.163E-02*0.114E-02 0.265E-02*0.198E-02 0.300E-02*0.241E-02 0.325E-02*0.258E-02 0.349E-02*0.295E-02 0.377E-02*0.318E-02
CIV 2S-5P 222.8 A C= 0.51D+18	20000. 0.611E- 50000. 0.484E- 80000. 0.429E- 100000. 0.405E- 150000. 0.364E- 200000. 0.337E-	01 0.147E-02 01 0.240E-02 01 0.313E-02 01 0.305E-02 01 0.304E-02 01 0.268E-02			
CIV 2P-3S 419.6 A C= 0.30D+20	20000. 0.242E- 50000. 0.153E- 80000. 0.125E- 100000. 0.114E- 150000. 0.980E- 200000. 0.884E-	01 0.858E-03 01 0.138E-02 01 0.162E-02 01 0.168E-02 02 0.160E-02 02 0.158E-02	$\begin{array}{c} 0.122 \pm -03\\ 0.605 \pm -03\\ 0.903 \pm -03\\ 0.109 \pm -02\\ 0.146 \pm -02\\ 0.166 \pm -02 \end{array}$	0.454E-03 0.993E-03 0.129E-02 0.142E-02 0.162E-02 0.175E-02	0.169E-03 0.429E-03 0.583E-03 0.859E-03 0.880E-03 0.112E-02 0.107E-02 0.121E-02 0.129E-02 0.137E-02 0.142E-02 0.147E-02
CIV 2P-4S 296.9 A C= 0.61D+19	20000. 0.318E- 50000. 0.225E- 80000. 0.193E- 100000. 0.180E- 150000. 0.158E- 200000. 0.144E-	01 0.423E-02 01 0.378E-02 01 0.370E-02 01 0.362E-02 01 0.356E-02 01 0.342E-02	0.946E-03 0.220E-02 0.285E-02 0.308E-02 0.363E-02 0.395E-02	0.136E-02 0.246E-02* 0.295E-02* 0.315E-02 0.361E-02 0.386E-02	0.966E-03 0.114E-02 0.203E-02*0.201E-02 0.245E-02*0.247E-02 0.265E-02 0.265E-02 0.300E-02 0.302E-02 0.351E-02 0.323E-02
CIV 2P-5S 262.6 A C= 0.24D+19	20000. 0.568E- 50000. 0.433E- 80000. 0.381E- 100000. 0.358E- 150000. 0.321E- 200000. 0.297E-	01 0.118E-01 01 0.105E-01 01 0.962E-02 01 0.919E-02 01 0.883E-02 01 0.838E-02	*0.350E-02* *0.634E-02* *0.746E-02* *0.795E-02* *0.935E-02* *0.954E-02*	0.330E-02 0.563E-02 0.695E-02 0.755E-02 0.847E-02* 0.915E-02*	0.750E-02*0.702E-02 0.848E-02*0.743E-02
CIV 2P-3D 384.1 A C= 0.71D+19	20000. 0.166E- 50000. 0.109E- 80000. 0.892E- 100000. 0.815E- 150000. 0.696E- 200000. 0.628E-	01-0.404E-03 01-0.232E-03 02-0.177E-03 02-0.178E-03 02-0.186E-03 02-0.152E-03	0.163E-03- 0.580E-03- 0.831E-03- 0.984E-03- 0.125E-02- 0.140E-02-	0.339E-03 0.757E-03 0.981E-03 0.109E-02 0.124E-02 0.135E-02	0.237E-03-0.322E-03 0.609E-03-0.654E-03 0.866E-03-0.858E-03 0.996E-03-0.931E-03 0.116E-02-0.106E-02 0.127E-02-0.113E-02
CIV 2P-4D 289.2 A C= 0.80D+17	20000. 0.402E- 50000. 0.311E- 80000. 0.273E- 100000. 0.256E- 150000. 0.228E- 200000. 0.210E-	$\begin{array}{c} 01-0.175 \pm -02\\ 01-0.744 \pm -03\\ 01-0.213 \pm -03\\ 01-0.204 \pm -03\\ 010.475 \pm -03\\ 010.379 \pm -03 \end{array}$			
STARK BROADENING PARAMETER TABLES FOR SPECTRAL LINES OF MULTICHARGED IONS OF ASTROPHYSICAL INTEREST. I: C IV LINES

•

PERTUR	BER DENS	ITY = 0.10	D+19		5		
TRANSITION	Т(К)	ELECTRONS WIDTH(A)	S SHIFT(A)	PROTONS WIDTH(A)	SHIFT(A)	IONIZED HI WIDTH(A)	ELIUM SHIFT(A)
CIV 2P-5D 259.5 A C= 0.34D+17	20000. 50000. 80000. 100000. 150000. 200000.	0.842E-01 0.692E-01 0.619E-01 0.586E-01 0.526E-01 0.485E-01	1-0.342E-02 1-0.202E-02 1-0.498E-03 1-0.453E-03 1 0.108E-02 1 0.727E-03				
CIV 3S-3P 5801.0 A C= 0.16D+22	$\begin{array}{c} 20000.\\ 50000.\\ 80000.\\ 100000.\\ 150000.\\ 200000. \end{array}$	8.95 6.03 5.02 4.63 4.02 3.66	-0.126 -0.105 -0.163 -0.183 -0.166 -0.162	0.710E-01 0.172 0.223 0.251 0.290 0.309	0.339E-01 0.832E-01 0.113 0.126 0.153 0.167	0.106 0.205 0.260 0.277 0.302 0.319	0.330E-01 0.766E-01 0.994E-01 0.111 0.130 0.140
CIV 3S-4P 948.1 A C= 0.18D+20	20000. 50000. 80000. 100000. 150000. 200000.	0.569 0.407 0.348 0.324 0.286 0.263	0.828E-02 0.105E-01 0.108E-01 0.104E-01 0.116E-01 0.995E-02	*0.220E-01 *0.402E-01 *0.479E-01 *0.514E-01 0.586E-01 0.627E-01	*0.191E-01 *0.339E-01 *0.412E-01 *0.441E-01 0.503E-01 *0.548E-01	0.236E-01; 0.376E-01; 0.437E-01; 0.465E-01; 0.516E-01; 0.544E-01;	*0.162E-01 *0.279E-01 *0.342E-01 *0.364E-01 *0.416E-01 *0.444E-01
CIV 3S-5P 684.9 A C= 0.48D+19	20000. 50000. 80000. 100000. 150000. 200000.	0.615 0.482 0.426 0.402 0.361 0.334	0.115E-01 0.195E-01 0.258E-01 0.248E-01 0.250E-01 0.216E-01				
CIV 3P-4S 1230.0 A C= 0.73D+20	20000. 50000. 80000. 100000. 150000. 200000.	0.716 0.514 0.441 0.411 0.363 0.333	0.503E-01 0.565E-01 0.560E-01 0.552E-01 0.544E-01 0.522E-01	0.146E-01 0.337E-01 0.435E-01 0.481E-01 0.549E-01 0.601E-01	0.204E-01 0.373E-01 0.446E-01 0.476E-01 0.539E-01 0.580E-01	0.159E-01 0.322E-01 0.388E-01 0.419E-01 0.486E-01 0.505E-01	0.173E-01 0.306E-01 0.372E-01 0.395E-01 0.456E-01 0.490E-01
CIV 3P-5S 798.1 A C= 0.22D+20	20000. 50000. 80000. 100000. 150000. 200000.	0.584 0.446 0.393 0.370 0.332 0.308	0.105 * 0.923E-01* 0.856E-01* 0.816E-01* 0.779E-01* 0.729E-01*	0.315E-01* 0.565E-01* 0.681E-01* 0.708E-01* 0.836E-01* 0.864E-01*	0.298E-01 0.510E-01 0.632E-01 0.677E-01 0.774E-01* 0.816E-01*	0.680E-01* 0.774E-01*	0.633E-01 0.685E-01
CIV 3P-4D 1107.6 A C= 0.12D+19	20000. 50000. 80000. 100000. 150000. 200000.	0.684 0.524 0.459 0.430 0.383 0.353	-0.263E-01 -0.166E-01 -0.842E-02 -0.801E-02 0.189E-02 0.445E-03				
CIV 3P-5D 770.3 A C= 0.30D+18	20000. 50000. 80000. 100000. 150000. 200000.	0.789 0.643 0.574 0.542 0.486 0.449	-0.309E-01 -0.207E-01 -0.702E-02 -0.648E-02 0.701E-02 0.389E-02				· · · ·
CIV 3P-4F 1106.5 A C= 0.12D+19	20000. 50000. 80000. 100000. 150000. 200000.	0.413 0.312 0.271 0.254 0.226 0.208	0.144E-01 0.435E-02 -0.323E-02 -0.300E-02 -0.880E-02 -0.633E-02				

PERTUR	BER DENS	ITY = 0.1D	+19	DDOMONIC .	enala y la N Presidente	TONIZED	
TRANSITION	Т(К)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A	ABLIOM A) SHIFT(A)
CIV 3D-4P 1198.6 A C= 0.29D+20	20000. 50000. 80000. 100000. 150000. 200000.	0.834 0.603 0.517 0.482 0.426 0.391	0.217E-01 0.298E-01 0.318E-01 0.318E-01 0.338E-01 0.332E-01 0.302E-01	*0.360E-0 *0.678E-0 *0.808E-0 *0.871E-0 *0.973E-0 *0.112	1*0.334E-01 1*0.591E-01 1*0.728E-01 1*0.781E-01 1*0.890E-01 *0.948E-01	*0.381E-0 *0.632E-0 *0.736E-0 *0.783E-0 *0.867E-0 *0.954E-0	1*0.285E-01 1*0.489E-01 1*0.605E-01 1*0.640E-01 1*0.746E-01 1*0.800E-01
CIV 3D-5P 806.6 A C= 0.67D+19	20000. 50000. 80000. 100000. 150000. 200000.	0.820 0.647 0.574 0.542 0.487 0.450	$\begin{array}{c} 0.203 \pm -01 \\ 0.331 \pm -01 \\ 0.424 \pm -01 \\ 0.414 \pm -01 \\ 0.413 \pm -01 \\ 0.365 \pm -01 \end{array}$			2 2000 - 1 2000 - 1 2	* .
CIV 3D-4F 1169.0 A C= 0.13D+19	$\begin{array}{c} 20000 \\ 50000 \\ 80000 \\ 100000 \\ 150000 \\ 200000 \\ \end{array}$	0.393 0.299 0.260 0.244 0.217 0.200	0.169E-01 0.116E-01 0.259E-02 0.274E-02 -0.325E-02 -0.587E-03			•	9 8 12
CIV 3D-5F 799.7 A C= 0.55D+17	20000. 50000. 80000. 100000. 150000. 200000.	0.555 0.499 0.458 0.437 0.397 0.369	0.159E-01 0.690E-02 -0.116E-02 -0.223E-02 -0.496E-02 -0.572E-02				
CIV 4S-5P 2104.7 A C= 0.46D+20	20000. 50000. 80000. 100000. 150000. 200000.	6.65 5.22 4.63 4.37 3.93 3.63	0.845E-02 0.448E-01 0.108 0.103 0.102 0.752E-01	•0.949	*0.819		
C IV 4P-5S 2698.0 A C= 0.15D+21	20000. 50000. 80000. 100000. 150000. 200000.	9.00 6.91 6.12 5.77 5.20 4.82	0.894 0.853 0.818 0.754 0.733 0.708	<pre>*0.292 *0.524 *0.623 *0.668 *0.745 *0.829</pre>	*0.264 *0.451 *0.559 *0.593 *0.695 *0.733	*0.536 *0.569 *0.625 *0.702	*0.456 *0.498 *0.561 *0.594
CIV 4P-5D 2405.0 A C= 0.29D+19	20000. 50000. 80000. 100000. 150000. 200000.	9.21 - 7.44 - 6.62 - 6.25 - 5.61 - 5.17 -	0.377 0.287 0.166 0.161 0.350E-0 0.541E-0	9			
CIV 4D-5P 2595.1 A C= 0.64D+19	20000. 50000. 80000. 100000. 150000. 200000.	10.3 8.25 7.35 6.95 6.25 5.78	0.332 0.392 0.448 0.437 0.381 0.340	* 			
CIV 4D-5F 2524.4 A C= 0.55D+18	$\begin{array}{c} 20000.\\ 50000.\\ 80000.\\ 100000.\\ 150000.\\ 200000. \end{array}$	7.10 6.36 5.83 5.56 5.05 4.69	0.264 0.112 0.483E-02 0.159E-01 0.947E-01 0.933E-01		n La chuir La chuir La chuir		

74

1.1.943

STARK BROADENING PARAMETER TABLES FOR SPECTRAL LINES OF MULTICHARGED IONS OF ASTROPHYSICAL INTEREST. I: C IV LINES

PERTUR	BER DENS	ITY = 0.11	D+20	. 81	G1.0 = 771	shad salar	
TRANSITION	т(к)	ELECTRON: WIDTH(A)	S SHIFT(A)	PROTONS WIDTH(A)	SHIFT(A)	IONIZED WIDTH(A	HELIUM) SHIFT(A)
CIV 2P-4D 289.2 A C= 0.80D+18	50000. 80000. 100000. 150000. 200000. 300000.	0.257 0.230 0.218 0.197 0.183 0.164	-0.318E-02 -0.422E-02 -0.454E-02 -0.354E-02 -0.102E-02 0.171E-02		83,8 91,19 71,9 71,0 71,0 7,0 9	200000 300000 100000 150000 150000 150000 150000	Ge-28 UIT A e 9585 Leige 3 ≪o R
CIV 2P-5D 259.5 A C= 0.34D+18	50000. 80000. 100000. 150000. 200000. 300000.	0.515 0.478 0.458 0.421 0.395 0.357	0.230E-03 -0.424E-02 -0.468E-02 -0.522E-02 -0.312E-02 0.433E-02		0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12	19430 936 90006 000692 9 900091 900091 900360 06360 06360	288708 277 28-38 1549.1 X 2- 0.150+2
CIV 3S-4P 948.1 A C= 0.18D+21	50000. 80000. 100000. 150000. 200000. 300000.	3.98 3.42 3.18 2.82 2.59 2.30	-0.316E-01 -0.100E-01 0.173E-02 0.326E-01 0.568E-01 0.662E-01			**************************************	CIN 25-37 313.4 A CH 6.475+75
CIV 3S-5P 684.9 A C= 0.48D+20	50000. 80000. 100000. 150000. 200000. 300000.	4.36 3.91 3.71 3.36 3.13 2.81	-0.922E-01 -0.702E-02 0.114E-01 0.429E-01 0.989E-01 0.162	0.1178-02 0.3408-02 0.6885-02 0.8335-02 0.9015-02	5.125 1011 1011 1011 1011 1011 1011 1011 1		
CIV 3P-4S 1230.0 A C= 0.73D+21	50000. 80000. 100000. 150000. 200000. 300000.	5.14 4.41 4.11 3.62 3.32 2.95	0.449 0.463 0.469 0.476 0.487 0.498	*0.336 *0.430 *0.480 *0.544 *0.604 *0.695	*0.277 *0.355 *0.394 *0.471 *0.545 *0.636	00 007 0000 0000 0000 0000 0000 0000	
CIV 3P-5S 798.1 A C= 0.22D+21	50000. 80000. 100000. 150000. 200000. 300000.	4.40 3.89 3.66 3.29 3.05 2.74	0.620 0.598 0.585 0.601 0.640 0.646	0.120%-01 0.1586-01 0.1588-01 0.1588-01 0.1588-01 0.1588-01	10.115 0.125 0.115 0.115 0.115 0.115 0.105 0.0550 0.0550 0.0550 0.0550 0.0550 0.05500000000		281-90, -V 27-26-24 27-26-0
CIV 3P-4D 1107.6 A C= 0.12D+20	50000. 80000. 100000. 150000. 200000. 300000.	4.46 3.96 3.74 3.37 3.13 2.81	-0.839E-01 -0.987E-01 -0.102 -0.910E-01 -0.604E-01 -0.227E-01	89, 222 22 30, 22 - 2 30, 37 - 2 10, 31 - 5 0, 312 5 5 - 0 0, 312 5 5 - 0	0 187 0 187 0 187 0 187 0 187	41902 41007 9743 49002 20005 500105	
CIV 3P-5D 770.3 A C= 0.30D+19	50000. 80000. 100000. 150000. 200000. 300000.	4.87 4.49 4.30 3.94 3.69 3.33	-0.171E-01 -0.559E-01 -0.592E-01 -0.653E-01 -0.499E-01 0.149E-01	0.708E-01 0.574x-61 0.561E-01 0.584E-01 0.739E-01 1.732E-01	0.427 0.377 0.354 0.358 0.358 0.384 0.264	- 6 0 6 6 2 - 6 0 0 18 - 6 0 0 12 T - 6 0 0 6 2 T - 6 0 0 0 0 3 T - 6 0 0 6 2 T	017 21-58 (62.6 A (- 0,240-20
CIV 3P-4F 1106.5 A C= 0.12D+20	50000. 80000. 100000. 150000. 200000. 300000.	2.61 2.30 2.17 1.96 1.82 1.64	0.107 0.823E-01 0.779E-01 0.650E-01 0.195E-01 -0.263E-01	0.7478-03 0.5079-03 0.5458-03 1.1038-03 0.1058-03	-10-318310 -10-31830 -0-31130 -10-30130 -10-30230 -0-30130 -0-30130		45-46-940 A. L.644 - 0-713-430

PERTUR	BER DENS	ITY = 0.1D	+19				
TRANSITION	T(K)	ELECTRONS WIDTH(A)	SHIFT(A)	PROTONS WIDTH(A)	SHIFT(A)	IONIZED HEI WIDTH(A)	LIUM SHIFT(A)
CIV 4F-5D 2534.5 A C= 0.33D+19	20000. 50000. 80000. 100000. 150000. 200000.	8.63 7.19 6.47 6.12 5.51 5.09	-0.389 -0.235 -0.509E-01 -0.475E-01 0.127 0.788E-01				
PERTURB CIV 2S-2P 1549.1 A C= 0.15D+23	ER DENSI 50000. 80000. 100000. 150000. 200000. 300000.	TY = 0.1D+ 0.723 0.577 0.520 0.432 0.382 0.323	20 -0.164E-01 -0.181E-01 -0.167E-01 -0.185E-01 -0.211E-01 -0.224E-01	0.635E-02- 0.120E-01- 0.151E-01- 0.226E-01- 0.268E-01- 0.355E-01-	0.819E-02 0.133E-01 0.159E-01 0.215E-01 0.249E-01 0.308E-01	0.979E-02-0 0.161E-01-0 0.198E-01-0 0.253E-01-0 0.304E-01-0 0.369E-01-0	0.794E-02 0.124E-01 0.148E-01 0.188E-01 0.222E-01 0.266E-01
CIV 2S-3P 312.4 A C= 0.47D+20	50000. 80000. 100000. 150000. 200000. 300000.	0.121 0.101 0.928E-01 0.804E-01 0.729E-01 0.640E-01	0.197E-02 0.196E-02 0.197E-02 0.220E-02 0.263E-02 0.278E-02	0.667E-02 0.938E-02 0.108E-01 0.127E-01 0.138E-01 0.153E-01	0.559E-02* 0.775E-02* 0.873E-02* 0.102E-01* 0.114E-01* 0.131E-01*	0.737E-02*0 0.966E-02*0 0.104E-01*0 0.119E-01*0 0.128E-01*0 0.142E-01*0).481E-02).650E-02).710E-02).843E-02).948E-02).108E-01
CIV 2S-4P 244.9 A C= 0.12D+20	50000. 80000. 100000. 150000. 200000. 300000.	0.234 0.201 0.188 0.166 0.153 0.136	0.117E-02 0.360E-02 0.473E-02 0.663E-02 0.833E-02 0.901E-02				
CIV 2S-5P 222.8 A C= 0.51D+19	50000. 80000. 100000. 150000. 200000. 300000.	0.434 0.392 0.373 0.338 0.314 0.283	-0.692E-02 0.285E-02 0.508E-02 0.825E-02 0.143E-01 0.210E-01				
CIV 2P-3S 419.6 A C= 0.30D+21	50000. 80000. 100000. 150000. 200000. 300000.	0.153 0.125 0.114 0.980E-01 0.883E+01 0.769E-01	0.120E-01 0.145E-01 0.153E-01 0.149E-01 0.153E-01 0.154E-01	$\begin{array}{c} 0.604 \pm -02\\ 0.905 \pm -02\\ 0.109 \pm -01\\ 0.147 \pm -01\\ 0.167 \pm -01\\ 0.195 \pm -01 \end{array}$	0.833E-02 0.114E-01 0.129E-01 0.151E-01 0.170E-01 0.195E-01	0.580E-02 0 0.882E-02 0 0.106E-01 0 0.130E-01 0 0.142E-01 0 0.166E-01 0	.700E-02 .968E-01 .107E-01 .126E-01 .142E-01 .161E-01
CIV 2P-48 296.9 A C= 0.61D+20	50000. 80000. 100000. 150000. 200000. 300000.	0.225 0.193 0.180 0.158 0.144 0.127	0.296E-01 0.302E-01 0.304E-01 0.308E-01* 0.318E-01* 0.325E-01*	0.360±-01* 0.398±-01* 0.451±-01*	0.316E-01 0.363E-01 0.414E-01		
CIV 2P-5S 262.6 A C= 0.24D+20	50000. 80000. 100000. 150000. 200000. 300000.	0.427 0.377 0.354 0.318 0.294 0.264	$\begin{array}{c} 0.708 \pm -01 \\ 0.674 \pm -01 \\ 0.661 \pm -01 \\ 0.684 \pm -01 \\ 0.739 \pm -01 \\ 0.732 \pm -01 \end{array}$				
CIV 2P-3D 384.1 A C= 0.71D+20	50000. 80000. 100000. 150000. 200000. 300000.	0.109 0.891E-01- 0.814E-01- 0.696E-01- 0.628E-01- 0.547E-01-	-0.747E-03 -0.509E-03 -0.648E-03 -0.103E-02 -0.108E-02 -0.733E-03	0.575E-02- 0.828E-02- 0.984E-02- 0.124E-01- 0.140E-01- 0.160E-01-	0.637E-02*) 0.869E-02*) 0.986E-02*) 0.115E-01 0.131E-01 0.149E-01	D.600E-02-0 D.867E-02-0 D.992E-02-0 D.114E-01-0 D.127E-01-0 D.143E-01-0	.535E-01 .749E-01 .825E-0, .969E-01 .109E-01 .125E-01

STARK BROADENING PARAMETER TABLES FOR SPECTRAL LINES OF MULTICHARGED IONS OF ASTROPHYSICAL INTEREST. I: C IV LINES

PERTUR	BER DENS	ITY = 0.1I	0+20				
TRANSITION	T(K)	ELECTRONS WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
CIV 3D-4P 1198.6 A C= 0.29D+21	50000. 80000. 100000. 150000. 200000. 300000.	5.89 5.06 4.72 4.18 3.85 3.42	0.495E-01 0.105 0.132 0.182 0.225 0.238				
CIV 3D-5P 806.6 A C= 0.67D+20	50000. 80000. 100000. 150000. 200000. 300000.	5.83 5.26 4.99 4.52 4.21 3.78	-0.814E-01 0.455E-01 0.750E-01 0.119 0.198 0.285				
CIV 3D-4F 1169.0 A C= 0.13D+20	50000. 80000. 100000. 150000. 200000. 300000.	2.42 2.15 2.03 1.84 1.71 1.55	0.150 0.124 0.121 0.117 0.760E-01 0.258E-01	• • •			
CIV 3D-5F 799.7 A C= 0.55D+18	50000. 80000. 100000. 150000. 200000. 300000.	3.45 3.30 3.20 3.00 2.84 2.61	0.105 0.968E-01 0.983E-01 0.806E-01 0.280E-01 -0.410E-01				
PERTURI CIV 2S-2P 1549.1 A C= 0.15D+24	BER DENS 100000. 150000. 200000. 300000. 500000. 800000.	1TY = 0.11 5.20 4.32 3.82 3.23 2.68 2.29	-0.141 -0.162 -0.191 -0.208 -0.193 -0.190	0.149 0.224 0.267 0.355 0.438 0.508	-0.137 -0.194 -0.228 -0.292 -0.353 -0.410	0.194 - 0.250 - 0.304 - 0.368 - 0.423 - 0.481 -	0.126 0.167 0.202 0.250 0.297 0.343
CIV 2S-3P 312.4 A C= 0.47D+21	100000. 150000. 200000. 300000. 500000. 800000.	0.898 0.780 0.710 0.624 0.535 0.468	-0.905E-02 -0.227E-02 0.294E-02 0.824E-02 0.119E-01 0.156E-01	*0.195	*0.164		
CIV 2S-4P 244.9 A C= 0.12D+21	100000. 150000. 200000. 300000. 500000. 800000.	1.60 1.44 1.34 1.21 1.06 0.936	-0.363E-01 -0.104E-01 -0.318E-02 0.669E-02 0.292E-01 0.583E-01				
CIV 2S-5P 222.8 A C= 0.51D+20	100000. 150000. 200000. 300000. 500000. 800000.	*2.69 * *2.54 * 2.43 2.25 2.02 1.83	-0.481E-01 -0.297E-01 -0.206E-01 0.757E-02 0.710E-01 0.129				
CIV 2P-3S 419.6 A C= 0.30D+22	100000. 150000. 200000. 300000. 500000.	1.14 0.979 0.882 0.768 0.653 0.568	0.111 0.113 0.119 0.127 0.135 0.130	*0.108 *0.144 *0.167 *0.194 *0.231 *0.274	*0.956E-01 *0.119 *0.140 *0.169 *0.211 *0.237		

M.S. Dimitrijević, S. Sahal-Bréchot, V. Bommier

PERTURE	BER DENS	ITY = 0.1D	+21			· · · · ·	
TRANSITION	Т(К)	ELECTRONS WIDTH(A)	SHIFT(A)	PROTONS WIDTH(A)	SHIFT(A)	IONIZED H WIDTH(A)	ELIUM SHIFT(A)
CIV 2P-4S 296.9 A C= 0.61D+21	100000. 150000. 200000. 300000. 500000. 800000.	1.71 1.51 1.38 1.23 1.06 0.926	0.122 0.156 0.176 0.211 0.233 0.235		19		
CIV 2P-5S 262.6 A C= 0.24D+21	100000. 150000. 200000. 300000. 500000. 800000.	2.80 2.61 2.49 2.28 2.00 1.77	0.112 0.209 0.269 0.332 0.402 0.478		8 		
CIV 2P-3D 384.1 A C= 0.71D+21	100000. 150000. 200000. 300000. 500000. 800000.	0.786 0.674 0.609 0.533 0.456 0.399	0.231E-01 0.147E-01 0.129E-01 0.125E-01 0.557E-02 0.225E-02	*0.967E-0: *0.124 *0.139 *0.161 *0.187 *0.218	1-0.745E-01 *-0.931E-01 *-0.109 *-0.131 *-0.162 *-0.189	یں۔ جور کریں ک	
CIV 2P-4D 289.2 A C= 0.80D+19	100000. 150000. 200000. 300000. 500000. 800000.	1.63 1.52 1.44 1.32 1.18 1.05	0.452E-01 0.314E-01 0.271E-01 0.150E-01 0.438E-03 -0.414E-02	, . ,			
CIV 2P-5D 259.5 A C= 0.34D+19	100000. 150000. 200000. 300000. 500000. 800000.	*2.98 2.87 2.77 2.60 2.37 2.15	*0.108 0.799E-01 0.629E-01 0.376E-01 -0.185E-01 -0.513E-01				·
PERTORI CIV 2S-3P 312.4 A C= 0.47D+22	100000. 150000. 200000. 300000. 500000.	*7.38 * 6.59 6.09 5.45 4.76 4.22	+22 -0.212 -0.152 -0.117 -0.669E-01 -0.403E-01 0.199E-01	- N-21			
CIV 2P-3S 419.6 A C= 0.30D+23	100000. 150000. 200000. 300000. 500000. 800000.	10.3 9.02 8.20 7.19 6.17 5.40	-0.313 0.255E-01 0.258 0.486 0.778 0.985				
CIV 2P-4S 296.9 A C= 0.61D+22	100000. 150000. 200000. 300000. 500000. 800000.	*10.2 9.89 9.54 8.95 8.12 7.31	*-1.74 -0.840 -0.414 0.169 0.709 1.28			1 -	
CIV 2P-3D 384.1 A C= 0.71D+22	100000. 150000. 200000. 300000. 500000. 800000.	6.59 5.76 5.28 4.69 4.08 3.61	0.449 0.351 0.332 0.320 0.245 0.174		У А	101 1000 1000 1000 1000 1000 1000 1000	

Manager and the second

78

l T

and the second second second

STARK BROADENING PARAMETER TABLES FOR SPECTRAL LINES OF MULTICHARGED IONS OF ASTROPHYSICAL INTEREST. I: C IV LINES

ТАБЛИЦЕ ЗА ПАРАМЕТРЕ ШТАРКОВОГ ШИРЕЊА ЛИНИЈА ВИШЕСТРУКО НАЕЛЕКТРИСАНИХ ЈОНА ОД АСТРОФИЗИЧКОГ ИНТЕРЕСА. I: ЛИНИЈЕ С IV

M.C. Димитријевић¹, S. Sahal-Bréchot² и V. Bommier²

¹ Астрономска опсерваторија, Волгина 7, 11050 Београд, Југославија ² Département "Atomes et Molécules en Astrophysique", Unité associée au C.N.R.S. No 812, Observatoire de Paris, 92195 Meudon, France

> УДК 52-355.3 Претходно саопштење

У оквиру семикласичне теорије израчунате су ширине и помаци услед судара са електронима, протонима и јонизованим хелијумом за спектралне линије у

оквиру 39 мултиплета С IV. Резултати су дати у функцији електронске температуре и густине. Bul. Obs. Astron. Belgrade N^o 144 (1991), 81-99.

STARK BROADENING PARAMETER TABLES FOR SPECTRAL LINES OF MULTICHARGED IONS OF ASTROPHYSICAL INTEREST. II: SI IV LINES

M. S. Dimitrijević¹, S. Sahal-Bréchot² and V. Bommier²

¹Astronomical Observatory, Volgina 7, 11050 Beograd, Yugoslavia

²Laboratoire , Astrophysique, Atomes et Molécules" Département Atomes et Molécules en Astrophysique Unité associée au C.N.R.S. No 812 Observatoire de Paris-Meudon, 92190 Meudon, France

(Received: January 22, 1991)

SUMMARY: Using a semiclassical approach, we have calculated electron-, proton-, and ionized helium-impact line widths and shifts for 39 Si IV multiplets as a function of temperature for perturber densities 10^{15} cm⁻³ and 10^{18} - 10^{21} cm⁻³.

1. INTRODUCTION

This is the second paper in a series devoted to the calculation of Stark broadening parameters of isolated spectral lines of multicharged ions. The astrophysical importance of multicharged ion lines Stark broadening data for the investigation of stellar interiors and stellar atmospherae is discussed in Dimitrijević, Sahal-Bréchot and Bommier (1991a,b). The present paper concerns triply ionized silicon: Beyond the interest for the modellisation of stellar interiors, the knowledge of Si IV Stark broadening parameters is of great importance for a number of problems in astrophysics and plasma physics, since silicon has a high cosmical abundance and is present as impurity in many laboratory plasma sources. In order to provide reliable data for Si IV lines broadened by collisions with charged perturbers in stellar plasmas, we have calculated electron-, proton-, and ionized helium-impact line widths and shifts for 39 Si IV multiplets, using the semiclassical-perturbation formalism (Sahal-Bréchot, 1969a,b).

The obtained results for perturber density of 10^{17} cm⁻³, together with discussion, analysis and comparison with existing experimental and theoretical data

will be published in the principal article elsewhere (Dimitrijević, Sahal-Bréchot, Bommier, 1991b). Since data are not linear with perturber density (N), due to the Debye screening effect, which is often important at high densities of interest for subphotospheric layers, we will present here the data for $N = 10^{18} - 10^{21}$ cm⁻³. Moreover, we will give also the data for $N = 10^{15}$ cm⁻³, of particular interest for stellar atmospheres.

2. RESULTS AND DISCUSSION

All details of the calculation procedure has been described in details in Dimitrijević, Sahal-Bréchot, Bommier (1991c) and will not be repeated here. Energy levels for Si IV lines have been taken from Bashkin and Stoner (1975). Oscillator strengths have been calculated using the method of Bates and Damgaard (1949) and tables of Oertel and Shomo (1968). For higher levels, the method described by Van Regemorter et al. (1979) has been used.

In addition to the electron-impact full halfwidths and shifts, Stark broadening parameters due to proton-, and ionized helium-impact have been calculated. In such a way we provide Stark broadening data for all important charged perturbers in stellar plasma. Our results are shown in Table 1 for a perturber density 10^{15} cm⁻³ and temperatures of T = 10,000; 20,000; 50,000; 100,000; 150,000 and 200,000 K. We also specify a parameter *c* (Dimitrijević and Sahal-Bréchot, 1984) which gives an estimate for the maximum perturber density for which the line may be treated as isolated when it is divided by 2W. In Table 2 are given the corresponding results for N = $10^{18} - 10^{21}$ cm⁻³ and temperatures from 20,000 K.

For each value given in Table 1, the collision volume (V) multiplied by the perturber density (N) is much less than one and the impact approximation is valid (Sahal-Bréchot 1969a,b). Values for NV > 0.5 are not given in Table 1; values for $0.1 < NV \le 0.5$ are denoted by an asterisk. When the impact approximation is not valid, the ion broadening contribution may be estimated by using quasistatic formulae (cf. Dimitrijević, Sahal-Bréchot and Bommier (1991c).

The analysis of present results and comparison with available experimental and theoretical data is given in Dimitrijević, Sahal-Bréchot and Bommier (1991b).

ACKNOWLEDGEMENTS

One of us (M.D.) has been supported by the Observatory of Paris - Meudon. This work has also been

supported by C.N.R.S. and is a part of French-Yugoslav collaboration through the project "L'ellargissement Stark des raies spectrales des plasmas astrophysiques et de laboratioire". This study has also been supported in part by RFN under the project "Physics and Dynamics of Celestial Bodies".

REFERENCES

- Bashkin, S., and Stoner, J.O.Jr.: 1975, Atomic Energy Levels and Grotrian Diagrams, Vol.1, North Holland, Amsterdam.
- Bates, D.R., and Damgaard, A.: 1949, *Trans. Roy. Soc. London*, Ser.A **242**, 101.
- Dimitrijević, M.S., and Sahal-Brechot, S.: 1984a, JQSRT 31, 301.
- Dimitrijević, M.S., Sahal-Bréchot, S., and Bommier, V., 1991a, Bull. Obs. Astron, Belgrade 144, 65.
- Dímitrijević, M.S., Sahal-Brèchot, S., and Bommier, V.: 1991b. Astron, Astrophys. Suppl. Series (submitted).
- Dimitrijević, M.S., Sahal--Bréchot, S., and Bommier, V.: 1991e. Astron. Astrophys. Suppl. Series (submitted).
- Oertel. G.K., and Shomo, L.P.: 1968, Astrophys. J Suppl. Series 16, 175.
- Sahal Brechot, S.: 1969a, Astron. Astrophys. 1, 91.
- Sahal-Bréchot, S.: 1969b, Astron. Astrophys. 2, 322
- Sahal-Brechot, S.: 1974, Astron. Astrophys. 35, 319.
- Van Regemorter, H., Hoang Binh Dy, and Prud'homme. M.: 1979, J. Phys. B 12, 1073.

STARK BROADENING PARAMETER TABLES FOR SPECTRAL LINES OF MULTICHARGED IONS OF ASTROPHYSICAL INTEREST. II: SI IV LINES

Table 1. This table gives electron-, proton-, and ionized-helium impact broadening parameters for Si IV lines, for perturber densities of 10^{15} cm⁻³ and temperatures from 10,000 K to 200,000 K. Transitions and averaged wavelengths for the multiplet (in Å) are also given. By dividing c and 2W, we obtain an estimate for the maximum perturber density for which the line may be treated as isolated and tabulated data may be used. The asterisk identifies cases for which the collision volume multiplied by the perturber density (the condition for validity of the impact approximation) lies between 0.1 and 0.5.

	PERTURB	ER DENSITY	= 0.1D+16					
e 5						, <u>x</u> , ,		
÷.		e ⁿ 5	ELECTRONS		PROTONS	.: 0	IONIZED HI	ELIUM
	TRANSITION	T(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
						. 11 A		
	SIIV 3S-3P	10000.	0.244E-03	0.712E-05	0.333E-06	-0.160E-06	0.624E-06	-0.160E-06
	1396.7 A	20000.	0.174E-03	-0.333E-06	0.909E-06	-0.323E-06	0.159E-05	-0.323E-06
	C= 0.14E+19	50000.	0.112E-03	-0.180E-05	0.272E-05	-0.790E-06	0.389E-05	-0.767E-06
		100000.	0.812E-04	-0.122E-05	0.462E-05	-0.139E-05	0.571E-05	-0.129E-05
	27	150000.	0.684E-04	-0.161E-05	0.571E-05	-0.181E-05	0.670E-05	-0.157E-05
		200000.	0.612E-04	-0.187E-05	0.649E-05	-0.205E-05	0.707E-05	-0.181E-05
					- 14 h			
	SIIV 35-4P	10000.	0.630E-04	-0.150E-05	0.644E-06	0.931E-07	0.106E-05	0.930E-07
	457.9 A	20000.	0.452E-04	0.565E-06	0.138E-05	0.186E-06	0.195E-05	0.183E-06
	C= 0.51E+17	50000.	0.307E-04	0.725E-06	0.253E-05	0.405E-06	0.306E-05	0.376E-06
		100000.	0.240E-04	0.680E-06	0.328E-05	0.603E-06	0.354E-05	0.533E-06
	· · · ·	150000.	0.212E-04	0.849E-06	0.354E-05	0.737E-06	0.378E-05	0.627E-06
		200000.	0.195E-04	0.769E-06	0.371E-05	0.819E-06	0.396E-05	0.669E-06
	SIIV 3S-5P	10000.	0.720E-04	0.349E-06	0.249E-05	0.330E-06	0.351E-05	0.325E-06
	361.6 A	20000.	0.558E-04	0.194E-05	0.407E-05	0.617E-06	0.505E-05	0.573E-06
	C= 0.15E+17	50000.	0.429E-04	0.160E-05	0.588E-05	0.108E-05	0.635E-05	0.951E-06
		100000.	0.365E-04	0.211E-05	0.666E-05	0.146E-05	0.710E-05	0.120E-05
		150000.	0.335E-04	0.189E-05	0.710E-05	0.163E-05	0.746E-05	0.134E-05
		200000.	0.316E-04	0.186E-05	0.739E-05	0.175E-05	0.756E-05	0.144E-05
	SIIV 3S-6P	10000.	0.111E-03	0.716E-05	0.707E-05	0.841E-06	0.877E-05	0.803E-06
	327.2 A	20000.	0.885E-04	0.466E-05	0.993E-05	0.143E-05	0.111E-04	0.127E-05
	C= 0.64E+16	50000.	0.721E-04	0.409E-05	0.121E-04	0.224E-05	0.130E-04	0.189E-05
		100000.	0.646E-04	0.389E-05	0.135E-04	0.274E-05	0.140E-04	0.225E-05
		150000.	0.608E-04	0.380E-05	0.141E-04	0.302E-05	0.145E-04	0.250E-05
		200000.	0.583E-04	0.362E-05	0.144E-04	0.323E-05	0.147E-04	0.269E-05
		10000	0 1005 03		0 4075 0/	0 10/5 05	0 7705 0/	0 1075 05
	SIIV 3P-45	20000.	0.1992-03	-0.404E-05	0.1672-06	0.1245-05	0.1005-05	0.1232-05
	017.1 A	50000	0.1292-03	0.0072-05	0.2015-05	0.2302-05	0.2005-05	0.2235-05
	C- 0.10E+10	100000	0.600E-04	0.7432-05	0.2912-03	0.4332-05	0.2900-03	0.075-05
		150000	0.5002-04	0.8222-05	0.5042-05	0.3982-03	0.4046-05	0.4932-05
		200000	0.3172-04	0.79/5-05	0.0002-00	0.7175-05	0.6255-05	0.5472-05
		200000.	0.4/12-04	0.7942-05	0.7052-05	0.1172-05	0.0252-05	0.3902-03
	SIIN 30-50	10000	0 13/5-03	0 3205-04	0 7/85-06	0 2005-05	0.0015-06	0 2805-05
	515 0 A	20000	0.0342-03	0.3292-04	0.2495-05	0.2772-05	0.2635-05	0.235-05
	C= 0 30E+17	50000	0.7065-04	0.1665-04	0.5905-05	0.7405-05	0.2002 00	0.4252 05
	0-01302/11	100000	0.578E-04	0 148F-04	0.9465-05	0.8875-05	0.0402 00	0.7305-05
		150000	0.5185-04	0 1315-04	0:957E-05	0.985E-05	0 8185-05	0.8075-05
		200000	0.4785-04	0.1245-04	0.106E-04	0.107E-04	0.0145-05	0.8815-05
		200000.	0,4,02,04	0			5.,,46 03	
	SIIV 3P-AS	10000	0.174F-03	0.707F-04	0.349E-05	0.778F-05	0.3985-05	0.686F-05
	438-4 A	20000	0.136E-03	0.536E-04	0.742E-05	0.110F-04	0.718F-05	0.955F-05
	C= 0.12E+17	50000.	0.108E-03	0.398E-04	0.139E-04	0.148E-04	0.117E-04	0.122E-04
		100000.	0.937E-04	0.321E-04	0.175E-04	0.178E-04	0.153E-04	0.144E-04
		150000.	0.853E-04	0.278E-04	0.207E-04	0.192E-04	0.173E-04	0.160E-04
		200000.	0.800E-04	0.255E-04	0.232E-04	0.204E-04	0.179E-04	0.165E-04

 $\{x, y_{t+1}\} \in \mathbb{N}$

di di persona sa	· · · · · · · · · ·	1 . ¹ . ¹	а. а. ₄			. http://
en en de la Perturbe	R DENSITY = $0.1D+16$	"а "қ	· · · · · · · · · · · · · · · · · · ·	. energia	41. ¹ 4.	
dear from the proof group	a the said and a best states.	sta, ŝ, ŝ,		() to 2	е ₁ .6 е у	·1 14
Historia en la Antonio	ELECTRONS	1. T	PROTONS	Sec. 1	IONIZED HEL	IUM
TRANSITION	T(K) WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
			· · · · · ·			
SIIV 3P-3D	10000. 0.156E-03	0.121E-05	0.239E-06	0.441E-07	0.447E-06	0.441E-07
1126.4 A	20000. 0.114E-03	0.249E-06	0.648E-06	0.890E-07	0.113E-05	0.890E-07
C= 0.74E+18	50000. 0.751E-04	0.516E-06	0.190E-05	0.221E-06	0.271E-05	0.219E-06
	100000. 0.548E-04	0.344E-06	0.317E-05	0.417E-06	0.394E-05	0.392E-06
	150000. 0.465E-04	0.460E-06	0.390E-05	0.562E-06	0.457E-05	0.518E-06
· · · · · · · · · · · · · · · · · · ·	200000. 0.418E-04	0.472E-06	0.440E-05	0.681E-06	0.481E-05	0.594E-06
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1				
SIIV 3P-4D	10000. 0.136E-03	0.801E-06	0.135E-05	0.226E-05	0.205E-05	0.217E-05
560.5 A	20000. 0.101E-03	0.405E-05	0.319E-05	0.388E-05	0.390E-05	0.348E-05
C= 0.13E+17	50000. 0.703E-04	0.504E-05	0.640E-05	0.614E-05	0.656E-05	0.520E-05
	100000. 0.554E-04	0.472E-05	0.869E-05	0.754E-05	0.805E-05	0.625E-05
	150000. 0.488E-04	0.462E-05	0.971E-05	0.833E-05	0.894E-05	0.687E-05
	200000. 0.450E-04	0.461E-05	0.107E-04	0.901E-05	0.960E-05	0.742E-05
	n see see Grief an 25 an an an	ay a		8 s R		
SIIV 3P-5D	10000. 0.188E-03	0.931E-05	0.648E-05	0.792E-05	0.769E-05	0.702E-05
454.7 A	20000. 0.154E-03	0.133E-04	0.110E-04	0.113E-04	0.119E-04	0.976E-05
C= 0.46E+16	50000. 0.120E-03	0.133E-04	0.172E-04	0.152E-04	0.159E-04	0.125E-04
e ^{n d} a ene	100000. 0.101E-03	0.123E-04	0.209E-04	0.181E-04	0.196E-04	0.150E-04
	150000. 0.911E-04	0.120E-04	0.243E-04	0.203E-04	0.213E-04	0.166E-04
an Statu ar an r	200000. 0.850E-04	0.110E-04	0.262E-04	0.214E-04	0.225E-04	0.172E-04
- 19-13-13 • 1				4		
SIIV 3P-6D	10000. 0.295E-03	0.328E-04	0.185E-04	0.197E-04	0.205E-04	0.172E-04
412.7 A	20000. 0.252E-03	0.331E-04	0.287E-04	0.262E-04	0.270E-04	0.217E-04
C= 0.22E+16	50000. 0.211E-03	0.295E-04	0.380E-04	0.335E-04	0.343E-04	0.273E-04
	100000. 0.184E-03	0.277E-04	0.458E-04	0.385E-04	0.397E-04	0.316E-04
	150000. 0.170E-03	0.248E-04	0.511E-04	0.415E-04	0.442E-04	0.348E-04
	200000. 0.160E-03	0.227E-04	0.530E-04	0.450E-04	0.437E-04	0.372E-04
	21 a.					
SIIV 3D-4P	10000. 0.884E-03	-0.301E-04	0.693E-05	0.146E-05	0.117E-04	0.146E-05
1724.1 A	20000. 0.635E-03	0.839E-05	0.154E-04	0.292E-05	0.222E-04	0.287E-05
C= 0.73E+18	50000. 0.428E-03	0.120E-04	0.295E-04	0.628E-05	0.362E-04	0.582E-05
	100000. 0.332E-03	0.108E-04	0.395E-04	0.926E-05	0.426E-04	0.816E-05
	150000. 0.292E-03	0.135E-04	0.427E-04	0.113E-04	0.457E-04	0.957E-05
	200000. 0.270E-03	0.127E-04	0.450E-04	0.125E-04	0.478E-04	0.102E-04
STIV 3D-5P	10000. 0.397E-03	0.160E-05	0.129E-04	0.191E-05	0.183E-04	0.188E-05
86U.7 A	20000. 0.310E-03	0.114E-04	0.214E-04	0.356E-05	0.265E-04	0.330E-05
L= 0.85E+17	50000. 0.239E-03	0.965E-05	0.313E-04	0.619E-05	0.338E-04	0.546E-05
	100000. U.204E-03	0.123E-04	0.355E-04	0.839E-05	0.378E-04	0.688E-05
	150000. U.187E-03	0.111E-04	0.3792-04	0.937E-05	0.397E-04	0.771E-05
2	200000. 0.1772-03	0.110E-04	0.3935-04	0.100E-04	U.402E-04	0.8298-05
SILV 3D-6P	10000. 0.487F-03	0.326F-04	0.302F-04	0.374F-05	0.375F-04	0.357F-05
688-3 A	20000. 0.389F-03	0.212F-04	0.426F-04	0.636F-05	0.476F-04	0.5665-05
C= 0.28E+17	50000. 0.317E-03	0.186E-04	0.522E-04	0.996E-05	0.558E-04	0.838E-05
	100000. 0.284F-03	0.176F-04	0.582E-04	0.122F-04	0.604F-04	0.999F-05
	150000, 0.268E-03	0.172E-04	0.611E-04	0.134E-04	0.623E-04	0.111E-04
	200000. 0.257E-03	0.164E-04	0.621E-04	0.144E-04	0.632E-04	0.120E-04

STARK BROADENING PARAMETER TABLES FOR SPECTRAL LINES OF MULTICHARGED IONS OF ASTROPHYSICAL INTEREST. II: SI IV LINES

PERTURBER DENSITY = 0.1D+16

		ELECTRONS		PROTONS		IONIZED HE	LIUM
TRANSITION	T(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
SIIV 3D-4F	10000.	0.398E-03	-0.275E-04	0.213E-05	-0.510E-05	0.343E-05	-0.495E-05
1066.6 A	20000.	0.288E-03	-0.667E-05	0.579E-05	-0.903E-05	0.768E-05	-0.838E-05
C= 0.47E+17	50000.	0.195E-03	-0.603E-05	0.136E-04	-0.151E-04	0.145E-04	-0.130E-04
	100000.	0.150E-03	-0.601E-05	0.203E-04	-0.190E-04	0.189E-04	-0.159E-04
3 * 53	150000.	0.131E-03	-0.426E-05	0.234E-04	-0.213E-04	0.212E-04	-0.177E-04
	200000.	0.120E-03	-0.396E-05	0.260E-04	-0.230E-04	0.229E-04	-0.190E-04
		ι.		the second of a	~		
SIIV 3D-5F	10000.	0.771E-03	0.181E-04	0.927E-04	0.125E-03	0.910E-04	0.105E-03
749.9 A	20000.	0.605E-03	0.249E-04	0.145E-03	0.155E-03	0.125E-03	0.128E-03
C= 0.67E+15	50000.	0.455E-03	0.161E-04	0.200E-03	0.195E-03	0.169E-03	0.160E-03
	100000.	0.370E-03	0.119E-04	0.252E-03	0.227E-03	0.199E-03	0.183E-03
· .	150000.	0.328E-03	0.904E-05	0.280E-03	0.251E-03	0.226E-03	0.206E-03
	200000.	0.301E-03	0.716E-05	0.299E-03	0.264E-03	0.230E-03	0.208E-03
	1.5			U .			
SIIV 3D-6F	10000.	0.234E-03	-0.788E-05	0.251E-04	-0.512E-07	0.312E-04	-0.512E-07
645.8 A	20000.	0.171E-03	-0.561E-06	0.355E-04	-0.103E-06	0.400E-04	-0.103E-06
C= 0.89E+17	50000.	0.118E-03	-0.596E-06	0.437E-04	-0.248E-06	0.469E-04	-0.239E-06
	100000.	0.924E-04	-0.656E-06	0.488E-04	-0.424E-06	0.508E-04	-0.383E-06
	150000.	0.822E-04	-0.646E-06	0.509E-04	-0.530E-06	0.521E-04	-0.464E-06
	200000.	0.764E-04	-0.678E-06	0.518E-04	-0.610E-06	0.530E-04	-0.532E-06
SIIV 4S-4P	10000.	0.695E-02	0.126E-03	0.521E-04	-0.225E-04	0.859E-04	-0.224E-04
4097.9 A	20000.	0.497E-02	-0.824E-04	0.113E-03	-0.436E-04	0.158E-03	-0.418E-04
C= 0.41E+19	50000.	0.336E-02	-0.939E-04	0.209E-03	-0.843E-04	0.250E-03	-0.728E-04
	100000.	0.265E-02	-0.132E-03	0.274E-03	-0.117E-03	0.290E-03	-0.989E-04
	150000.	0.235E-02	-0.125E-03	0.299E-03	-0.132E-03	0.312E-03	-0.110E-03
	200000.	0.218E-02	-0.117E-03	0.316E-03	-0.143E-03	0.328E-03	-0.118E-03
4 ·							
SIIV 4S-5P	10000.	0.958E-03	0.157E-04	0.279E-04	0.112E-05	0.393E-04	0.112E-05
1211.0 A	20000.	0.734E-03	0.812E-05	0.455E-04	0.221E-05	0.565E-04	0.215E-05
C= 0.16E+18	50000.	0.556E-03	0.319E-05	0.656E-04	0.458E-05	0.710E-04	0.412E-05
	100000.	0.470E-03	0.689E-05	0.742E-04	0.655E-05	0.792E-04	0.568E-05
i a	150000.	0.431E-03	0.377E-05	0.790E-04	0.777E-05	0.832E-04	0.639E-05
	200000.	0.407E-03	0.487E-05	0.820E-04	0.833E-05	0.848E-04	0.694E-05
	*****	0.0455.07	0 1/05 0/	0 5005 0/	0 5005 05	0 (575 0)	0 (805 05
STIV 4S-6P	10000.	0.915E-03	0.1692-04	0.5292-04	0.500E-05	0.6572-04	0.482E-05
895.3 A	20000.	0.7212-03	U.224E-04	0.7452-04	0.8635-05	0.8285-04	0.785E-05
C= U.48E+17	50000.	0.5812-05	0.2018-04	0.9062-04	0.139E-04	0.970E-04	0.119E-04
. · ·	100000.	0.51/E-05	0.184E-04	0.1012-03	0.172E-04	0.1052-03	0.142E-04
	150000.	0.4002-03	0.1025-04	0.103E-03	0.1922-04	0.1005-03	0.1396-04
	200000.	V.407E-U3	0.1792-04	0.1072-05	0.2072-04	0.1092-03	0.1/1E-04
SITV AD-SC	10000	0 2775-02	0 3705-03	0.228F-04	0 4875-04	0.3215-04	0 4565-04
511V 4F-05	20000	0.2055-02	0.3772-03	0.5685-04	0.4072-04	0.5212-04	0.405=-04
C- 0 505-19	50000.	0.1505-02	0.205-03	0.1165-03	0.1225-04	0 1115-03	0.1005-04
0- 0.JUETIO	100000	0.125=-02	0.2052-03	0.1565-03	0 1445-03	0.1305-03	0.1205-03
ar ir	150000	0 1145-02	0 1915-03	0.175E-03	0.1616-03	0.157E-03	0.1325-03
	200000	0.106F-02	0.183F-03	0.189F-03	0.173F-03	0.169F-03	0.1455-03

Regard to the term

2.5 _{1.4} 4	e a com	ELECTRONS	Ċ.	PROTONS	de la companya de la	IONIZED HE	LIUM
TRANSITION	T(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
SIIV 4P-6S	10000.	0.154E-02	0.536E-03	0.295E-04	0.607E-04	0.341E-04	0.535E-04
1230.0 A	20000.	0.120E-02	0.394E-03	0.605E-04	0.863E-04	0.597E-04	0.745E-04
C= 0.91E+17	50000.	0.943E-03	0.284E-03	0.111E-03	0.116E-03	0.947E-04	0.957E-04
	100000.	0.820E-03	0.230E-03	0.139E-03	0.139E-03	0.122E-03	0.113E-03
	150000.	0.752E-03	0.205E-03	0.167E-03	0.151E-03	0.137E-03	0.125E-03
¹	200000.	0.709E-03	0.189E-03	0.183E-03	0.161E-03	0.142E-03	0.129E-03
SIIV 4P-4D	10000.	0.511E-02	0.136E-03	0.386E-04	0.674E-04	0.593E-04	0.648E-04
3160.3 A	20000.	0.380E-02	0.101E-03	0.923E-04	0.116E-03	0.115E-03	0.105E-03
C= 0.41E+18	50000.	0.267E-02	0.118E-03	0.189E-03	0.185E-03	0.196E-03	0.157E-03
V 2.24	100000.	0.214E-02	0.113E-03	0.259E-03	0.229E-03	0.240E-03	0.188E-03
$F_{i}^{(1)} \in \mathbb{C} \setminus \{1, \dots, N\}$	150000.	0.190F-02	0.997F-04	0.296F-03	0.253E-03	0.272E-03	0.210F-03
. 19 p. 1	200000	0.177E-02	0.102E-03	0.319F-03	0.271E-03	0.290E-03	0.224F-03
	2000007	011112 02	OTTOLE OF	010172 00	012112 00	0.2702 03	
SIIV 4P-5D	10000.	0.183E-02	0.897E-04	0.528E-04	0.709E-04	0.630E-04	0.630E-04
1367.6 A	20000.	0.149E-02	0.113E-03	0.927E-04	0.101E-03	0.987E-04	0.876E-04
C= 0.42E+17	50000.	0.116E-02	0.111E-03	0.149-03	0.137E-03	0.136E-03	0.112E-03
en a class an	100000.	0.967E-03	0.103E-03	0.181E-03	0.162E-03	0.168E-03	0.135F-03
() -	150000	0.877F-03	0.9925-04	0.2115-03	0.182E-03	0.185E-03	0.149E-03
3 1 . ¹⁰ . *	200000	0.8195-03	0 9105-04	0 2295-03	0 1925-03	0 1956-03	0 1545-03
	200000.	0.01/2 03	017102 04	0.22/2 03	0.1722 05	0.1752 05	0.1942 03
SILV 4P-60	10000	0.198F-02	0.175F-03	0.114F-03	0.127E-03	0-126E-03	0.111E-03
1046 7 A	20000	0 1685-02	0 207E-03	0.180E-03	0.168E-03	0 168E-03	0.139E-03
C = 0.14F + 17	50000	0 1395-02	0 1845-03	0.2405-03	0.215E-03	0.215E-03	0.175E-03
0- 0.142.11	100000	0.1225-02	0.1736-03	0.2925-03	0.2475-03	0.2516-03	0 2036-03
1 2 1	150000	0.1126-02	0.156-03	0.3265-03	0.2472-03	0.2705-03	0.2245-03
The Control of	200000	0.1065-02	0.1405-03	0.3202-03	0.2895-03	0.275E-03	0.2385-03
	200000.	0.1002 02	0.1402 05	0.5572 05	0.2072 05	0.2752 05	0.2302 03
STIV 40-5P	10000	0.1016-01	-0.850F-04	0.2016-03	-0.673E-04	0.289F-03	-0.652E-04
3766 0 A	20000	0 786F-02	0 1856-04	0.348F-03	-0.119F-03	0 4295-03	-0.110E-03
C= 0 58F+18	50000	0.6045-02	-0 420E-04	0 5295-03	-0.197E-03	0.565E-03	-0 170E-03
0.000	100000	0.5125-02	0 2895-04	0.6095-03	-0 267E-03	0.6405-03	-0.206E-03
14. s. 25	150000	0.695-02	0 1285-04	0.661E-03	-0 2785-03	0.675E-03	-0 230E-03
	200000	0.4072-02	0.1236-04	0.685E-03	-0.2085-03	0.69/6-03	-0 2/85-03
	200000.	0.4422 02	0.1352 04	0.0052 05	0.2902 00	0.0942 05	0.2402 03
STIV 40-6P	10000	0 3865-02	0 409F-04	0 185F-03	0 273E-05	0 231F-03	0 2725-05
1706 6 6	20000	0.3075-02	0.8605-04	0.26/5-03	0.5385-05	0.2005-03	0.5216-05
C- 0 175+18	50000	0.3/85-02	0.6005-04	0 3265-03	0.1105-04	0.3505-03	0.0825-05
	100000	0.2402-02	0.6975-04	0.3202-03	0.1102-04	0.3302-03	0.7822-05
1964 B	150000.	0.2212-02	0.0946-04	0.3046-03	0.1562-04	0.3015-03	0.135E-04
-2.31-23	150000.	0.2078-02	0.6962-04	0.380E-03	0.184E-04	0.39TE-03	0.1512-04
	200000.	0.1985-02	U.03/E-U4	0.387E-05	U.196E-04	0.5955-03	U.164E-04
STIN /D./C	10000	0 707	-0 14/5 01	0 22/5 02	-0 6425-02	0 3085-03	-0 410c 00
3114 40-41	20000	0.321	0.1042-01	0 4/01: 00	0.0022-02	0.5000-02	-0.0795.02
29211.1 A	20000.	0.170	-0.122-01	0.0426-02	-0.16/5.01	0.1725.04	-0.9306-02
L= U.24E+2U	100000	0.170	0.1245-01	0.1412-01	-0.104E-01	0.1495 04	-0.155E-01
	150000	0.130	-0.1192-01	0.1901-01	-U. 1902-UT	0.1005-01	-U. 102E-U1
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	150000.	0.120	-0.10/E-01	0.221E-01	-U.218E-U1	0.192E-01	-U. 179E-U1
	200000.	0.111	-0.105E-01	0.244E-01	-U.230E-UI	0.214E-01	-0.1925-01

STARK BROADENING PARAMETER TABLES FOR SPECTRAL LINES OF MULTICHARGED IONS OF ASTROPHYSICAL INTEREST. II: SI IV LINES LINES

PERTURBER DENSITY = 0.1D+16

		ELECTRONS		PROTONS		IONIZED HE	LIUM
TRANSITION	T(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
SIIV 4D-5F	10000.	0.803E-02	0.132E-03	0.841E-03	0.114E-02	0.825E-03	0.966E-03
2287.0 A	20000	0.629E-02	0.162E-03	0.133E-02	0.142E-02	0.114E-02	0.117E-02
C= 0.62E+16	50000.	0.472E-02	0.675E-04	0.184E-02	0.180E-02	0.155E-02	0.146E-02
	100000.	0.385E-02	0.329F-04	0.229E-02	0.210F-02	0.181E-02	0.168E-02
	150000.	0.342E-02	0.914E-05	0.252E-02	0.230E-02	0.202E-02	0.191E-02
	200000.	0.314E-02	-0.800E-05	0.274E-02	0.244E-02	0.212E-02	0.191E-02
SIIV 4D-6F	10000.	0.859E-02	0.399E-03	0.156E-02	0.167E-02	0.135E-02	0.137E-02
1533.2 A	20000.	0.696E-02	0.355E-03	0.203E-02	0.203E-02	0.173E-02	0.167E-02
C= 0.18E+16	50000.	0.535E-02	0.216E-03	0.264E-02	0.255E-02	0.223E-02	0.200E-02
	100000.	0.438E-02	0.146E-03	0.312E-02	0.298E-02	0.257E-02	0.232E-02
	150000.	0.389E-02	0.103E-03	0.353E-02	0.309E-02	0.290E-02	0.257E-02
	200000.	0.357E-02	0.688E-04	0.385E-02	0.330E-02	0.291E-02	0.252E-02
SIIV 4F-5D	10000.	0.754E-02	0.452E-03	0.204E-03	0.296E-03	0.237E-03	0.260E-03
2675.2 A	20000.	0.607E-02	0.502E-03	0.362E-03	0.419E-03	0.382E-03	0.362E-03
C= 0.16E+18	50000.	0.467E-02	0.489E-03	0.594E-03	0.560E-03	0.533E-03	0.463E-03
	100000.	0.387E-02	0.454E-03	0.739E-03	0.674E-03	0.653E-03	0.543E-03
	150000.	0.349E-02	0.432E-03	0.841E-03	0.729E-03	0.741E-03	0.602E-03
	200000.	0.325E-02	0.396E-03	0.921E-03	0.760E-03	0.748E-03	0.628E-03
SIIV 4F-6D	10000.	0.524E-02	0.499E-03	0.292E-03	0.330E-03	0.320E-03	0.288E-03
1672.6 A	20000.	0.443E-02	0.563E-03	0.462E-03	0.437E-03	0.429E-03	0.362E-03
C= 0.37E+17	50000.	0.366E-02	0.498E-03	0.625E-03	0.562E-03	0.555E-03	0.460E-03
	100000.	0.318E-02	0.469E-03	0.751E-03	0.650E-03	0.639E-03	0.529E-03
	150000.	0.292E-02	0.417E-03	0.817E-03	0.695E-03	0.709E-03	0.576E-03
	200000.	0.275E-02	0.381E-03	0.884E-03	0.761E-03	0.719E-03	0.623E-03
SIIV 58-5P	10000.	0.625E-01	-0.208E-02	0.158E-02	-0.720E-03	0.220E-02	-0.683E-03
8977.4 A	20000.	0.493E-01	-0.247E-02	0.261E-02	-0.121E-02	0.319E-02	-0.106E-02
C= 0.90E+19	50000.	0.395E-01	-0.266E-02	0.385E-02	-0.187E-02	0.406E-02	-0.156E-02
	100000.	0.346E-01	-0.250E-02	0.446E-02	-0.226E-02	0.459E-02	-0.187E-02
	150000.	0.321E-01	-0.246E-02	0.486E-02	-0.251E-02	0.491E-02	-0.208E-02
	200000.	0.304E-01	-0.235E-02	0.513E-02	-0.273E-02	0.495E-02	-0.220E-02
SIIV 5S-6P	10000.	0.758E-02	-0.516E-04	0.407E-03	-0.227E-04	0.505E-03	-0.221E-04
2483.7 A	20000.	0.611E-02	-0.367E-04	0.571E-03	-0.410E-04	0.637E-03	-0.380E-04
C= 0.37E+18	50000.	0.510E-02	-0.571E-04	0.696E-03	-0.694E-04	0.746E-03	-0.606E-04
	100000.	0.462E-02	-0.753E-04	0.776E-03	-0.897E-04	0.808E-03	-0.750E-04
	150000.	0.436E-02	-0.627E-04	0.808E-03	-0.100E-03	0.829E-03	-0.827E-04
	200000.	0.419E-02	-0.616E-04	0.825E-03	-0.108E-03	0.839E-03	-0,888E-04
SIIV 5P-6S	10000.	0.211E-01	0.507E-02	0.559E-03	0.724E-03	0.662E-03	0.641E-03
4323.5 A	20000.	0.170E-01	0.384E-02	0.966E-03	0.103E-02	0.103E-02	0.891E-03
C= 0.11E+19	50000.	0.142E-01	0.285E-02	0.154E-02	0.139E-02	0.141E-02	0.114E-02
	100000.	0.128E-01	0.244E-02	0.187E-02	0.166E-02	0.174E-02	0.137E-02
	150000.	0.119E-01	0.210E-02	0.219E-02	0.185E-02	0.189E-02	0.150E-02
	200000.	0.113E-01	0.199E-02	0.235E-02	0.195E-02	0.200E-02	0.155E-02

	$\{j_{1,j_{1}}\}_{j=1,\dots,n}$	ELECTRONS	2 G/+	PROTONS		IONIZED HE	LIUM
TRANSITION	T(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
SIIV 5P-5D	10000.	0.477E-01	0.211E-02	0.124E-02	0.163E-02	0.150E-02	0.146E-02
6689.8 A	20000.	0.397E-01	0.227E-02	0.218E-02	0.235E-02	0.233E-02	0.203E-02
C= 0.99E+18	50000.	0.321E-01	0.231E-02	0.350E-02	0.317E-02	0.323E-02	0.262E-02
	100000.	0.277E-01	0.192E-02	0.436E-02	0.377E-02	0.395E-02	0.314E-02
-1 N -	150000.	0.254E-01	0.193E-02	0.488E-02	0.424E-02	0.425E-02	0.347E-02
a the former to	200000.	0.239E-01	0.172E-02	0.529E-02	0.445E-02	0.449E-02	0.354E-02
SIIV 5P-6D	10000.	0.138E-01	0.111E-02	0.698E-03	0.821E-03	0.760E-03	0.717E-03
2676.6 A	20000.	0.116E-01	0.128E-02	0.113E-02	0.109E-02	0.104E-02	0.902E-03
C= 0.94E+17	50000.	0.974E-02	0.114E-02	0.152E-02	0.139E-02	0.135E-02	0.114E-02
	100000.	0.858E-02	0.104E-02	0.188E-02	0.160E-02	0.159E-02	0.132E-02
	150000.	0.794E-02	0.933E-03	0.211E-02	0.175E-02	0.176E-02	0.146E-02
* v <u>t</u>	200000.	0.750E-02	0.844E-03	0.218E-02	0.188E-02	0.173E-02	0.154E-02
SIIV 5D-6P	10000.	0.738E-01	-0.183E-02	0.266E-02	-0.161E-02	0.322E-02	-0.145E-02
7055.2 A	20000.	0.613E-01	-0.143E-02	0.394E-02	-0.234E-02	0.434E-02	-0.204E-02
C= 0.11E+19	50000.	0.511E-01	-0.144E-02	0.523E-02	-0.322E-02	0.528E-02	-0.265E-02
	100000.	0.454E-01	-0.122E-02	0.610E-02	-0.382E-02	0.591E-02	-0.3156-02
. ŝ	150000.	0.424E-01	-0.114E-02	0.645E-02	-0.417E-02	0.610E-02	-0.343E-02
	200000.	0.404E-01	-0.963E-03	0.672E-02	-0.444E-02	0.650E-02	-0.367E-02
							010072 02
SIIV 5D-5F	10000.	3.80	-0.269E-01	0.293	0.411	0.290	0.349
45016.9 A	20000.	3.08	-0.427E-01	0.469	0.516	0.407	0.425
45016.9 A	20000.	3.08	-0.427E-01	0.469 0.659	0.516	0.407	0.425
45016.9 A C= 0.24E+19	20000. 50000.	3.08 2.39	-0.427E-01 -0.717E-01 -0.771E-01	0.469 0.659 0.791	0.516 0.656 0.764	0.407 0.567 0.676	0.425
45016.9 A C= 0.24E+19	20000. 50000. 100000.	3.08 2.39 1.99	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01	0.469 0.659 0.791 0.894	0.516 0.656 0.764 0.819	0.407 0.567 0.676 0.683	0.425 0.541 0.604 0.672
45016.9 A C= 0.24E+19	20000. 50000. 100000. 150000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000. 50000. 100000. 150000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000. 50000. 100000. 150000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000. 50000. 100000. 150000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000. 50000. 100000. 150000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000. 50000. 100000. 150000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000 50000 100000 150000 200000	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000. 50000. 100000. 150000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000. 50000. 100000. 150000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000. 50000. 100000. 150000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000. 50000. 100000. 150000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000 50000 100000 150000 200000	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000. 50000. 100000. 150000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000. 50000. 100000. 150000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000. 50000. 100000. 150000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000. 50000. 100000. 150000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000. 50000. 100000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000. 50000. 100000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000. 50000. 100000. 200000.	3.08 2.39 1.99 1.78 1.65	-0.427E-01 -0.717E-01 -0.771E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000 50000 100000 200000 200000	3.08 2.39 1.99 1.78 1.65 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-0.427E-01 -0.717E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698
45016.9 A C= 0.24E+19	20000 50000 100000 200000	3.08 2.39 1.99 1.78 1.65 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.4	-0.427E-01 -0.717E-01 -0.842E-01 -0.815E-01	0.469 0.659 0.791 0.894 0.933	0.516 0.656 0.764 0.819 0.891	0.407 0.567 0.676 0.683 0.771	0.425 0.541 0.604 0.672 0.698

Table 2. Same as Table 1 but for perturber densities $10^{18} - 10^{21}$ cm⁻³ and temperatures from 20,000 K to 800,000 K.

PERTURBER DENSITY = 0.1D+19

	a Marana		. 14				
n n n		ELECTRONS		PROTONS	1. v	IONIZED HE	LIUM
TRANSITION	T(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
1 d							
SIIV 3S-3P	20000.	0.176	0.312E-03	0.893E-03	-0.264E-03	0.156E-02	-0.264E-03
1396.7 A	50000.	0.112	-0.170E-02	0.272E-02	-0.755E-03	0.388E-02	-0.732E-03
C = 0.14E+22	80000.	0.899E-01	-0.156E-02	0.404E-02	-0.117E-02	0.507E-02	-0.108E-02
a de serve	100000.	0-812E-01	-0.119E-02	0.4625-02	-0.137E-02	0.571E-02	-0.127E-02
	150000.	0.6845-01	-0.163E-02	0.571E-02	-0.1815-02	0-670E-02	-0.156E-02
	200000	0.612E-01	-0 187E-02	0.649E-02	-0.205E-02	0 707E-02	-0 181E-02
						011012 02	
SILV 35-4P	20000	0 4535-01	0 3915-03	0 1356-02	0 1526-03	0 188F-02	0 149F-03
157 0 A	50000	0.3075-01	0 7175-03	0.7525-02	0.3855-03	0.3055-02	0.3565-03
C= 0 51E+20	80000	0.3072 01	0.5495-03	0.3115-02	0.5395-03	0.3385-02	0.4645-03
0.512,20	100000	0.2/05-01	0.6685-03	0 3395-02	0.50/E-03	0.35/5-02	0.52/5-03
	150000	0.2402-01	0.8385-03	0.35/6-02	0.7355-03	0.3785-02	0.5246-03
	700000	0.2122-01	0.0302-03	0.3346-02	0.9195-03	0.3766-02	0.6252-03
	200000.	0.195E-01	0.7042-03	0.3/12-02	0.0106-03	0.3906-02	0.0002-03
ALW 70 FD	20000	0 5585 04	0 1/05 03	+0 7005 00	*0 (0) = 07	+0 /745 00	+0 / 505 07
SILV 38-5P	20000.	0.558E-01	U. 108E-02	-0.589E-02	-0.494E-03	~U.471E-U2	*0.450E-05
361.6 A	50000.	0.429E-01	0.153E-02	*0.583E-02	*0.100E-02	*U.626E-02	*0.880E-03
C = 0.15E + 20	80000.	0.384E-01	0.191E-02	*0.640E+02	*0.132E-02	*0.682E-02	*0.110E-02
	100000.	0.365E-01	0.210E-02	0.665E-02	0.143E-02	*0.707E-02	*0.116E-02
	150000.	0.335E-01	0.188E-02	0.710E-02	0.162E-02	*0.745E-02	*0.134E-02
. i. i.	200000.	0.316E-01	0.185E-02	0.739E-02	0.175E-02	*0.756E-02	*0.143E-02
	the fact of the first of the						
SIIV 3S-6P	20000.	0.886E-01	0.435E-02		• 8 [*]		
327.2 A	50000.	0.721E-01	0.389E-02	1. N.			
C= 0.64E+19	80000.	0.668E-01	0.406E-02	*0.130E-01	*0.246E-02		
	100000.	0.646E-01	0.380E-02	*0.135E-01	*0.266E-02	-	
	150000.	0.608E-01	0.378E-02	*0.141E-01	*0.300E-02		
	200000.	0.583E-01	0.360E-02	*0.144E-01	*0.322E-02	1	
SIIV 3P-4S	20000.	0.128	0.605E-02	0.763E-03	0.190E-02	0.108E-02	0.177E-02
817.1 A	50000.	0.806E-01	0.716E-02	0.291E-02	0.406E-02	0.289E-02	0.351E-02
C= 0.16E+21	80000.	0.655E-01	0.767E-02	0.415E-02	0.528E-02	0.425E-02	0.453E-02
	100000.	0.600E-01	0.801E-02	0.503E-02	0.584E-02	0.485E-02	0.481E-02
	150000.	0.517E-01	0.840E-02	0.630E-02	0.660E-02	0.561E-02	0.545E-02
ja i	200000.	0.471E-01	0.791E-02	0.705E-02	0.715E-02	0.625E-02	0.588E-02
SIIV 3P-5S	20000.	0.977E-01	0.194E-01	0.249E-02	0.369E-02	*0.261E-02	*0.305E-02
515.9 A	50000.	0.706E-01	0.159E-01	0.590E-02	0.672E-02	0.546E-02	0.541E-02
C= 0.30E+20	80000.	0.612E-01	0.143E-01	0.761E-02	0.807E-02	0.661E-02	0.660E-02
	100000.	0.578E-01	0.144E-01	0.845E-02	0.856E-02	0.711E-02	0.699E-02
	150000.	0.518E-01	0.130E-01	0.957E-02	0.979E-02	0.818E-02	0.800E-02
	200000.	0.478E-01	0.124E-01	0.106E-01	0.106E-01	0.914E-02	0.876E-02
SIIV 3P-6S	20000.	0.136	0.492E-01	*0.738E-02	*0.740E-02		
438 4 A	50000	0.108	0.377E-01	*0.138E-01	*0.127E-01		
C= 0 12F+20	80000	0.9835-01	0.337E-01	*0.165E-01	*0.157E-01	*0.139F-01	*0.128F-01
C- 0.122.20	100000	0.9375-01	0.312F-01	*0.174F-01	*0.169E-01	*0.151E-01	*0.134F-01
	150000	0.8535-01	0.276F-01	*0.207F-01	*0_190E-01	*0.173E-01	*0.158E-01
	200000	0.8005-01	0.2535-01	*0.2328-01	*0.202E-01	*0.179E-01	*0.1635-01
	200000.	0.0006-01	0.2002-01	U.LJEE UI	U.LULL UI	ULITE UI	0.1000-01

M.S. Dimitrijević, S. Sahal-Bréchot, V. Bommier

.

PERTURBER DENSITY = 0.1D+19

		ELECTRONS		PROTONS		IONIZED HE	LIUM
TRANSITION	T(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
			· ·	5	- d 7.34		
SIIV 3P-3D	20000.	0.116	0.350E-03	0.636E-03	0.727E-04	0.111E-02	0.727E-04
1126.4 A	50000.	0.751E-01	0.503E-03	0.190E-02	0.212E-03	0.270E-02	0.209E-03
C= 0.74E+21	80000.	0.604E-01	0.371E-03	0.279E-02	0.339E-03	0.350E-02	0.327E-03
	100000.	0.548E-01	0.337E-03	0.317E-02	0.412E-03	0.394E-02	0.387E-03
a Kila a sa ka	150000.	0.465E-01	0.460E-03	0.390E-02	0.5615-03	0.457E-02	0.517E-03
	200000.	0.418E-01	0.472E-03	0.440E-02	0.681E-03	0.481E-02	0.593E-03
SIIV 3P-4D	20000.	0.101	0.276E-02	0.313E-02	0.300E-02	*0.379E-02	*0.261E-02
560.5 A	50000.	0.703E-01	0.451E-02	0.639E-02	0.563E-02	0.654E-02	0.469E-02
C= 0.13E+20	80000.	0.596E-01	0.460E-02	0.793E-02	0.680E-02	0.753E-02	0.563E-02
	100000.	0.554E-01	0.449E-02	0.869E-02	0.732E-02	0.805E-02	0.603E-02
	150000.	0.488E-01	0.457E+02	0.971E-02	0.828E-02	0.894E-02	0.682E-02
	200000.	0.450E-01	0.456E-02	0.107E-01	0.897E-02	0.960E-02	0.738E-02
SIIV 3P-5D	20000.	0.154	0.875E-02	*0.107E-01	*0.763E-02	10 - S	
454.7 A	50000.	0.120	0.110E-01	*0.169E-01	*0.130E-01		· '
C= 0.46E+19	80000.	0.107	0.115E-01	*0.199E-01	*0.161E-01	a. ¹⁹	
	100000.	0.101	0.113E-01	*0.207E-01	*0.171E-01		
- 1 N. A	150000.	0.911E-01	0.118E-01	*0.243E-01	*0.201E-01		
· · ·	200000.	0.849E-01	0.109E-01	*0.262E-01	*0.212E-01	*0.225E-01	*0.170E-01
						· 5 - 6 - 1	5
SIIV 3P-6D	20000.	0.251	0.178E-01				a Noti
412.7 A	50000.	0.210	0.215E-01				
C= 0.22E+19	80000.	0.192	0.248E-01				
	100000.	0.184	0.245E-01				
	150000.	0.169	0.242E-01				
	200000.	0.160	0.221E-01				
	the second		1.1.1.1		²⁹²⁵ K. S. S.		N 1 (d
SIIV 3D-4P	20000.	0.636	0.499E-02	0.151E-01	0.238E-02	0.215E-01	0.233E-02
1724.1 A	50000.	0.428	0.117E-01	0.294E-01	0.596E-02	0.360E-01	0.550E-02
C= 0.73E+21	80000.	0.358	0.942E-02	0.369E-01	0.828E-02	0.407E-01	0.713E-02
	100000.	0.332	0.106E-01	0.395E-01	0.912E-02	0.425E-01	0.802E-02
	150000.	0.292	0.134E-01	0.427E-01	0.113E-01	0.457E-01	0.954E-02
	200000.	0.270	0.126E-01	0.449E-01	0.124E-01	0.478E-01	0.102E-01
	. to <u>i</u>		-11.5.				
SIIV 3D-5P	20000.	0.310	0.985E-02	*0.205E-01	*0.284E-02	*0.248E-01	*0.259E-02
860.7 A	50000.	0.239	0.924E-02	*0.310E-01	*0.577E-02	*0.333E-01	*0.505E-02
C= 0.83E+20	80000.	0.214	0.113E-01	0.341E-01	0.757E-02	*0.363E-01	*0.633E-02
	100000.	0.204	0.123E-01	0.354E-01	0.822E-02	*0.377E-01	*0.669E-02
	150000.	0.187	0.111E-01	0.379E-01	0.933E-02	*0.396E-01	*0.767E-02
	200000.	0.177	0.110E-01	0.395E-01	0.998E-02	*0.404E-01	*0.826E-02
				a B was			4 . Z.
SIIV 3D-6P	20000.	0.389	0.199E-01		rt art. r		
688.3 A	50000.	0.317	0.177E-01	*0.512E-01	*0,912E-02		
C= 0.28E+20	80000.	0.294	0.184E-01	*0.561E-01	*0.109E-01		
in the first sector	100000.	0.284	0.172E-01	*0.580E-01	*0.118E-01		
	150000.	0.268	0.171E-01	*0.610E-01	*0.133E-01		
	200000.	0.257	0.163E-01	*0.621E-01	*0.143E-01		

- y 134

STARK BROADENING PARAMETER TABLES FOR SPECTRAL LINES OF MULTICHARGED IONS OF ASTROPHYSICAL INTEREST. II: SI IV LINES

PERTURBER DENSITY = 0.1D+19

		ELECTRONS	191 A.A.	PROTONS	·	IONIZED HE	LIUM
TRANSITION	T(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
SIIV 3D-4F	20000.	0.288	-0.587E-02	0.571E-02	-0.710E-02	0.752E-02	-0.645E-02
1066.6 A	50000.	0.195	-0.485E-02	0.136E-01	-0.140E-01	0.145E-01	-0.119E-01
C = 0.47E + 20	80000	0.162	-0.585E-02	0.187E-01	-0.176E-01	0.174E-01	-0.143E-01
	100000.	0.150	-0.557E-02	0.203E-01	-0.185E-010	0.189F-01	-0.154E-01
- ? -	150000.	0.131	-0.419E-02	0.234E-01	-0.212E-01	0.212E-01	-0.176E-01
	200000	0.120	-0.388E-02	0.260F-01	-0.229E-01	0.229E-01	-0.189E-01
			010002 02	0.2002 01			011072 01
SLIV 3D-5F	20000.	0.502	-0.214F-01				
749.9 A	50000.	0.392	-0.117E-01	ς,			
C= 0.67F+18	80000.	0.346	-0.378E-02				
0 010/2 10	100000	0.326	-0.311E-02				
1	150000	0.292	0.4515-02				
1.0.0 G	200000	0.270	0 3356-02				
	200000.	0.270	0.3352 02				
STIV 30-6F	20000	0 171	-0 116E-02				
6/5 8 A	50000	0.117	-0 5795-03	*0 /30E-01	*-0 2375-3		
C= 0 80E+20	80000	0.0035-01	-0 6365-03	*0 460E-01	*-0 354E-3		
0.092420	100000	0.9932-01	-0.6/05-03	*0 /865-01	*-0 /10=-3		
	150000	0.9242 01	-0.6505-03	*0.5085-01	*-0.5295-3		
· · ·	200000	0.3222-01	-0.6785-03	*0.5185-01	*-0.5272-3		
3 A.	200000.	0.7042-01	-0.0782-05	-0.5182-01	-0.0102-3		
S11V / S-/D	20000	4 07	-0 7045-01	0 110	-0 3525-01	0 152	-0 33/5-01
/007 0 A	50000	4.77	-0.8875-01	0.208	-0.3322-01	0.7/8	-0.5342-01
4097.7 A	80000	2.50	-0 127	0.200	-0.1942-01	0.240	-0.8015-01
C- 0.4/E+22	100000	2.05	-0.123	0.239	-0.105	0.200	-0.891E-01
	150000	2.00	-0.120	0.274	-0.113	0.290	-0.900E-01
	200000	2.33	-0.124	0.299	-0.1/7	0.312	-0.110
	200000.	2.10	-0.116	0.510	-0.145	0.520	-0.116
SLIV 45-5P	20000	0 734	0.698F-02	*0.435F-01	*0.180F-02	*0.527F-01	*0.174F-02
1211 0 4	50000	0.556	0 293E-02	*0.6515-01	*0_434F-02	*0.700E-01	*0.388E-02
C = 0.16E + 21	80000	0 495	0 5935-02	*0.713E-01	*0.571F-02	*0 763E-01	*0.503E-02
C- 0.102.21	100000	0 470	0 717E-02	0 740E-01	0.6455-02	*0 789E-01	*0 558E-02
	150000	0.431	0.3795+02	0.790E-01	0.775E-02	*0.832E-01	*0.6376-02
	200000	0.407	0.4885-02	0.8205-01	0.831E-02	*0 848E-01	*0 6925-02
	200000.	J. 401				0.0402 01	
SILV 4S-6P	20000.	0.722	0.205E-01				
895 3 A	50000	0.581	0.189E-01				
C = 0.48F + 20	80000.	0.536	0.205E-01	*0.971E-01	*0.156E-01		
	100000.	0.517	0.179E-01	*0.101	*0.167E-01		
	150000	0:486	0.181E-01	*0.105	*0.191E-01		
	200000	0.465	0.177E-01	*0.107	*0.206E-01		
	2000001						
SIIV 4P-5S	20000.	2.05	0.211	0.560E-01	0.606E-01	*0.614E-01	*0.502E-01
2125.0 A	50000.	1.50	0.193	0.116	0.111	*0.110	*0.891E-01
C= 0.50F+21	80000	1.32	0.211	0.142	0.132	*0.129	*0.108
	100000	1.25	0.201	0.155	0.141	*0.139	*0.115
	150000	1.14	0.190	0.175	0.160	*0.157	*0.131
	200000.	1.06	0.182	0.189	0.172	0.169	0.144
			A DI MEMORY DE S				

		ELECTRONS		PROTONS		IONIZED HE	LIUM
TRANSITION	T(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
SILV 4P-6S	20000.	1.20	0.361	*0.600E-01	*0.579E-01		
1230.0 A	50000.	0.942	0.267	*0.110	*0.996E-01		
C = 0.91E + 20	80000.	0.857	0.251	*0.131	*0.122	1 1 J	
	100000.	0.820	0.222	*0.138	*0.132	*0.122	*0.105
	150000.	0.752	0.203	*0.167	*0.149	*0.137	*0.124
	200000	0.709	0.188	*0.183	*0.159	*0.142	*0.127
	2000001						
SLIV 4P-4D	20000.	3.80	0.717E-01	0.907E-01	0.898E-01	0.112	0.786E-01
3160.3 A	50000.	2.67	0.102	0.189	0.170	0.195	0.142
C = 0.41F+21	80000	2.29	0.114	0.238	0.206	0.227	0.171
0.412.21	100000	2 14	0.106	0.259	0.222	0.240	0.182
	150000	1.90	0.985F-01	0.296	0.252	0.272	0.208
	200000	1.77	0.101	0.319	0.270	0,290	0.223
	200000.		•••••				
SITV 4P-5D	20000.	1.49	0.734E-01	*0.902E-01	*0.686E-01		
1367.6 A	50000.	1.16	0.907E-01	*0.147	*0.117		
C = 0.42E + 20	80000	1.02	0.971E-01	*0.173	*0.145		
	100000	0.967	0.948E-01	*0.180	*0.153		
	150000	0.876	0.975E-01	*0.211	*0.180	*0.185	*0.147
	200000	0.819	0 8945-01	*0 229	*0.191	*0.195	*0.153
	200000.	0.017	0.0742 01	0.227	0.171		
STIV 4P-60	20000	1.67	0.109	÷***	•		
1046 7 4	50000	1.39	0.132		<i>بخ</i> ن		
$\Gamma = 0.14E+20$	80000	1.27	0.155				
0-0.142.20	100000	1 21	0.153				
	150000	1 12	0.150				
	200000	1.06	0.137				
	2000001		01101				
SIIV 4D-5P	20000.	7.87	0.421E-01	0.335	-0.931E-01	*0.404	*-0.843E-01
3766.0 A	50000.	6.04	-0.264E-01	0.526	-0.182	*0.558	*-0.155
C= 0.58E+21	80000.	5.39	0.128E-01	0.584	-0.228	*0.612	*-0.186
1. 198 A.	100000.	5.12	0.376E-01	0.608	-0.241	*0.638	*-0.200
	150000.	4.69	0.141E-01	0.661	-0.276	*0.675	*-0.229
8 a.	200000.	4.42	0.147E-01	0.685	-0.297	*0.694	*-0.247
S11V 4D-6P	20000.	3.07	0.879E-01				
1796.6 A	50000	2.48	0.691E-01	*0.321	*0.104E-01		
C = 0.13F + 21	80000	2.29	0.760E-01	*0.350	*0.136E-01		
0 01.02 2.	100000	2.21	0.689E-01	*0.363	*0.154E-01		
	150000.	2.07	0.696E-01	*0.380	*0.183E-01		
	200000	1.98	0.655E-01	*0.387	*0.196E-01		
	200000.						
SIIV 4D-5F	20000	5.33	-0.249				
2287.0 A	50000	4.14	-0.183				
C= 0.62E+19	80000	3.65	-0.111				
	100000	3.44	-0.103		6		
	150000	3.09	-0.321E-01				
	200000	2.86	-0.428E-01				

STARK BROADENING PARAMETER TABLES FOR SPECTRAL LINES OF MULTICHARGED IONS OF ASTROPHYSICAL INTEREST. II: SI IV LINES

PERTURB	ER DENSITY	= 0.1D+19					
		CI COTRONO			ų		
7041017100	-	ELECTRONS	16. c	PROTONS	- 124 · · · .	IONIZED HE	LIUM
TRANSITION	1(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
SIIV 4D-6F	20000.	5.07	-0.267				
1533.2 A	50000.	4.18	-0.175				
C= 0.18E+19	80000.	3.76	-0.761E-01	- 3			
	100000.	3.57	-0.743E-01			11 (Bark)	
	150000.	3.23	0.303E-01				
	200000.	2.99	0.701E-02				
					.3	<u>.</u>	
SIIV 4F-5D	20000.	6.07	0.335	*0.353	*0.280		
2675.2 A	50000.	4.67	0.403	*0.591	*0.481		
C= 0.16E+21	80000.	4.10	0.427	*0.693	*0.591		
	100000.	3.87	0.418	*0.744	*0.642		
	150000.	3.49	0.425	*0.841	*0.722		
	200000.	3.25	0.390	*0.921	*0.754	*0.748	*0.622
SIIV 4F-6D	20000.	4.41	0.305				
1672.6 A	50000.	3.64	0.365				
C= 0.37E+20	80000.	3.32	0.420				
	100000.	3.17	0.415			9 	
	150000.	2.92	0.406				
	200000.	2.74	0.371			1. 1. 100	
SIIV 5S-6P	20000.	6.11	-0.270E-01				
2483.7 A	50000.	5.10	-0.523E-01	*0.684	*-0.644E-01		
C= 0.37E+21	80000.	4.76	-0.671E-01	*0.747	*-0.826E-01		
	100000.	4.62	-0.728E-01	*0.772	*-0.876E-01		
	150000.	4.36	-0.621E-01	*0.807	*-0.997E-01		
	200000.	4.19	-0.614E-01	*0.824	*-0.108	a A	
SILV 5P-6S	20000.	17.0	3 45	*0 937	*0 696		
4323.5 A	50000.	14.2	2.66	*1.51	*1 19		
C= 0.11E+22	80000	13.2	2 27	*1.78	*1 47		• •
27	100000	12.8	2 34	*1.86	*1 57		
	150000.	11.9	2.08	*2 19	*1.83		
	200000.	11.3	1.97	*2.35	*1.93	*2 00	*1 54
				2105	117 3	2.00	1.54
SIIV 5P-6D	20000.	11.6	0.641				
2676.6 A	50000.	9.71	0.810				
C= 0.94E+20	80000.	8.92	0.930				
	100000.	8.56	0.909				£ *
	150000.	7.93	0.907				
	200000.	7.48	0.820	*.			

93

».__

: *	1	ELECTRONS		PROTONS		IONIZED HE	LIUM
TRANSITION	T(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
				et a la			
SIIV 3S-3P	50000.	1.12	-0.164E-01	0.268E-01	-0.669E-02	0.380E-01	-0.646E-02
1396.7 A	80000.	0.899	-0.148E-01	0.401E-01	-0.108E-01	0.503E-01	-0.999E-02
C= 0.14E+23	100000.	0.812	-0.115E-01	0.461E-01	-0.130E-01	0.568E-01	-0.120E-01
	150000.	0.684	-0.156E-01	0.570E-01	-0.175E-01	0.668E-01	-0.150E-01
	200000.	0.612	-0.183E-01	0.648E-01	-0.202E-01	0.706E-01	-0.178E-01
	300000.	0.530	-0.171E-01	0.715E-01	-0.251E-01	0.765E-01	-0.213E-01
		194. a. j			a s		5 5, <u>1</u> , 1
SIIV 3S-4P	50000.	0.307	0.649E-02	*0.243E-01	*0.335E-02		- 51 ⁻ 12
457.9 A	80000.	0.258	0.500E-02	*0.306E-01	*0.491E-02	*0.328E-01	0.416E-02
C= 0.51E+21	100000.	0.240	0.630E-02	*0.325E-01	*0.551E-02	*0.347E-01	0.480E-02
	150000.	0.212	0.810E-02	*0.352E-01	*0.700E-02	*0.374E-01	0.591E-02
	200000.	0.195	0.745E-02	*0.371E-01	*0.800E-02	*0.394E-01	0.650E-02
	300000.	0.176	0.695E-02	*0.396E-01	*0.908E-02	*0.415E-01	0.748E-02
				1. 1. 1.		·	
SIIV 3S-5P	50000.	0.429	0.132E-01				
361.6 A	80000.	0.383	0.173E-01				
C= 0.15E+21	100000.	0.365	0.190E-01			1	
	150000.	0.335	0.176E-01				
	200000.	0.316	0.178E-01		-7 S		
	300000.	0.293	0.175E-01	*0.765E-01	*0.192E-01		
				3 ¹⁵ .			
SIIV 3S-6P	50000.	0.720	0.334E-01			s	, 78 e.
327.2 A	80000.	0.668	0.355E-01	2 23 S o	11 ac		
C= 0.64E+20	100000.	0.646	0.341E-01	1 12007 0	50. A		
	150000.	0.608	0.347E-01	re - Spar	÷.8		
	200000.	0.583	0.341E-01	ćs.			
	300000.	0.548	0.349E-01				
01111 7 0 (0	50000	0.005 ^{,203} ,1		0.0000	0 770- 04	+0.00/0.04	
STIV 3P-4S	50000.	0.805	0.636E-01	0.288E-01	0.338E-01	*0.286E-01	*U.284E-01
017.1 A	100000	0.655	0.693E-01	0.412E-01	0.463E-01	*0.420E-01	*0.390E-01
L= 0.16E+22	100000.	0.600	0.751E-01	0.507E-01	0.526E-01	*0.482E-01	*U.421E-01
	150000.	0.517	0.793E-01	0.6272-01	0.608E-01	*0.553E-01	*0.497E-01
	200000.	0.471	0.766E-01	0.7062-01	0.6912-01	*0.626E-01	*0.564E-01
	500000.	0.410	0.7552-01	0.0252-01	0.7902-01	~U./1/E-UI	-0.0536-01
CTIV 30-50	50000	0 704	0 179	*0 5975.01	*0 /045-01		
515 O A	80000	0.700	0.136	*0.383E-01	*0.490E-01		
C- 0 305+21	100000	0.578	0.129	*0.9385-01	*0.7085-01		· · · · · · ·
C= 0.30E+21	150000	0.518	0.129	*0.0525-01	*0.9545-01		
	200000	0.518	0.113	*0.105	*0.0095-01		
	300000	0.470	0.115	*0.125	*0 117		
	300000.	0.467	0.115	0.120	0.113		
SILV 3D-40	50000	1 08	0 300				
438 / A	80000	0.081	0.309				
430.4 A	100000	0.701	0.202				
0- 0. ILETEI	150000	0.852	0.205				
	200000	0.700	0.234				
	300000	0.728	0.230				
		~	V. L. V				

STARK BROADENING PARAMETER TABLES FOR SPECTRAL LINES OF MULTICHARGED IONS OF ASTROPHYSICAL INTEREST. II: Si IV LINES

 $(1, \dots, n^{n-1})^T$, $(2, 1, \dots, n^{n-1})^T$

PERTURBER DENSITY = 0.1D+20

		ELECTRONS		PROTONS			-1 TIM
TRANSITION	T(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
	на н ^п	£.,	1948 a		i sidy		
SIIV 3P-3D	50000.	0.751	0.466E-02	0.187E-01	0.188E-02	0.265E-01	0.185E-02
1126.4 A	80000.	0.604	0.348E-02	0.277E-01	0.316E-02	0.347E-01	0.304E-02
C= 0.74E+22	100000.	0.548	0.320E-02	0.316E-01	0.392E-02	0.392E-01	0.367E-02
	150000.	0.465	0.445E-02	0.389E-01	0.544E-02	0.456E-01	0.5008-02
	200000.	0.418	0.463E-02	0.439E-01	0.672E-02	0.480E-01	0.585E-02
	300000.	0.367	0.432E-02	0.480E-01	0.821E-02	0.518E-01	0.720E-02
	a ha a		100		1 A.	A STATE OF A STATE OF A	
SIIV 3P-4D	50000.	0.701	0.284E-01	*0.623E-01	*0.435E-01		
560.5 A	80000.	0.595	0.321E-01	*0.790E-01	*0.561E-01		
C= 0.13E+21	100000.	0.552	0.326E-01	*0.854E-01	*0.623E-01		
	150000.	0.487	0.362E-01	*0.980E-01	*0.743E-01		
	200000.	0.449	0.408E-01	*0.107	*0.849E-01		
	300000.	0.402	0.403E-01	*0.117	*0.992E-01		
				а ^т . н. а	4.1°		
SIIV 3P-5D	50000.	1.17	0.410E-01				
454.7 A	80000.	1.04	0.554E-01	land d'i			
C= 0.46E+20	100000.	0.986	0.623E-01				a dia 1975
	150000.	0.894	0.764E-01				는 가 가락한 _감 한.
	200000.	0.835	0.876E-01		- 7 <u>88</u> 9		
	300000.	0.759	0.926E-01	an Derit	8853 J	·····	
				1917 - Maria	:XU		
SIIV 3P-6D	50000.	1.91	0.197E-01				
412.7 A	80000.	1.78	0.756E-01		1. A.		
C= 0.22E+20	100000.	1.71	0.917E-01	and and a second		and the second	a ta gitta a
	150000.	1.59	0.114	an ar shun	1 A A A A A A A A A A A A A A A A A A A		ant a train
	200000.	1.51	0.152				
	300000.	1.39	0.178		· .		
			24 1.31	a fair a			
SIIV 3D-4P	50000.	4.28	0.108	*0.285	*0.517E-01	*0.343	*0.471E-01
1724.1 A	80000.	3.58	0.865E-01	*0.364	*0.754E-01	*0.397	*0.638E-01
C= 0.73E+22	100000.	3.32	0.100	*0.391	*0.845E-01	*0.418	*0.737E-01
	150000.	2.92	0.129	*0.425	*0.107	*0.455	*0.900E-01
	200000.	2.70	0.123	0.449	0.122	*0.477	*0.993E-01
	300000.	2.43	0.115	0.481	0.138	*0.505	*0.114
	50000	2 70	0 0057 04				
SIIV 30-3P	50000.	2.39	0.805E-01	5		5. 171	4
00U.7 A	80000.	2.14	0.103	1. A A A A A A A A A A A A A A A A A A A	and A		
C= 0.03E+21	100000.	2.04	0.111		÷		
	150000.	1.87	0.104				
	200000.	1.77	0.106	TO 111		. 1	
	200000.	1.04	0.104	*U.411	*0.110		
STIV TO-LO	50000	7 17	0 157				
311V JU-0P	90000.	3.17	0.155		<u>1</u>		*
000.3 A	100000	2.94	0.161	2			N 8. J.A.
L- U.202+21	150000	2.04	0.154			$\mathcal{J}^{(n)}$	
	200000	2.00	0.157	a. 11	41 U	. 397.	
	200000.	2.2/	0.155	ż			
	200000	2.41	0.157				

2000 - 2011 (AnoTOTA IONIZED HELIUM PROTONS ELECTRONS TRANSITION WIDTH(A) WIDTH(A) T(K) WIDTH(A) SHIFT(A) SHIFT(A) SHIFT(A) 125 9 SIIV 30-4F 50000. 1.94 -0.113E-01 *0.133 *-0.111 *0.140 *-0.906E-01 *-0.149 *0.171 *-0.116 1066.6 A 80000. -0.274E-01 *0.187 1.62 C= 0.47E+21 100000. 1.50 -0.275E-01 *0.205 *-0.162 *0.187 *-0.129 *-0.190 *0.209 150000. 1.31 -0.201E-01 *0.230 *-0.156 200000. 1.20 -0.287E-01 *0.260 *-0.219 *0.230 *-0.179 300000. 1.08 -0.353E-01 *0.290 *-0.252 *0.266 *-0.208 SIIV 3D-5F 50000. 3.24 -0.656E-01 2.7 1 749.9 A 80000. 2.92 -0.643E-01 1.1 C= 0.67E+19 100000. 2.78 -0.629E-01 150000. 2.53 -0.581E-01 -0.300E-01 200000. 2.36 300000 0.708E-02 2.14 SIIV 3D-6F 50000. -0.553E-02 1.17 645.8 A 80000. 0.992 -0.610E-02 16. C= 0.89E+21 100000. 0.923 -0.627E-02 150000. 0.821 -0.625E-02 200000. 0.764 -0.669E-02 190 1.230.6.0 300000. 0.701 -0.725E-02 SIIV 4S-5P 50000. 5.56 0.232E-01 1211.0 A 80000. 4.95 0.551E-01 C= 0.16E+22 100000. 4.70 0.603E-01 1. E * 150000. 4.31 0.343E-01 200000. 4.07 0.468E-01 0.468E-01 0.453E-01 *0.846 300000. 3.77 *0.927E-01 SIIV 45-6P 50000. 5.80 0.158 895.3 A 80000. 5.35 0.176 1.6 C= 0.48E+21 100000. 5.17 0.156 150000. 4.86 0.163 200000. 4.65 0.167 Γ. 300000. 4.37 0.176 SIIV 4P-5S 50000. 15.0 1.60 2125.0 A 80000. 13.2 1.82 421.0 C= 0.50E+22 100000. 12.5 1.76 *1.73 *1.40 *1.88 *1.61 *2.19 *1.88 150000. 11.3 1.70 200000. 10.6 1.72 300000. 9.65 1.71 SIIV 4P-6S 50000. 9.41 2.15 135 0 - S 1230.0 A 80000. 8.56 2.08 C= 0.91E+21 100000. 8.19 1.84 150000. 7.52 1.72 241 1 200000. 7.08 1.72 300000. 6.50 1.70

STARK BROADENING PARAMETER TABLES FOR SPECTRAL LINES OF MULTICHARGED IONS OF ASTROPHYSICAL INTEREST. II: SI IV LINES

PERTURBER	DENSITY = 0	0.1D+20

					State of the second	$\geq \ell + 34 \cdot \{0, 0\}$	
		ELECTRONS		PROTONS		IONIZED H	ELIUM
TRANSITION	T(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
SIIV 4P-4D	50000.	26.7	0.525	*1.85	*1.31		
3160.3 A	80000	22.8	0 721	*2 35	*1 71		
C= 0 (15+22	100000	21 7	0 402	*3 57	+1 PO	100 9 003	
C- 0.412+22	150000	21.3	0.092	+2.01	*1.09	.galadi	
	150000.	19.0	0.700	*2.94	*2.20	ander C	TS and the
	200000.	17.6	0.865	*3.20	*2.57 ₃₇		
	300000.	16.0	0.881	*3.52	*2.93		
SIIV 4P-5D	50000.	11.3	0.289			$[(d^{n,i})_{i \in I}^{n,i}]_{i \in I}$	
1367 6 4	80000	10.0	0 437				
C- 0 /25+21	100000	0.40	0.407				
C- 0.42L*21	150000	7.47	0.492		2 ¹⁰ 10		a 8. 8 M
	150000.	0.01	0.001		·		
	200000.	8.06	0.706	1.18	25 ÷		
	300000.	7.34	0.758	ž 3	A		
					. 4 5		
SIIV 4P-6D	50000.	12.7	0.705E-01				
1046.7 A	80000.	11.8	0.443				
C= 0.14E+21	100000.	11.3	0.545				
	150000.	10.6	0.676				
	200000.	9,99	0.923			a sette encoder Automotion	
	300000	9 21	1 10				
		,	1.10			·)US	
PERTURB	ER DENSITY	' = 0.1D+21					
						2 L	
SIIV 3S-3P	100000.	8.12	-0.916E-01	0.447	-0.112	*0.542	*-0.102
1396.7 A	150000.	6.84	-0.136	0.560	-0.158	*0.650	*-0.133
C= 0,14E+24	200000.	6.12	-0.166	0.644	-0.186	*0.696	*-0.162
	300000.	5.30	-0.159	0.713	-0.237	*0.762	*-0.199
	500000.	4.53	-0.158	0.792	-0.285	*0.834	*-0.237
	800000.	3.99	-0.155	0.860	-0.332	*0.893	*-0.273
				·	• • •	$(\cdot)(\epsilon_i)^{*}$.	
SIIV 3S-4P	100000.	2.40	0.497E-01			a Collector	
457.9 A	150000.	2.12	0.707E-01	S_{1}^{*}		$(\cdot, \cdot, (\Sigma_{i}))(n)^{*}$	
C= 0.51E+22	200000.	1.95	0.650E-01			0.00% (e.	
	300000.	1.76	0.611E-01	24		2003	
	500000.	1.57	0.639E-01				
	800000.	1.42	0.663E-01				
011V 70 FD	100000	+7 ()	+0 4//			. 1	$\mathcal{O}_{1}^{2} + \mathcal{O}_{1}^{2} = \mathcal{O}_{1}^{2}$
SIIV 35-3P	100000.	-3.02	-0.144	≥ss t _N r B			· · ·
301.0 A	150000.	3.33	0.136				
C= 0.15E+22	200000.	3.14	0.142	· .	see de		
	300000.	2.91	0.145				
	500000.	2.66	0.158			6 04	
	800000	2 / 5	0.150				
		2.43					
		2.43				μ^{*} is	starti€ s
SIIV 3S-6P	100000.	*6.11	*0.196		ай 8.9	ji s Tari	an an stàitean s Stàitean stàitean stài
SIIV 3S-6P 327.2 A	100000. 150000.	*6.11 *5.81	*0.196 *0.227			en Politik Borni ti	en Serve SSE 1. se se se
SIIV 3S-6P 327.2 A C= 0.64E+21	100000. 150000. 200000.	*6.11 *5.81 *5.60	*0.196 *0.227 *0.225	n an taon		۲۹ ۱۹۹۵ ک 2014 ک دیرونی	anar Corraina A Nationa A Satisfica
SIIV 3S-6P 327.2 A C= 0.64E+21	100000. 150000. 200000. 300000.	*6.11 *5.81 *5.60 5.30	*0.196 *0.227 *0.225 0.264	د المراجع المراجع المراجع المراجع 1884		ہ ہے جن الا 1924ء - الا 1924ء -	aran € sa a s∑s€a a. mé a s
SIIV 3S-6P 327.2 A C= 0.64E+21	100000. 150000. 200000. 300000. 500000.	*6.11 *5.81 *5.60 5.30 4.92	*0.196 *0.227 *0.225 0.264 0.280	na a sua Angli Angli Angli		eng esta ta Berra ta Ganta ta Lanta ta Lanta ta	2014 - 1999 1997 - 1996 1997 -

:. ;;

		ELECTRONS		PROTONS		IONIZED HE	LIUM
TRANSITION	T(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
SIIV 3P-4S	100000.	6.00	0.573				
817.1 A	150000.	5.16	0.646				
C= 0.16E+23	200000.	4.71	0.631				
	300000.	4.16	0.647	*0.824	*0.685		
	500000.	3.60	0.662	*0.973	*0.838		
	800000.	3.20	0.664	*1.07	*0.973		
SIIV 3P-5S	100000.	5.70	0.800				
515.9 A	150000.	5.11	0.774			2	
C= 0.30E+22	200000.	4.72	0.788				
	300000.	4.24	0.850				
	500000.	3.74	0.922				
	800000.	3.34	0.883				
SIIV 3P-6S	100000.	8.47	1.20	÷			
438.4 A	150000.	7.83	1.17				
C= 0.12E+22	200000.	7.40	1.21				
	300000.	6.81	1.38				
	500000.	6.12	1.52				
	800000.	5.50	1.51				
SIIV 3P-3D	100000.	5.48	0.256E-01	0.306	0.342E-01	*0.373	*0.318E-01
1126.4 A	150000.	4.65	0.390E-01	0.382	0.498E-01	*0.443	*0.454E-01
C= 0.74E+23	200000.	4.18	0.416E-01	0.435	0.627E-01	*0.472	*0.540E-01
	300000.	3.67	0.394E-01	0.478	0.784E-01	*0.513	*0.683E-01
	500000.	3.19	0.415E-01	0.527	0.102	*0.563	*0.840E-01
	800000.	2.85	0.413E-01	0.569	0.118	*0.595	*0.972E-01
						£.	
SIIV 3P-4D	100000.	5.23	0.280E-01				
560.5 A	150000.	4.64	0.107				
C= 0.13E+22	200000.	4.29	0.162				
	300000.	3.87	0.196				
	500000.	3.41	0.248				
	800000.	3.06	0.281				
SIIV 3P-5D	100000.	*8.27	*-0.167				
454.7 A	150000.	7.69	0.647E-01				
C= 0.46E+21	200000.	7.29	0.136			11 B.	*
	300000.	6.74	0.254				
	500000.	6.08	0.419				
	800000.	5.51	0.610				
SIIV 3P-6D	100000.	*12.4	*-0.411				
412.7 A	150000.	*12.1	*-0.135				1
C= 0.22E+21	200000.	*11.8	*0.223E-01				
	300000.	11.2	0.236				
	500000.	10.4	0.681				
	800000.	9.58	1.13				

		ELECTRONS		PROTONS		IONIZED HELI	UM
TRANSITION	T(K)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)	WIDTH(A)	SHIFT(A)
SIIV 3D-4P	100000.	33.2	0.795				
1724.1 A	150000.	29.2	1.12				
C= 0.73E+23	200000.	26.9	1.08				
	300000.	24.3	1.02				
	500000.	21.7	1.05				
	800000.	19.7	1.08	*5.32	*1.77		
SIIV 3D-5P	100000.	*20.2	*0.845				
860.7 A	150000.	18.6	0.810				
C= 0.83E+22	200000.	17.6	0.847				
	300000.	16.3	0.864				
	500000.	14.9	0.935				
	800000.	13.7	0.884				
SIIV 3D-6P	100000.	*26.9	*0.897				
688.3 A	150000.	*25.6	*1.03				
C= 0.28E+22	200000.	*24.7	*1.03				
	300000.	23.4	1.20				
	500000.	21.7	1.26				
	800000.	20.1	1.20				
PERTURB	ER DENSITY	= 0.1D+22					
SI I V3S2S-4P	100000.	*23.2	*-0.970E-02				

457.9 A	150000.	*20.6	*0.327
C= 0.51E+23	200000.	*19.1	*0.314
	300000.	17.3	0.350
	500000.	15.4	0.449
	800000.	14.0	0.567

ТАБЛИЦЕ ЗА ПАРАМЕТРЕ ШТАРКОВОГ ШИРЕЊА СПЕКТРАЛНИХ ЛИНИЈА ВИШЕСТРУКО НАЕЛЕКТРИСАНИХ ЈОНА ОД АСТРОФИЗИЧКОГ ЗНАЧАЈА: ЛИНИЈЕ SI IV

M.C. Димитријевић¹, S. Sahal-Bréchot² и V. Bommier²

¹ Астрономска опсерваторија, Волгина 7, 11050 Београд, Југославија ² Département "Atomes et molécules en astrophysique", Unité associée au C.N.R.S. No 812, Observatoire de Paris, 92195 Meudon, France

УДК 52-355.3

Претходно саопштење

У оквиру семикласичне теорије израчунате су ширине и помаци услед судара са електронима, протонима и јонизованим хелијумом за спектралне линије у оквиру 39 мултиплета Si IV. Резултати су дати у функцији електронске температуре и густине. Bull. Obs. Astron. Belgrade N^O 144 (1991), 101-111, and a start of the start of t

UDC 528.45 Preliminary report

CORRELATION BETWEEN VERTICAL MOVEMENTS AND GEOLOGICAL FEATURES OF BELGRADE AREA

M. Starčević¹, N. Bratuljević², V. Vasiljev², D. Blagojević²

¹,,Nafta-gas", Geophysical Institute, Karadordeva 48, Belgrade, Yugoslavia ² Faculty of Civil Engineering – Institute for Geodesy, Bul. Revolucije 73/I, Yugoslavia

(Received: April 4, 1991)

SUMMARY: In this paper the relation between some geological, geophysical and geodetic parameters on the aspect of monitoring of recent crustal movement of Belgrade area is discussed. There were not measured data which are projected only for such as purposes. Although used data were not sufficient, the relation between some investigated parameters was proved by their correlation coefficient.

INTRODUCTION

In Project "Changing of the mean Latitude of Belgrade" which leads Astronomical Opservatory in Belgrade, contribute several Institutes specialized for some problems, such as: Geodesy, Geology, Geophysics and Seismology. This Project is not finished yet, but there are some preliminary results that can be compared. This paper presents the level of correlation between geodetic and some geologic parameters: gravity and tectonic.

The investigated area is about 42 km^2 . Its topography is shown in Fig. 1. The heights above the sea level are between 80 m and 250 m.

METHOD OF INVESTIGATION

Gravity investigations are made by WORDEN Gravity meters on irregular grid with a mean distance of 500 m. The Bouguer anomaly map is shown in Fig. 2. The increasing trend of anomalies is evident from the east to the southwest, with small deviation of anomaly lines to the west in the northern part of the area. On the base of the Bouguer data, by Griffin method, a regional Bouguer map is derived (Fig. 3). This map shows regional trend of geological structures in the deepest part of the area.

The residual anomaly map (Fig. 4), was given as the difference of Bouguer values and regional anomalies. Considering the methodology of calculation of residuals, it can be assumed that this map gives a real picture of tectonic relations in the investigated area.

On the base of the geophysical and geological investigations (Sadžakov et al, 1990; Mlädenović, 1989) the preliminary tectonic map was created (Fig. 5). Blocks which are in process of moving up or down, are marked by ",+" and ",-"' respectively. A stable block is marked by ",0". These movements are relative (tendency of motion). It is distintictive that the central block goes relatively up, while the west and the east blocks go realtively down. In the southwest part, the block marked by ",0" is relatively stable. Of course, it is not possible to realize the quantification of these movements on the base of geophysical and geological data. This can be done by comparing the results of repeated geodetic levelling.

On the investigated area, up to date two levelling campaignes have been done: 1930. and 1959. year.

CORRELATION BETWEEN VERTICAL MOVEMENTS AND GEOLOGICAL FEATURES OF BELGRADE AREA

1 ka

The accuracy of both compaignes are within the class of a first order leveling network ($\sigma_0 \approx 1 \text{ mm/km}$).

The vertical movement of tectonic blocks was determined by using two methods (Bratuljević et al, 1991).

- Adjustment and comparison of the obtained

heights and

- Multiquadratic analysis (MQ).

In this paper we want to compare trends of vertical movements, only so we used parameters derived by MQ method.

All relevant data which are presented in Figures 1 to 5 are transformed into a regular grid of 250 m x 250 m. These data are given in Table 1.

Using the method of regression analysis, the coefficients of correlation between geophysical, geological and geodetic values were derived.

The correlation ceofficients are given in Table 2.

Table 2.

Regr	ession				
of	on	Fig.	R	F	
Bouguer	dH (MQ)	6	0.68	723	
Residual	dH (MQ)	7	0.58	723	
Tectonic	dH(MQ)	8	0.14	723	
Tectonic	Residual	9	0.66	723	

Table 1.

		1					1				Continue	Table 1
1		สมเม็กง	TERTONIC	PESTONAL	BUICHER		5	an a		•••	GUITETINE	I TAULE I
RUM	COLUMN	Un(nu)	TEGIONIS	NEDIVORE	DUUGUEN	2		1	-1.09	0.00	1.23	25.44
now.		[տար]		[mnal]	[moa]]	2		2	1.21	0.00	1.12	25.21
					[2		3	3.28	0.00	0.98	24.95
1	1	-2.58	0.60	1.26	25.71	2		4	5.07	0.00	0.86	24.69
1	2	-0.48	0.00	1.15	25.47	2		5	6.50	0.00	0.76	24.44
i	3	1.38	0.00	1.03	25.22	2		6	7.49	0.00	0.67	24.19
1	4	2.96	0.00	0.92	24.97	. 2	1	7	7.96	0.00	0.60	23.97
1	5	4.17	0.00	0.82	24.71	. 2		8	7.82	0.00	0.58	23.79
1	6	4.96	0.00	0.73	24.47	2		9	7.04	0.00	0.61	23.65
1	7	5.24	0.00	0.68	24.25	2		10	5.58	0.00	0.73	23.53
1	8	4.98	0.00	0.65	24.06	2		11	3.46	0.00	0.91	23.41
. 1	9	4.11	0.00	0.66	23.89	2		12	0.72	1.00	1.09	23.25
1	10	2.64	0.00	0.78	23.75	~ 2	~	13	-2.55	1.00	1.27	23.04
1	11 '	0.56	1.00	0.94	23.61	· 2	· · · · · · ·	_14	-6.28	1.00	1.43	22.78
1	12	-2.07	1.00	1.12	23.44	2		15	-10.35	1.00	1.55	22.46
1 .	13	-5.20	1.00	1.30	23.22	2		16	-14.64	1.00	1.61	22.08
1	14	-8.75	1.00	1.46	22.96	2	Constraint of the second	17	-19.04	1.00	1.59	21.62
1	15	-12.60	1.00	1.59	22.64	2		18	-23.42	1.00	1.51	21.11
1	16	-16.67	1.00	1.64	22.25	2		19	-27.65	1.00	1.33	20.47
1	17	-20.84	1.00	1.62	21.78	2		20	-31.61	1.00	1.08	13.13
1	18	-25.00	1.00	1.54	21.26	.2		21	-35.22	1.00	0.78	18.90
1	19	-29.02	1.00	1.37	20.62	2		22	-38.42	1.00	0.34	18.04
1	20	-32.81	1.00	1.15	19.90	2		23	-41.22	1.00	-0.08	17.17
1	21	- 36.29	1.00	0.89	19.10	2		24	-43.67	1.00	-0.46	16.34
1	22	-39.43	1.00	0.47	18.26	2		25	-45.81	1.00	-0.80	15.56
1	23	-42.21	1.00	0.07	17.41	2		26	-47.73	-1.00	-1.10	14.84
1	24	-44.67	1.00	-0.30	16.59	2		27	-49.50	-1.00	-1.33	14.19
1	25	-46.85	1.00	-0.63	15.82	2		28	-51.17	-1.00	-1.50	13.59
1	26	-48.82	-1.00	-0.92	15.10	2		29	-52.79	-1.00	-1.60	13.05
1	27	-50.63	-1.00	-1.16	14.44	3		1	0.09	1.00	1.21	25.17
1	28	-52.34	-1.00	-1.34	13.83	3		2	2.58	0.00	1.09	24.94
1	29	-53.99	-1.00	-1.46	13,26	3		3 /	4.86	0.00	0.96	24.69

CORRELATION BETWEEN VERTICAL MOVEMENTS AND GEOLOGICAL FEATURES OF BELGRADE AREA

... Continue Table 1

 Continue	Table	1
 Continue	laple	

		<i>c</i>	0 00			-					
,	4	5.88	0.00	0.83	24.43	5	18	-17.87	1.00	1.35	20.64
3	5	8.54	0.80	0.71	24.17	5	19	-22.46	1.00	1.16	20.02
3	6	9.75	0.00	0.61	23.92	5	20	-26.72	1.00	0.87	19.27
ĩ	7	10 41	0 00	0.54	23 71	5	21	-30.55	1 00	0.51	18 40
,	,	10.41	0.00	0.54	27.71	5	21	-50.55	1.00	0.91	10.40
5	В	10.43	0.00	0.52	23.54	5	22	-33.88	1.00	-0.03	17.46
3	9	9.76	0.00	0.58	23.43	5	23	-36.72	1.00	-0.55	16.52
3 `	10	A 34	0 00	0 72	23 34	5	24	- 39 14	1 00	-1.00	15 64
,	10	6.29	0.00	0.72	01 07	2	21	22.14 14 0E	1.00	4 77	16.05
)	11	0.20	0.00	0.90	23.25	2	25	-41.20	-1.00	-1.57	14,00
3	12	3.40	1.00	1.08	23.08	5	26	-43.15	-1.00	-1.66	14.15
3	13	0.01	1.00	1.24	22.86	5	27	-44.91	-1.00	-1.86	13.54
1	14	-3.96	1 00	1 19	22 60	ŝ	20	-16 67	_1 00	-1 99	13 00
,	17	-,00	1.00	1.55	22.00		20		-1.00	-1.00	12.00
3	15	-8.10	1.00	1.50	22.28	5	29	-48.31	-1.00	-2.05	12.51
3	16	-12.58	1.00	1.56	21.91	6	1	1.19	1.00	1.04	24.27
3	17	-17.17	1 00	1.54	21.46	6	2	4 11	1.00	0.95	24.08
r	10	-21 76	1 00	1 67	20 96	6	7	6.01	1 00	0.95	23 88
,	10	-21.14	1.00	1.47	20.00	0	,	0.21	1.00	0.85	27.00
3	19	-26.14	1.00	1.28	20.32	6	4	9.50	1.00	0.75	23.66
3	20	-30.25	1.00	1.00	19.56	6	5	11.78	0.00	0.65	23.44
. 3	21	- 33 96	1 00	0.68	18 72	6	6	13 64	0 00	0.57	23 24
	20	77.00	1.00	0.00	12.02	ů		4/ 05	0.00	0.54	27.00
,	22	-31.22	1.00	0.21	17.65	Б	1	14.95	0.00	0.54	23.08
3	23	-40.04	1.00	-0.25	16.94	6	8	15.55	0.00	0.57	22.98
3	24	-42.46	1.00	-0.65	16.09	6	9	15.35	0.00	0.65	22.92
1	25	-44 57	1 00	-0 99	15 31	6	10	14 29	0.00	0 79	22 85
	25		1.00	0.77	19.91	U C	10	17.25	0.00	0.75	22.05
,	26	-46.45	-1.00	-1.29	14.55	Ь	11	12.98	0.00	0.90	22.11
3	27	-48.19	-1.00	-1.50	13.96	6	12	9.71	0.00	0.99	22.49
3	28	-49.84	-1.00	-1.66	13.38	б	13	6.39	0.00	1.08	22.23
	70	E1 46	1 00	1 75	12 95	ć	1.6	2 53	1 00	1 17	21 94
,	23	-51.45	-1.00	-1.75	12.05	0	14	2.55	1.00	1.17	21.74
4	1	0.90	1.00	1.18	24.89	6	15	-1.72	1.00	1.26	21.63
4	2	3.56	1.00	1.06	24.67	6	16	-6.26	1.00	1.33	21.30
4	3	6 05	0 00	0 93	24 43	6	17	-10 95	1 00	1 33	20 91
		0.00	0.00	0.00	24.47	6	10	15.05	1.00	1 20	20.51
4	4	8.28	0.00	0.80	24.17	ь	18	~15.65	1.00	1.20	20.47
4	5	10.17	0.00	0.68	23.92	6	19	-20.19	1.00	1.11	19.88
4	6	11.61	0.00	0.58	23.68	6	20	-24.43	1.00	0.84	19.15
4	7	12 48	0 00	0.51	23 47	c	24	20 25	1 00	0 47	10 20
7	<i>_</i>	12.40	0.00	0.51	07 77	D C	21	-20,20	1.00	0.47	10.20
4	8	12.69	0.00	0.51	22.35	6	22	-31.59	1.00	-0.09	17.33
4	9	12.15	0.00	0.58	23.24	6	23	-34.46	1.00	-0.64	16.36
4	10	10.81	0.00	0.73	23.17	6	24	-36 93	1 00	-1 13	15 45
	1.1	0 70	0.00	0.91	23 07	0	20	70.40	1.00	4 67	44 65
4	11	0.70	0.00	0.51	29.07	b	25	- 29.10	-1.00	-1.52	14.65
4	12	5.87	0.00	1.06	22.90	6	26	-41.06	-1.00	-1.82	13.96
4	13	2.42	1.00	1.21	22.68	6	27	-42.91	-1.00	-2.01	13.37
4	14	-1 53	1 00	1 33	22.40	۲. ۲	28	-44 70	-1 00	-2 13	12 85
т ,	15	5.00	1.00	1 66	22.00	0	20	-44.70	-1.00	-2.15	12.00
4	15	-5.80	1.00	1.44	22.03	ь	29	-46.49	-1.00	-2.17	12.38
4	16	-10.48	1.09	1.49	21.12	7	1	0.58	1.00	0.93	23.91
4	17	-15.20	1.00	1.48	21.29	7	2	3.58	1.00	0.85	23.74
4	18	-19 90	1 .00	1 41	20.80	7	3	6 45	1 00	0.78	23 56
1	10	12.20	4.00	4 00	20 17	/	, ,	0.45	1.00	0.70	27.70
4	19	-24.4)	1.00	1.22	20.17	7	4	9.15	1.00	U./U	23.31
4	20	-28.65	1.00	0.93	19.41	7	5	11.56	1.00	0.63	23.18
4	21	-32.43	1.00	0.59	18.55	7	6	13.58	0.00	0.57	23.01
L L	22	- 15 73	1 00	n na	17 64	-		15.05	0.00	0 55	22 00
7	22	70.50	1.00	0.00	17.04	1		19.09	0.00	0.55	22.00
4	23	-28.56	1.00	-0.41	16.72	7	8	15.84	0.00	0.59	22.80
4	24	-40.97	1.00	-0.84	15.85	7	9	15.84	0.00	0.66	22.74
4	25	-43.07	1.00	-1.19	15.07	7	10	14 98	0 00	0.78	22.65
4	26	-44 94	-1 DD	-1 48	14 36	,	4.4	13 20	0.00	0.06	77 40
1	22	10.00	1.00	1.10	17.00	<u>′</u>	1	10.20	0.00	0.00	22.40
4	27	-40.0/	-1.UU	-1.69	13.74	7	12	10.82	0.00	0.92	22.24
4	28	-48.33	-1.00	-1.83	13.18	7	13	7.72	0.00	0.98	21.96
4	29	-49 96	-1.00	-1.90	12 67	7	14	4 10	0 00	1.06	21 67
Ē.		1 20	1.00	1 10	36 50	<u>'</u>	45	0.07	1 00	1 16	21 30
5	1	1.28	1.00	1.12	24.33	1	15	0.07	1.00	1.19	21.00
5	2	4.09	1.00	1.02	24.39	7	16	-4.26	1.00	1.22	21.06
5	3	6.75	1.00	0.90	24.16	7	17	-8.74	1.00	1.24	20,70
5	4	9 18	ດ ດດ	0.78	23 92	7	18	-13 26	1 00	1 22	20 30
5	5	11 20	0 00	n 47	23 60	, ,	10	-17 66	1 00	1 10	10 75
-	2	11.20	0.00	0.0/	27.00	1	17	-17.00	1.00	1.00	13.75
2	b	12.95	0.00	0.57	23.45	7	20	-21.81	1.00	0.83	19.05
5	7	14.05	0.00	0.51	23.26	7	21	-25.57	1.00	0.47	18.20
5 .	8	14.45	0.00	0.53	23.14	Г	22	-28 91	1.00	-0.12	17.23
5	0	14 07	0.00	0 4	23.00	-		34 04	+ 00	-0.70	16 24
é	7	17.07	0.00	0.01	27.00	1	25	-21.01	1.00	-0.70	10.24
5	10	12.85	0.00	U.77	23.02	7	24	- 54.35	1.00	-1.21	15.01
5	11	10.81	0.00	0.91	22.90	7	25	-36.62	-1.00	-1.63	14.50
5	12	8 02	0.00	1,03	22 71	7	76	- 38 70	-1 00	-1 93	13 82
5	4 7	4 50	1 00	1 15	22 . 7	1	20	40.00	1 00	-9 47	13 94
5	12	7.00	1.00	1.15	22.41	1	21	-40.68	-1.00	-2.12	13.24
5	14	0.62	1.00	1.26	22.18	7	28	-42.60	-1.00	-2.23	12.74
5	15	-3.73	1.00	1.36	21.87	7	29	-44.52	-1.00	-2.26	12.29
5	16	-8.36	1 00	1 42	21 52	_ م	1	-0 55	1 00	0.76	23 50
5	17	-13 12	1 00	1 4 1	21 11	0	2	7.5	1 00	0.70	23 36
		1 4 . 11	1 . 1 11 1		· · · · · ·		/	A 10 1		11 17	1 1. 10

... Continue Table 1

... Continue Table 1

8	3	5.35	1.00	0.66	23.20	10	17	-2.96	1.00	1.09	20.17
8	4	8.09	1.00	0.62	23.04	10	18	-6.31	1.00	1.12	19.85
A	5	10 57	1 00	0 58	22 89	10	19	-9 72	1 00	1.11	19.44
0	ć	12 67	1.00	0.55	22.35	10	20	13 11	1.00	1 00	19 91
0	0	12.07	1.00	0.55	22.75	10	20	-12.11	1.00	1.00	10.01
8	7	14.27	0.00	0.54	22.65	10	21	-16.40	1.00	0.75	18.20
8	8	15.23	0.00	0.58	22.58	10	22	-19.54	1.00	0.23	17.31
8 ·	9	15.42	0.00	0.63	22.51	10	23	-22.52	1.00	-0.39	16.31
8	10	14.80	0.00	0.72	22.40	10	24	-25.36	1.00	-0.98	15.34
А	11	13 39	0.00	0 79	22 22	10	25	-28 06	-1 00	-1 47	14 48
0	+ 2	11 25	0.00	0.02	21 96	10	25	30.60	1.00	1 0 3	1 7 76
0	12	11.25	0.00	0.02	21.00	10	20	- 30.00	-1.00	-1.65	12.10
8	13	8.49	0.00	U.8/	21.68	10	27	-33.23	-1.UU	-2.06	13.17
8	14	5.22	0.00	0.94	21.39	10	28	-35.74	-1.00	-2.19	12.68
8	15	1.54	1.00	1.03	21.11	10	29	-38.22	-1.00	-2.23	12.26
8	16	-2.43	1.00	1.11	20.82	11	1	-7.05	1.00	0.16	22.03
8	17	-6.59	1 00	1.15	20.49	11	2	-4 37	1 00	0.13	21.91
a a	1.9	-10 82	1 00	1 16	20 13	11	3	-1 76	-1 00	0 13	21 80
0	10	14. 00	1.00	1.10	19 64	11		0.74	1.00	0.12	24 77
0	15	~14.20	1,00	1.07	19.04	11	4	0.71	-1.00	0.10	21.12
8	20	-18.94	1.00	0.86	18.99	11	5	2.99	-1.00	0.20	21.66
8	21	-22.60	1.00	0.52	18.17	11	6	5.01	-1.00	0.23	21.62
8	22	-25,90	1.00	-0.07	17.20	11	7	6.68	-1.00	0.25	21.60
R	23	-28 84	1 00	-0.68	16 19	11	8	7.92	-1.00	0.26	21.58
0	24	31 40	1.00	1 22	15.26	11	9	8 67	-1 00	n 32	21 55
0	24	- 33.40	1.00	-1.22	10.24	11	10	A 90	0.00	0.22	21 47
8	25	-33.88	-1.00	-1.66	14.42	11	10	0.50	0.00	0.47	21.77
8	26	-36.12	-1.00	-1.98	13.73	11	.11	0.62	0.00	0.55	21.33
8	27	-38.27	-1.00	-2.19	13.15	11	12	7.86	0.00	0.62	21.14
8	28	-40.36	-1.00	-2.30	12.66	11	13	6.66	0.00	0.71	20.92
8	29	-42 45	-1 00	-2 32	12 23	11	14	5.06	1.00	0.81	20.71
9	1	-2 22	1 00	0.56	23 05	11	15	3.09	1.00	0.92	20.52
é	1	2.22	1.00	0.50	20.00	11	16	n a n	1 00	1 02	20 31
9	2	0.75	1.00	0.52	22.92		17	1.00	1.00	1.02	20.04
9	3	3.59	1.00	0.50	22.79	11	57	-1.78	1.00	1.08	20.04
9	4	6.30	1.00	0.48	22.66	11	18	-4.56	1.00	1.12	19.73
9	5	8.78	-1.00	0.47	22.54	11	19	-7.49	1.00	1.13	19.34
9	. 6	10.91	-1.00	0.47	22.44	11	20	-10.50	1.00	1.06	18.86
q	7	12 58	-1 00	0 47	22 36	11	21	-13.53	1.00	0.86	18.21
á	,	13 67	0.00	0.47	22 30	11	22	-16 53	1 00	0.38	17.38
~	0	15.07	0.00	0.45	22.00	11	23	-19 49	1 00	-0.19	16 44
9	9	14.06	0.00	0.55	22.24	11	25	-15.45	1.00	-0.19	10.11
9	10	13.72	0.00	0.62	22.12	11	24	-22.40	1.00	-0.75	15.50
9	11	12.64	0.00	0.68	21.93	11.	25	-25.24	-1.00	-1.24	14.64
9	12	10.91	0.00	0.72	21.68	11	26	-28.04	-1.00	-1.61	13.92
9	13	8 60	0.00.	0.76	21 40	11	27	-30.80	-1.00	-1.87	13.31
õ	4 /	E 00	0.00	0.70	21 12	11	28	- 33 52	-1 00	-2 01	12 81
2	17	9.80	0.00	0.00	21.12	11	29	- 36 21	-1.00	-2 06	12 39
9	15	2.61	1.00	0.92	20.66	10	2)	- 20.21	1 00	0.00	71 50
9	16	-0.90	1.00	1.01	20.60	12	1	-10.14	1.00	-0.06	21.00
9	17	-4.62	1.00	1.08	20.31	12	2	-7.65	~1.00	-0.11	21.38
9	18	-8.45	1.00	1.11	19.98	12	3	-5.24	-1.00	-0.11	21.28
9	19	-12.27	1.00	1.07	19.54	12	4	-2.96	-1.00	-0.09	21.20
9	20	-15 98	1 00	0 91	18 95	12	5	-0.85	-1.00	-0.04	21.16
á	24	-19 40	1 00	0.60	18 17	12	6	1.04	-1.00	0.00	21.14
0	21	-12.40	1.00	0.00	10.17	12	7	2 65	-1 00	0.03	21 15
9	22	-22.12	1.00	0.04	17.24	12	'n	2.00	4.00	0.05	21.15
9	23	-25.69	1.00	-0.58	16.22	12	0	2.92	-1.00	0.06	21.10
9	24	-28.43	-1.00	-1.16	15.25	12	9	4.81	-1.00	U.14	21.15
9	25	-30.99	-1.00	-1.63	14.41	12	10	5.31	-1.00	0.29	21.11
9	26	-33.41	-1.00	-1.97	13.70	12	11	5.43	0.00	0.43	21.02
9	27	- 35 75	-1 00	-2.19	13.12	12	12	5.17	0.00	0.57	20.89
ó	20	-30.05	-1.00	-2 31	12 63	12	13	4.56	1.00	0.69	20.73
2	20	- 10.05	-1.00	-2.71	12.05	12	14	3 62	1 00	0.83	20 57
9	29	-40.33	~1.00	-2.34	12.21	12	14	2.02	1.00	0.0/	20.57
10	1	-4.40	1.00	0.37	22.55	12	15	2.33	1.00	0.74	20.40
10	2	-1.55	1.00	0.35	22.43	12	16	0.73	1.00	1.02	20.19
10	3	1.21	1.00	0.35	22.32	12	17	-1.18	1.00	1.07	19.51
10	4	3 83	1 00	0.35	22.21	12	18	-3.36	1.00	1.11	19.60
10	5	6.23	-1 00	0 37	22 12	12	19	-5.75	1.00	1.13	19.24
10	2	0.27	1.00	0.77	22 05	12	20	-8 33	1 0-0	1.08	18 79
10	ь	0.00	-1.00	0.75	22.05	10	24	-11 04	1 00	0.00	18 19
10	7	10.02	-1.00	0.40	22.01	12.	21	-11.04	1.00	0.92	10.13
10	8	11.20	-1.00	0.42	21.97	12	22	-13.86	1.00	0.49	17.42
10	9	11.78	0.00	0.46	21.91	12	23	-16.76	1.00	-0.02	16.55
10	10	11.73	0.00	0.55	21.81	12	24	-19.70	1.00	-0.54	15.66
10	11	11 05	0.00	0.61	21.63	12	25	-22 67	-1.00	-(), 99	14.85
10	12	9 79	0.00	0.67	21 40	17	26	-25 63	-1.00	-1 34	14 15
10	12	0.70	0.00	0.07	21 14	12	20	20 57	1.00	1 (1	17 51
10	د ۱	- 8.00	0.00	0.12	21.19	12	21	-20.57	-1.00	-1.01	12.24
10	14	5.77	0.00	0.80	20.88	12	28	-31.49	-1.00	-1.76	13.03
10	15	3.16	1.00	0.91	20.66	12	29	-34.37	-1.00	-1.84	12.59
10	16	0.22	1.00	1.00	20.43	13	1	-13.59	-1.00	-0.29	20.99

CORRELATION BETWEEN VERTICAL MOVEMENTS AND GEOLOGICAL FEATURES OF BELGRADE AREA

... Continue Table 1

... Continue Table 1

	1945 - K. P										
13	2	-11 33	-1 00	-0 35	20 86	15	16	-4 04	1 00	D 94	19 64
12	2	-11.55	-1.00	-0.00	20.00	15	10	7.04	1.00	0.04	10.04
- 13.		-9.15	-1.00	~0.57	20.75	15	11	-2.86	1.00	0.94	19.00
13	. 4	-7.09	-1.00	-0.35	20.68	15	18	-4.05	1.00	0.91	19.03
13	5	-5.18	-1.00	-0.31	20.65	15	19	-4.65	1.00	0.89	18.68
13	6	-3.45	-1.00	-0.26	20 66	15	20	-5 71	1 00	0 86	18.27
12	0	- 2.45	-1.00	-0.20	20.00	1.5	20	5.11	1.00	0.00	10.27
13	7	-1.94	-1.00	-0.21	20.69	.15	.21	-7.26	1.00	U.74	17.75
13.	· 8	-0.68	-1.00	-0.14	20.72	15	- 22	-9.29	1.00	0.45	17.15
.13	9	n 32	-1 00	-0.03	20.75	15	23	-11.75	1.00	D 12	16.49
	10	1 05	1 00	0.15	20 75	15	24	-14 55	1 00	-0.19	15 96
12	10	1.02	-1.00	0.15	20.75	15	4	-14.55	1.00	-0.10	15.00
13	jar 11	1.53	-1.00	0.33	20.71	15	25	-17.60	1.00	-0.44	15.28
13	12	1.75	0.00	0.51	20.64	15	26	-20.79	-1.00	-0.66	14.75
13	13	1 71	1.00	0.68	20 54	15	27	-24 06	-1.00	-0 83	14.27
13	1.	1 4 1	1 00	0 83	20 42	46	20	-27 35	-1 00	-0.96	13 81
12	14	1.41	1.00	0.03	20.42		20	-21.35	-1.00	-0.50	12.01
.13	- 15	0.82	1.00	0.94	20.25	15	29	-30.62	-1.00	-1.06	13.36
13	16	-0.08	1.00	1.00	20.03	16	1	-25.43	-1.00	-0.75	19.68
13	17	-1 29	1.00	1 03	19 75	16	2	-23 94	-1 00	-0.88	19.50
4.7	40	0.00	1.00	1.05	10 17	40		22.51	4 00	0.00	10.30
13	18	-2.82	1.00	1.05	19.43	10	2	-22.90	-1.00	-0,90	19.00
.13	19	-4.63	1.00	1.07	19.08	16	. 4	-21.29	-1.00	-0.99	19.27
13	-20	-6.73	1.00	1.05	18.66	16	5	-20.11	-1.00	-0.96	19.25
13	21	-9 09	1 00	0 91	18 10	15	6	-19 01	-1 00	-0 85	19 33
	21	1.07	1.00	0.51	10.10	10		47.00	1.00	0.05	19.99
12	22	-11.68	1.00	0.54	17.40	16	1	-17.98	-1.00	-0.55	19.48
13	23	-14.47	1.00	0.09	16.60	16	8	-16.96	-1.00	-0.49	19.64
13	24	-17.42	1.00	-0.35	15.80	16	.9	-15.91	-1.00	-0.30	19.76
13	25	-20.46	1 00	-0 75	15 06	16	10	-14 79	0 00	-0 10	19 81
	25	20.40	1.00	4.00	44.70	10	10	47.57	0.00	0.10	19.07
13	26	-23.54	-1.00	-1.08	14. 39	16	11	-13.57	1.00	U. 10	19.83
13	27	-26.64	-1.00	-1.32	13.81	16	12	-12.25	1.00	0.32	19.83
13	28	-29.73	-1.00	-1.48	13.30	16	13	-10.87	1.00	0.53	19.81
13	20	- 32 70	-1 00	-1 57	12 85	16	14	-9.49	1 00	0 72	19 75
10	27	- 52.70	-1.00	-1.57	12.00	10	17	-2.42	1.00	0.72	19.75
14	1	-17.34	-1.00	-0.47	20.52	.16	15	-8.21	1.00	0.84	19.63
14	2	-15.32	-1.00	-0.56	20.37	16	16	-7.12	1.00	0.88	19.42
14	3	-13.40	-1.00	-0.60	20.25	16	17	-6.32	1,00	0.89	19.16
14	4	-11 59	-1 00	-0 60	20 18	16	10	-5 99	1 00	0 84	10 03
14	- 2	-11.55	-1.00	-0.00	20.10	10	10	-5.00	1.00	0.04	10.05
14	5	-9.91	-1.00	-0.56	20.16	16	. 19	-5.90	1.00	0.79	18.46
14	6	-8.37	-1.00	-0.50	20.19	- 16	20	-6.45	1.00	0.73	18.04
14	7	-6 99	-1.00	-0.41	20.25	. 10	24	7 50	1 00	0 63	17 54
4.6		5 77	1 00	_0 34	20 31	10	21	-7.58	1.00	0.07	17.54
14	0	-3.11	-1.00		20.71	15	22	-9.29	1.00	U. 35	16.96
14	9	-4.71	-1.00	-0.18	20.36	16	23	-11.52	1.00	0.07	16.36
14	10	-3.79	-1.00	0.02	20.39	16	24	-14.17	1.00	-0.19	15.79
14	11.	-3 01	-1.00	0.23	20.39	46	25	47 47	1.00	0.40	15.75
4.6	10	.2 36	-1 00	0.44	20 37	10	25	-17.15	1.00	-0.40	15.21
14	12	-2.00	-1.00	0.44	20.77	16	. 26	-20.28	-1.00	-0.56	14.81
14	13	-1.87	-1.00	0.64	20.32	16	27	-23.55	-1.00	-0.69	14.38
14	14	-1.55	-1.00	0.82	20.24	16	28	-26 85	-1 00	-0.79	13 96
14	15	-1.47	1 00	0.93	20.08	10	20	70 45	1.00	0.00	13.50
	46	1 67	1.00	0.00	10 05	10	29	-20.15	-1-00	~0.00	13.54
14	10	-1.0/	1.00	0.90	19.05	17	1	-29.62	-1.00	-0.83	19.34
14	17	-2.18	1.00	0.99	19.56	17	2	-28.40	-1.00	-0.97	19.15
14	18	-3.03	1.00	0.99	19.24	17		-27 29	-1 00	-1 07	18 99
14	19	-4 74	1 00	0 99	18 89	17		00.00	1.00	4 4 7	10.07
1.1		T.C.1	4.00	0.00	10.00	17	4	-20.28	-1.00	-1.12	10.0/
14	20	-5.84	1.00	0.90	10.40	17	5	-25.36	-1.00	-1.10	18.85
14.	21	-7.79	1.00	0.85	17.95	17	6	-24.51	-1.00	-0.97	18.96
14	22	-10.12	1.00	0.52	17.30	17	7	-23 67	-1 00	-0 73	19 19
44	27	-12 77	1 00	0 14	16 58	47		22.00	1.00	0.45	10 45
17	2.5	12.11	1.00	0.11	10.00	~ 17	0	-22.00	-1.00	-0.45	19.45
14	24	-15.66	1.00	-0.23	15.87	. 17	9	-21.82	-1.00	-0.24	19.60
14	25	-18.73	1.00	-0.56	15.21	17	10	-20.67	1.00	-0.05	19.65
14	26	-21.90	-1.00	-0.83	14.61	17	.11	-19.32	1.00	0.12	19.64
	0.7	05 44	1.00	4.04	44 07		10	47 77	4 00	0.74	10 61
14	21	-25:11	-1.00	-1.04	14.07	17	12	-17.77	1.00	0.01	19.01
14	28	-28.32	-1.00	-1.20	13.58	17	ii 13	-16.04	1.00	0.49	19.57
14	29	-31.51	-1.00	-1.30	13.12	17	14	-14.24	1.00	0.66	19.50
15	1	-21 31	-1 00	-0 64	20 07	17	15	-12 46	1 00	0 77	19 39
	1	-21.51	1.00	0.04	20.07			12.40	1.00	0.11	10.00
15	2	-19.56	-1.00	-0.74	19.91	217	16	-10.83	1.00	0.81	19.20
15	. 3	-17.90	-1.00	-0.80	19.78	17	17	-9.47	1.00	0.81	18.95
15	4	-16.36	-1,00	-0.81	19.71	17	18	-8.49	1.00	0.77	18.63
15	5	-14 22	-t 00	-0 79	19 69	17	10	-7 99	1 00	n 7n	18 25
15	5	11.72	-1.00	-0.70	10.00	2. L.Z.S	12	0.00	1.00	0.10	17.04
15	6	-13.60	-1.00	-0.70	19.74	- 17 -	20	-8.07	1.00	0.61	17.81
15	7	-12.37	-1.00	-0.57	19.84	17	21	-8.79	1.00	0.49	17.31
15	А	-11.24	-1.00	-0.43	19.94	17	22	-10.15	1.00	0.24	16.77
46	0	-10 46	-1.00	-0.27	20 02	47	22	-12 11	1 00	-0 01	15 21
12	7	-10.10	-1.00	-0.27	20.02		4	-12.11	1.00	0.01	45 70
15	· 10	-9.11	-1.00	-0.07	20.07	17:	24	-14.56	1.00	-0.21	15.70
. 15 .	11	-8,08	-1.00	0.14	20.09	17	25	-17.37	1.00	-0.39	15.23
15	12	-7.07	1.00	0.37	20.09	.17	26	-20.41	-1.00	-0.52	14.81
10	43	-6 10	00	n 60	20.04	47		-23 60	-1 00	-0.62	14.41
12		-0.10		0.00	20.00	1. 1. 1 .	21	-23.00	4 00	0.02	44.07
15	14	-5.22	1.00	0.78	20.01	. 17 (28	-26.86	-1.00	-0.70	14.03
15	. 15	-4.51	1.00	0.90	19.87	17	29	-30,13	-1.00	-0.77	13.63
			1 × 2 ×				S 5 3				

M. Starčević, N. Bratuljević, V. Vasiljev, D. Blagojević

							5 ⁽				
			•••	. Continue	Table 1	10 C - C				Continue	Table 1
18	~ 1	-33.83	-1.00	-0.90	19.06	20	15	-26.82	1.00	0.51	18.86
18	2	-32.85	-1.00	-1.04	18.86	20	16	-24.19	1.00	0.50	18.68
18	3	-31.99	-1.00	-1.16	18.68	20	17	-21.78	1.00	0.50	18.45
18	4	-31.24	-1.00	-1.22	18.55	20	18	-19.74	1.00	0.46	18.14
18	5	-30.57	-1.00	-1.21	18.51	20	19	-18.21	1.00	0.37	17.73
18	6	-29.95	-1.00	-1.06	18.65	20	20	-17.27	1.00	0.26	17.28
18	7	-29.32	-1.00	-0.72	19.00	20	21	-17.00	1.00	0.14	16.81
18	8	-28.61	-1.00	-0.35	19.38	20	22	-17.40	1.00	-0.07	16.04
18	10	-26.60	1 00	-0.10	19.50	20	25	-20 03	1 00	-0.25	15 47
18	11	-25.17	1.00	0.19	19.54	20	25	-22.07	~1.00	-0.51	15.07
18	12	-23.44	1.00	0.32	19.46	20	26	-24.45	-1.00	-0.61	14.69
18	13	-21.44	1.00	0.47	19.38	20	27	-27.07	-1.00	-0.68	14.33
18	14	-19.28	1.00	0.60	19.29	20	28	-29.86	-1.00	-0.74	13.98
18	15	-17.10	1.00	0.67	19.17	20	29	-32.75	-1.00	-0.81	13.61
18	10	-15.0)	1.00	0.71	19.00	21	. 1	-45.52	-1.00	-0.82	10.20
18	18	-11 76	1 00	0.65	18.44	21	3	-45.23	-1.00	-0.95	18.34
18	19	-10.83	1.00	0.58	18.05	21 .	4	-45.05	-1.00	-0.95	18.29
18	20	-10.50	1.00	0.47	17.60	21	5	-44.94	-1.00	-0.85	18.38
18	21	-10.84	1.00	0.36	17.11	21	6	-44.85	-1.00	-0.56	18.69
18	22	-11.87	1.00	0.12	16.59	21	7	-44.69	-1.00	-0.11	19.18
18	23	-13.53	1.00	-0.09	16.08	21	8	-44.38	1.00	0.27	19.58
18	24	-15.72	1.00	-0.27	15.60	21	10	-43.79	1.00	0.41	19.56
18	25	-18.01	1.00	-0.42	10.17	21	11	-41.36	1 00	0.44	19.39
18	20	-24 23	-1.00	-0.61	14.40	21	12	-39.41	1.00	0.45	19.21
18	28	-27.38	-1.00	-0.68	14.03	21	13	-37.03	1.00	0.46	19.05
18	29	-30.57	-1.00	-0.75	13.65	21	14	-34.36	1.00	0.47	18.90
19	1	-37.98	-1.00	-0.92	18.84	21	15	-31.56	1.00	0.46	18.74
19	2	-37.23	-1.00	-1.06	18.65	21	16	-28.82	1.00	0.45	18.56
19	3	-36.59	-1.00	-1.16	18.47	21	17	-28.28	1.00	0.44	18.02
19	4	-35.07	-1.00	-1.24	18.29	21	19	-22 40	1.00	0.31	17.62
19	6	-35.22	-1.00	-1:04	18.48	21	20	-21.27	1.00	0.18	17.16
19	7	-34.79	-1.00	-0.60	18.96	21	21	-20.77	1.00	0.08	16.71
19	8	-34.23	-1.00	-0.12	19.46	21	22	-20.91	1.00	-0.12	16.26
19	9	-33.47	1.00	0.12	19.66	21	23	-21.66	1.00	-0.29	15.83
19	10	-32.39	1.00	0.22	19.62	21	24	-22.95	1.00	-0.44	15.42
19	11	-30.92	1.00	0.29	19.49	21	25	-24.07	-1.00	-0.56	14 66
19	13	-25.08	1.00	0.46	19.24	21	27	-29.16	-1.00	-0.73	14.30
19	14	-24.44	1.00	0.55	19.13	21	28	-31.72	-1.00	-0.80	13.94
19	15	-21.94	1.00	0.59	19.00	21	29	-34.41	-1.00	-0.87	13.57
19	16	-19.53	1.00	0.59	18.82	22	1	-49.63	-1.00	-0.73	18.50
1.9	17	-17.36	1.00	0.58	18.58	22	2	-49.35	-1.00	-0.77	18.41
1.9	18	-15.57	1.00	0.55	18.28	22	5	~49.18	-1.00	-0.78	10.00
19	19	-14.27	1.00	0.40	17.67	22	5	-49.08	-1.00	-0.79	18 51
19	21	-13.63	1.00	0.24	16.94	22	6	-49.06	-1.00	-0.33	18.79
19	22	-14.33	1.00	0.02	16.45	22	7	-48.98	1.00	0.00	19.16
19	23	-15.68	1.00	-0.18	15.97	22	8	-48.71	1.00	0.28	19.44
19	24	~17.58	1.00	-0.34	15.52	22	9	-48.17	1.00	0.40	19.51
19	25	-19.91	1.00	-0.46	15.12	22	10	~47.22	1.00	0.45	19.43
19	26	-22.55	-1.00	-0.56	14.74	22	11	-45.79	1200	0.40	19.27
19	27	-25.41	-1.00	-0.07	14.01	22	12	-41 51	1.00	0.46	18.95
19	29	-31.46	-1.00	-0.76	13.64	22	14	-38.85	1.00	0.45	18.79
20	1	-42.03	-1.00	-0.90	18.68	22	15	-36.06	1.00	0.44	18.03
20	2	-41.46	-1.00	-1.01	18.51	22	16	-33.30	1.00	0.44	18.46
20	3	-41.03	-1.00	-1.09	18.36	22	17	-30.73	1.00	0.43	18.23
20	4.	-40.69	-1.00	-1.13	18.26	22	18	-28.50	1.00	0.39	17.93
20	5	-40.94	-1.00	-1.09	18.27	22	19	-26.71	1.00	0.28	17.53
20	7	-39:94	-1.00	-0.34	19.08	22	20	-25.45	1.00	0.15	11.08
20	8	-39.53	1.00	0.13	19.58	22	22	-24 69	1 00	-0.15	16 20
20	9	-38.87	1.00	0.33	19.73	22	23	-25.18	1.00	-0.32	15.78
20	10	-37.84	1.00	0.37	19.63	22	24	-26.20	1.00	-0.47	15.38
20	11	-36.37	1.00	0.39	19.46	22	25	-27.65	-1.00	-0.59	15.00
20	12	-34.44	1.00	0.42	19.29	22	26	-29.47	-1.00	-0.71	14.62
20	13	-32.11	1.00	0.46	19.14	22	27	-31.58	-1.00	-0.79	14.26
CU	1.4	-12.21	1.00	4.21	12.01	27	28	- 13 47	-1 111	and the second	1 5 441

CORRELATION BETWEEN VERTICAL MOVEMENTS AND GEOLOGICAL FEATURES OF BELGRADE AREA

... Continue Table 1

Continue Table	1
----------------	---

22	29	-36.39	-1.00	-0.93	13.53
23	1	-53.15	-1.00	-0.61	18.45
23	2	-52.94	-1.00	-0.63	18.39
23	3	-52.84	-1.08	-0.61	18.38
23	- 4	-52.82	-1.00	-0.54	18.43
23	5	-52.85	-1.00	-0.40	18.57
23	6	-52.86	-1.00	-0.19	18.80
23	7	-52.78	1.00	0.05	19.06
23	8	-52.53	1.00	0.24	19.25
23	9	-51 98	1.00	0.35	19 31
23	10	-51 05	1.00	0 41	19.25
23	11	-49 65	1 00	0.43	19 13
23	12	-47 79	1 00	л. 44	18 98
23	13	-45 51	1 00	0.44	18 83
23	14	-42.95	1.00	0.44	18 68
23	15	-40.24	1.00	0.44	10.00
23	16	37 55	1.00	0.44	10.35
23	10	- 37.33	1.00	0.47	10.00
23	10	-10.00	1.00	0.40	17.05
23	10	- 22.01	1.00	0.75	17.65
23	19	-31.00	1.00	0.29	17.47
23	20	-29.67	1.00	0.16	17.02
23	21	-28.87	1.00	0.04	16.58
23	22	-28.61	1.00	-0.16	16.15
23	23	~28.89	1.00	-0.33	15.74
23	24	-29.66	1.00	-0.48	15.35
23	25	-30.86	-1.00	-0.63	14.96
23	26	-32.42	-1.00	-0.74	14.59
23	27	-34.27	-1.00	-0.84	14.22
23	28	-36.36	-1.00	-0.92	13.86
23	29	-38.62	-1.00	-0.98	13.50
24	1	-56.46	-1.00	-0.52	18.40
24	2	-56.30	-1.00	-0.51	18.37
24	3	-56.23	-1.00	-0.47	18.38
24	4	-56.23	-1.00	-0.39	18.44
24	5	-56.25	-1.00	-0.26	18.57
24	6	-56.25	1.00	-0.10	18.75
24	7	-56.15	1.00	0.06	18.93
24	B	-55.86	1.00	0.19	19.06
24	9	-55.30	1.00	0.28	19.10
24	10	-54.36	1.00	0.35	19.06
24	11	-53.01	1.00	0.38	18.96
24	12	-51 23	1.00	0.42	18.84
24	13	-49 07	1 00	0 43	18.70
24	14	-46 65	1 00	0 43	18 56
24	15	-44 08	1 00	0.43	18 41
24	15	-41 53	1 00	0.12	18 25
24	17	- 39 12	1 00	0.42	18 04
24	17	36 07	1.00	0.72	17 77
24	18	- 30. 37	1.00	0.75	11.11
24	19	- 35.19	1.00	0.30	17.41
24	20	-33.83	1.00	0.18	16.98
24	21	- 32.96	1.00	0.07	16.54
24	22	- 32.58	1.00	-0.14	16.11
24	23	-32.68	1.00	-0.32	15.71
24	24	-33.24	1.00	-0.48	15.32
24	25	-34.21	-1.00	-0.62	14.94
24	26	-35.53	-1.00	-0.76	14.56
24	27	-37.15	-1.00	-0.86	14.19
24	28	-39.02	-1.00	-0.95	13.83
24	29	-41.07	-1.00	-1.03	13.46
25	1	-59.57	-1.00	-0.44	18.35
25	2	-59.43	-1.00	-0.43	18.33
25	. 3	-59.36	-1.00	-0.37	18.36
25	4	-59.35	-1.00	-0.28	18.42
. 25	5	-59.34	-1.00	-0.17	18.53
25	6	-59.29	1.00	-0.06	18.66
25	7	-59.13	1.00	0.05	18.79
25	8	-58.79	1.00	0.13	18.88
25	9	-58.19	1.00	0.19	18.90
25	10	-57.26	1.00	0.27	18.87.
25	11	-55.95	1.00	0.32	18.79
25	12	-54.27	1.00	0.37	18.68
25	13	-57 25	1 00	0 41	18 57

25	14	-50.00	1.00	0.42	18.44
25	15	-47.62	1.00	0.43	18.30
25	16	-45.24	1.00	0.42	18.14
25	17	-42.97	1.00	0.41	17.94
25	18	-40.94	1.00	0.39	17.69
25	19	-39.22	1.00	0.32	17.35
25	20	-37.88	1.00	0.21	16.94
25	21	-36.97	1.00	0.10	16.51
25	22	-36.50	1.00	-0.10	16.09
25	23	-36.48	1.00	-0.29	15.68
25	24	-36.87	1.00	-0.46	15.29
25	25	-37.64	-1.00	-0.62	14.91
25	26	-38.76	-1.00	-0.76	14.53
25	27	-40.17	-1.00	-0.87	14.16
25	28	-41.82	-1.00	-0.97	13.79
25	29	-43.67	-1.00	-1.04	13.43

CONCLUSIONS

Before forming conclusions, it is necessary to remark that in this paper we used data which have been collected up to date. All relevant geophysical, geological and geodetic data have been made for different purposes, not for investigation of recent crustal movement.

In that case, it is important to organize further measuring compaignes which will provide more necessary data. However, the correlation coefficients derived from existing gravimetric and levelling values, show that between these parameters a natural connection exists. This conclusion proved some earlier reports from this area (Joo, 1990).

A weak correlation between tectonic and levelling data, shows that there was not enough relevant geophysical and geological data.

On the base of new measuring data, we expect that the investigated correlation between different geological, geophysical and geodetic data will be proved.

REFERENCES

Bratuljević N., Starčević M., Blagojević D., Vasiljev V.: 1991, Bull. Obs. Astron. Belgrade, 144, 113-119.

- Joo I., 1990: The recent vertical movement and some geological pecularities of the Pannonlan basin. International Symposium on "Geodynamic Evolution of the Pannonian Basin, Belgrade, 18-20 oct.
- Mladenović M.: 1989, Report on gravity investigation of Belgrade area. "Nafta-gas", Geophysical Institute, Belgrade.
- Sadžakov S., et al: 1990, Multidisciplinary investigation of changing of latitude of Belgrade. Report of Astronomucal Observatory Belgrade.

Fig. 8. Regression of tectonic data on dH (MQ)

Fig. 9. Regression of tectonic data on residual anomalies

110

-
КОРЕЛАЦИЈА ИЗМЕЂУ ВЕРТИКАЛНОГ КРЕТАЊА И ГЕОЛОШКИХ ОБЛИКА НА БЕОГРАДСКОМ ПОДРУЧЈУ

М. Старчевић¹, Н. Братуљевић², В. Васиљев², Д. Благојевић²

¹ Нафта-гас", Геофизички институт, Карађорђева 48, Београд, Југославија ² Грађевински факултет, Институт за Геодезију, Булевар Револуције 73/I, Београд, Југославија

> УДК 528.45 Претходно саопштење

У раду је разматрана међусобна зависност геолошких, геофизичких и геодетских параметара са аспекга праћења вертикалног померања Земљине коре на подручју Београда.

На испитиваном простору нису извођена наве-

дена испитивања специјално за праћење померања Земљине коре. И поред веома оскудног мерног материјала, потврђена је међусобна зависност појединих параметара, изражена кроз њихове корелационе коефицијенте.

DETERMINATION OF THE BENCHMARK HEIGHT CHANGES IN LEVELLING NETWORK BELGRADE DURING THE PERIOD 1930--1959.

ా సంతర్భుత్ అనే అంధి ా , నాయ్ ముల్లాలో కిని విల్

N. Bratuljević¹, M. Starčević², D. Blagojević¹, V. Vasiljev¹

¹ Faculty of Civil enginering, Geodetic Institute, Bulevar Revolucije 73/I, Belgrade, Yugoslavia
² "Nafta – Gas", Geophysical Institute, Karađorđeva 48, Belgrade, Yugoslavia

(Received: April 4, 1991)

SUMMARY: The paper shows some preliminary results of the investigations of the benchmark height changes in the Belgrade levelling network. The results of the reobserved levelling network are compared, analysed and included into the adjustment. A graphycal presentation is obtained and three main locations with significant sinking relative to the center of the network are outlined. In order to help the understanding of the processes which take part in the Belgrade area, the trend of benchmark movements resulted from multiquadric analysis is presented. In our opinion it is possible to compare these data with other geophysical informations.

1. INTRODUCTION

The rapid development of the urban areas continously introduces new requirements for geodetic networks, methods and procedures. A very good solution, concerning surveying and increased engineering demands was developed during the sixties (Jovanović, 1963; Činklović, 1968; Bratuljević and Mrkić, 1984) through the concept of city networks with high network density in the core of the city area, decreasing outwards. Resurveying of these networks was a good oportunity not only for the points positions control, but also for obtaining the results which, under certain assumptions, can serve as a source for a geodynamical investigation of the area under consideration.

There were two major levelling campaigns in Belgrade during the last century. The assumption on benchmarks height changes is based on the urban development as well as on the morphological and geological properties of this location. Many engineering objects which were built in this century, but also a hard damage during the last war, have certainly influenced the vertical position of the benchmarks. Two rivers in the vicinity, as well as many little fault lines show that the surface of the Belgrade location was influenced by artificial and natural geodynamical processes. Accordingly, investigation of the height changes can contribute to the recent crustal movements studies of this area.

This paper shows some preliminary results of the investigations of benchmarks movements, in order to help recognizing of the processes which take part in the area of Belgrade. These results were partly included in the project named "Multidisciplinary investigation of the mean Belgrade latitude changes" which was carried out in cooperation with the Astronomical Observatory in Belgrade and a number of geo-scientists.

2. LEVELLING CAMPAIGNS IN BELGRADE

The first levelling campaign in the northern part of Belgrade was carried out in the begining of this century by surveyers of Austria-Hungary. Those works were prepared in order to connect some parts of the Austria-Hungary levelling network across the river of Danube. After World War I, a levelling network

1.17

was established in Belgrade by monumentating 1680 benchmarks mostly in buildings. The measurements were carried out from 1929 to 1932. Old levelling instruments Otto Fennel were used, as well as wooden rods with graduation on both sides. The network was divided into the first and the second order and consisted of levelling lines forming closed loops. In total 1771 height differences were measured forward and backward. The average lenght of the levelled segments was 278 m. Unfortunately, a part of the documentation was destroyed during the war, so there is no original scheme of the network. The configuration of this network was reconstructed by the aid of the benchmark's numbers common to the latter campaign. During the investigation we have joined epoch 1930 to this network.

After the last war, the damaged network was partly reconstructed and enlarged. Preserved benchmarks from epoch 1930 were used in designing the new levelling network. Measurements were carried out from 1957 to 1960, by using instruments provided by planparalel plates and invar strip rods with double graduation. Compared to the measurements carried out in 1930, the station procedure was somewhat different, but every height difference was also measured forward and backward. The new levelling network had 2594 benchmarks and 2708 height differences on the average lenght of 244 m. We decided to join epoch 1959 to this network: After this campaign, the network was allways enlarged in order to provide a basis for surveying and planning, but a complete reobservation of the entire network was not carried out.

The levelling concepts and obtained data for the Belgrade area were very heterogeneous in the past 70 years. Different instruments, methods and procedures were used. Gravimetric measurements which are necessary to account nonparalelism of the equipotential surfaces did not take place in the levelling campaigns. However, the accuracy achieved is almost comparable with modern surveying demands.

3. DETERMINATION OF THE BENCHMARK HEIGHT CHANGES FROM 1930 TO 1959

rk was 3.1. Data

The basic quantities for this kind of investigation are the height differences common for both epochs. Before they were included in mathematical models, analysis and accuracy estimation had been carried out. The levelling discrepances ρ from double levelling were tested in each epoch. It was found out that there

where tested in each epoch, it was found out that there was no significant constant systematic error in the measurements. Due to the fact that random errors prevail in measurements, it was decided to homogenize the differences ρ by use of the formula:

Figure 1. Frequency histogram of z

where ρ_i is in [mm], R_i are corresponding lenghts in [km]. Figure 1. shows the frequency histogram of quantities z in both epochs.

It can be seen that there is a great number of small values of z in both epochs. It is well known that levelling errors do not obey the normal distribution because of various systematic influences. Rejecting the hypothesis which assumes normality, was an expected result (Table 1.).

Table 1.

Epoch	Chi-square	f Re	jected
1930	486.8	9	yes
1959	96.7	18	yes

Rejecting the outliers and applying the formulae:

$$\hat{\sigma}_{0} = \sqrt{\frac{1}{4n} \frac{n}{\sum} \frac{\rho_{1}^{2}}{R_{1}}}$$

the accuracy of 1 km double levelling was obtained for both epochs:

 $\hat{\sigma}_0 (1930) = 1.60 \text{ mm} / \sqrt{\text{km}}$

$$\hat{\sigma}_0(1959) = 0.79 \text{ mm}/\sqrt{\text{km}}$$

These estimations have more than 1000 degrees of freedom, so they can be considered as very reliable. Further, on the basis of the loop misclosures (10 for epoch 1930, and 20 for epoch 1959) by the aid of formulae:

$$\hat{\sigma}_0 = \sqrt{\frac{1}{n} \frac{n}{\sum} \frac{\varphi_i^2}{F_i}}$$

where φ_i is the misclosure in [mm], and F_i perimeter in [km] we obtained:

$$\hat{\sigma}_0(1930) = 1.38 \text{ mm}/\sqrt{\text{km}}$$

 $\hat{\sigma}_0(1959) = 0.80 \text{ mm}/\sqrt{\text{km}}$

referring to the measurements which belong to the first order part of the network. It can be seen that the accuracy in both epochs can not be compared to each other. To justify the application of mathematical models, the differences between the common height differences and the corresponding variances were calculated:

$$dh_{i} = \Delta h_{i} (1959) - \Delta h_{i} (1930)$$

$$\hat{\sigma}_{i}^{2} = [\hat{\sigma}_{0}^{2} (1930) + \hat{\sigma}_{0}^{2} (1959)] R_{i} = 3.2 R_{i}$$

The significance was accepted for all differences dh_i which have fullfilled the condition:

$$dh_i > 1.96 \delta_i$$

Since there was 88% of significent differences dh we concluded that height changes of benchmarks have to be determined.

3.2. Models

The usual way for determination of benchmark height changes is adjustment of levelling networks for both epochs and comparing the obtained heights. In order to prepare such an adjustment, we had to form both networks from available scattered levelling segments. Generalized configuration of both networks as well as common levelling lines can be seen on Figure 2. The adjustment of each epoch was carried out by the aid of functional and stochastical model which, in the case of real measurements, take form:

$$\vartheta = A\hat{x} - 1$$
$$K_1 = \vartheta_0^2 P^{-1}$$

where ϑ is the vector of corrections, A is the design matrix of known coefficients, \tilde{x} is the vector of unknown heights, 1 is the vector of measured height differences, σ_0 is the variance factor, P is the weight diagonal matrix with reciprocal of the segment lenghts and K_1 is the variance-covariance matrix. Applying the minimum norm condition, following results can be obtained:

$$\hat{\mathbf{x}} = (\mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{I}$$
$$\hat{\sigma}_{0}^{2} = \vartheta^{\mathrm{T}} \mathbf{P} \vartheta / f$$
$$\mathbf{K}_{\mathbf{x}} = \hat{\sigma}_{0}^{2} (\mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{A})^{-1}$$

where f is the degree of freedom (redundance), and K_x is the variance covariance matrix whose elements represent the variances of obtained heights. The adjustment procedure have involved nodal benchmarks only. The heights for the rest were obtained trought the condition adjustment between nodal points. Some results are shown in Table 2.

T	2	h	le	2
*	u			

Epoch	្ម័	n	ô ₀	f
1930	166	235	1.88mm/km	70
1959	155	245	1.20mm/km	91
1939	133	245	1.20mm/ km	

u – the number of benchmarks

n - the number of measurements

During the adjustment procedure, the height of the benchmark R-302 was held fixed in order to avoid singularity. The largest height variance relative to the point R-302 placed in the central part of the network,

Figure 2. Configuration of networks

was: 3.4mm for the epoch 1930 and 2.4mm for the epoch 1959. Differences and variances:

$$\Delta_{i} = H_{i} (1959) - H_{i} (1930)$$
$$\hat{\sigma}_{i}^{2} = \hat{\sigma}_{H}^{2} (1959) + \hat{\sigma}_{H}^{2} (1930)$$

were used to represent graphically the movement of benchmarks and movement variances in the form of isolines (Figure 3.)

In order to employ over 700 scattered height differences common for both epochs, we decided to apply another model. According to Holdahl and Hardy (1970), the vertical movement of the benchmarks can be considered as a function of position and therefore modelled as:

$$dH_{i}(x,y) = \sum_{j=1}^{m} c_{j} [(x_{i} - x_{j})^{2} + (y_{j} - y_{j})^{2} + D^{2}]^{0.5}$$

where x_i , y_i represent the plane coordinates in a suitable coordinate system, x_j , y_j are the known coordinates of so-called MQ nodal points, D is the the geometrical parameter which controls the shape of the hyperboloid used, and C_j are the unknown parameters. MQ nodal points have to be placed in points where the most height informations are available. Regarding the differences between the height differences measured in both epochs as horizontal gradients of dH the unknown parameters C_j can be determined by means of the least-squares method. Results of such determinations are listed in Table 3.

During this procedure the height change of the point R-302 was assumed to be zero. The accuracy estimation was carried out by the aid of the law of error propagation. Using again the isolines similar to those in Figure 3. the obtained results and the graphical presentation are shown in Figure 4.

DETERMINATION OF THE BENCHMARK HEIGHT CHANGES IN LEVELLING NETWORK BELGRADE DURING THE PERIOD 1930–1959.

Figure 3. Isolines of benchmark movements (solid lines) and variances (dashed lines). Dimensions in [mm]

Table 3.

S

ıl d ıl

t

S

S

S

S

1

j	Ĉ	$\hat{\sigma}_{j}$	$\hat{C}_j/\hat{\sigma}_j$
1	+24.92	10.14	2.46
2	-10.36	15.13	0.68
3	+23.26	11.71	1.99
4	- 24.82	13.41	1.85
5	-22.32	17.94	1.24

3.3. Discussion

Regarding Figure 3, it can be seen that there are significant benchmark movements in the range from

+10mm to -50mm relative to the benchmark R--302 placed at the center of the network. Three locations with evident sinking can be outlined. The area of Kalemegdan and partly that of Stari Grad have changed their heights for the amount of --10mm to -20mm. On the location of Vracar, the benchmarks have changed their heights for about --30mm. The most significant sinking was recorded on Topcidersko Brdo and reaches some --50mm. The rest of the network did not move vertically. Some parts slightly raised for +10mm.

On the other side, there is a certain degree of agreement between Figures 3. and 4. In our opinion, the trend shown in Figure 4. is more appropriate for the investigations of the correlation with other geophysical data.

Figure 4. Isolines of benchmark movements (solid lines) and variances (dashed lines). Dimensions in [mm]

4. CONCLUSIONS

There was a significant change in the benchmark heights of the Belgrade levelling network during the period from 1930 to 1959. Assuming linear movements it can be said that the velocity of the benchmarks varied between ± 0.3 mm per year and ± 1.7 mm per year relative to the center of the network. However these velocities can not be refered to the crust because of many nontectonical influences. A general tendency of the Belgrade location is sinking relative to the central part of the area.

REFERENCES

- Bratuljević N., Mrkić R.: Trigonometrijske i poligonometrijske mreže u gradovima SR Crne Gore, Građevinski fakultet Univerziteta u Beogradu, institut za geodeziju, Beograd 1984, pp.203.
- Činklović N.: Osnovne gradske geodetske mreže. Kongres SGIG, Sarajevo, 1968.
- Gubler E.: The determination of Recent Crustal Movements from Precise Levelling data. Workshop on Precise Levelling, Hannover, 1983.
- Holdahl S., Hardy R.: Solvability and multiquadric analysis as applied to investigations of vertical crustal movements. Tectonophysics, 1979(52), pp.139-155.
- Jovanović M.: Gradska trigonometrijska mreža. Doktorska disertacija, Beograd, 1963.

Svečnikov N.: Gradske geodetske mreže. Beograd, 1964.

DETERMINATION OF THE BENCHMARK HEIGHT CHANGES IN LEVELLING NETWORK BELGRADE DURING THE PERIOD 1930–1959.

ОДРЕЂИВАЊЕ ПРОМЕНА ВИСИНА РЕПЕРА У НИВЕЛМАНСКОЈ МРЕЖИ БЕОГРАДА ЗА ПЕРИОД 1930–1959 ГОДИНЕ

Н. Братуљевић¹, М. Старчевић², Д. Благојсвић¹, В. Васиљев¹

¹ Грађевински факултет, Институт за геодезију, Булевар Револуције 73/I, Београд, Југославија ² "Нафга — Гас", Геофизички институт, Карађорђева 48, Београд, Југославија

> УДК. 528.422 Претходно саопштење

Рад приказује прелиминарне резултате истраживања промена висина репера у градској нивелманској мрежи Београда. Резултати поновно нивелане мреже су упоређени, анализирани и укључени у изравнање. Дата је графичка представа и издвојене три главне локапије са значајним слегањем у односу на средиште мреже. У циљу бољег разумевања процеса који се одигравају на подручју Београда, представљен је и тренд померања репера добијен тзв. мултиквадратном анализом. По нашем мишљењу, ове је податке могуће упоређивати са осталим геофизичким резултатима. Bull. Obs. Astron. Belgrade N^O 144 (1991), 121-124

UDC 528.232.21 Preliminary report

ENGINEERING GEOLOGICAL ASPECTS OF CHANGES IN BELGRADE MEAN LATITUDES

M. Lazić

Geozavod, Karađorđeva 48, 11000 Belgrade, Yugoslavia

(Received: April 4, 1991)

SUMMARY: Engineering geological investigations were carried out under the "Multidisciplinary Study of Changes in Belgrade Mean Latitudes". The departing point for engineering geological investigation was the principal assumption that changes in latitudes result from the recent geological processes. To corroborate the assumption, relevant investigations were carried out, and available data analysed. The establishment of and observation network in landslides was the main work.

1. INTRODUCTION

The engineering geological investigations under the above study have been planned and carried out for elucidation of the part of all engineering geological conditions in changes of the relief, and consequently in mean latitudes.

The investigations consisted of the following: - compilation and interpretation of available

data;

- engineering geological reconnaissance and survey in field;

- observation of process development in selected typical landforms, and

- consideration and synthesis of data.

This paper is a summary of the past engineering geological investigation results.

2. BASIC APPROACH TO INVESTIGATIONS

The investigation area was the township of Belgrade and its general area. The reported engineering geological investigations covered the following: - recognition of recent geological processes and occurrences, especially landslides, responsible for changes in the relief and reflected on changes in latitude;

 establishing causal relationship of all influential factors on changes in the relief, particularly between exogenic and endogenic processes and phenomena;
establishing the effects of sheet and linear

erosion processes on the formation of microrelief forms; and

- establishing the landslide processes by observation of the amounts and rates of their progress.

The engineering geological investigations of the earlier stages were based on compiling data, selecting occurrences for observation, and partly monitoring the sliding rates at selected occurrences.

Zones of observation were selected where the geotectonic interpretation indicated major dislocations involving landslides. In some of the zones, the engineering geological survey was parallelled with hydrogeological investigation, for a better study of the area.

Besides observations in the newly set network of observation points in selected landslides, for interpretation the use was made of earlier records on landslides: in Duboko, on the Sava slope, in Kotež Neimar.

(-2) (); (-2) (); (-2)

Fig. 1. - Engineering geological map of Belgrade area. Zoning by instability process development conditions,

- Scale 1:500,000
- 1. Alluvial plains of fluvial deposits stable, unsusceptible to sliding.
- 2. Loessland unstable free faces in the Danube bank.
- 3. Neogene basin: a) dominantly unstable slopes; b) lake terraces stable; c) Neogene carbonate sediments landslide in slow progress.
- 4. Old cemented rocks: a) flysch and flyschlike clastic and earbonate sediments, in variable landsliding process; b) magmatic rocks and serpentinite – small rockslide and debris slide.

Figure 2. Landslide at Cortanovci (schematic section according to M.T. Luković) 1 - loess; 2 - deluvial crumpling clay; 3 - Plioceneous sandy clay and clayey sand with fine sand lenses; 4 - sliding body; 5 - alluvial mud-sand terrace.

Figure 3. Vinča landslide: 1 - the main scarf; 2 - loess; 3 - Plioceneous sand; 4 - Miocenous shale; 5 - exploration boreholes; 6 - exploration shaft.

Figure 4. Cross section of the unstable slope at Ritopek according to J. Perić: 1 - river deposit; 2 - loess; 3 - Neogeneous sand; 4 - Neogeneous clay; 5 - piesometric level in aquifiers.

Jatagan Mala, some of which are located in active fault zone (the Sava slope stretch from Gazela Bridge to Kalemegdan).

3. EARLIER INVESTIGATION DATA

Consideration of the available data was supported by additional observations of landslide processes in selected landforms: Ritopek, Umka, Barič, and Mislođin. Landslide in Ritopek was activated in 1942, when the centre of Ritopek village was cought in the disastrous massmovement. The sliding processes were reactivated in February 1970.

At present, the observed part of the landslide does not show significant deformations. Under unfavourable hydrologic conditions, however, the landslide is likely to be reactivated in some zones. Significant landslides are a cyclic event, every 28-30 years. Massmovement land forms and processes involving the downslope transport, like those in Ritopek, are developed alongside the right Danube bank, in village areas of Vinča, Višnjica, and Karaburma.

Landslides in Umka cover the landforms of the immediate right Sava slope, in the sloping part of the Umka town. The landform developed in altered marlclay complex, 5 to 20 m deep, resulting in many secondary deformations. Along the Sava bank, large fractures showed exceeding 800 m in length and 1-2 m in level difference. The deformation can launch new massmovements during the next unfavourable hydrologic cycles and variations in the Sava level. Significant landslides are also expected in the upper slope zone. Land deformations are daily, noted on the engineering structures.

Landslides in Barič and Mislođin were reactivated in 1976, after the Bucarest earthquake, and during the extremely wet period and spring floods of 1981. Massmovement processes are recurring, resulting in new fractures and various microrelief landforms. Future deformations in the slopes of high intensity are expected in new landforms: notable massmovement down the slope and delevelling in the least stable sections, such as Golo Brdo slope overlooking Barič collony and directly over the Kolubara river.

4. DISCUSSION

The described observations on landslides, which directly involve changes in the landforms, are based on our observations and available records. However, because the records are not uniform in distribution and cover a short period of observation, the data are not reliable. Field investigations were used to study the geolo-

gy of the area, as an important factor of deformation

processes. For a complete geodynamic study, more records are required of external and internal force effects on all components of the geologic structure for a sufficiently long period.

Future investigations will follow the adopted scheme, and the planned methods will be used.

Results of complete engineering geological investigation will provide *the engineering geological data* base for consideration of all factors responsible for relief modification, primarily those leading to land erosion and sliding.

The observation of landslide processes is planned to be extended to a larger area to cover different environments and natural conditions contribution to the deformation processes.

REFERENCES CLARK AND AND ADDRESS

- ***: 1982–1987, Cadastar of Landslides and Unstable Slopes in Belgrade Area, Institute for Construction of Belgrade Town.
- Lazić, M.: 1975, Engineering Geology of the Kolubara Basin and Belgrade Area, Geozavod, Beograd.
- Lazić, M.: 1991, Engineering Geological Map of the Territory of Serbia (Excluding Autonomous Provinces) 1:200,000. Geozavod, Beograd.
- Lazić, M. and B. Božović: 1984, Analysis of the Engineering Geological Study of Belgrade Area Stability, in: Proceedings of the Conference on Geological Investigations in Economic and Regional Planning of Belgrade.
- Lokin, P., D. Sunarić and T. Cvetković: 1988, Landslides in Neogene Sediments of the Danube Bank, In: Proceedings of the Fifth International Symposium on Landslides, Lausanne.
- Perić, J.: 1970, in: Zbornik radova RGF, 13, Beograd.
- Petrović, V.: 1984, Analysis of Engineering Geological Stability Conditions for Serbia (Excluding Autonomous Provinces), Geozavod, Beograd.

ИНЖЕЊЕРСКОГЕОЛОШКИ АСПЕКТИ ПРОМЕНА СРЕДЊИХ ГЕОГРАФСКИХ ШИРИНА У ПОДРУЧЈУ БЕОГРАДА

М. Лазић

Геозавод, Карађорђева 48, 11000 Београд, Југославија

УДК 528.232.21 Претходно саопштење

Инжењерскогеолошка истраживања изведена су у оквиру сгудије "Мултидисциплинарна изучавања промена средњих географских ширина на подручју Београда". При инжењерскогеолошком изучавању пошло се од основне поставке да су промене географских ширина последица деловања и савремених геолошких процеса. У циљу потврђивања ове поставке изведена су одговарајућа истраживања, уз анализу података из постојеће документације. Успостављање осматрачке мреже на клизиштима представља основну врсту посла за решавање наведеног проблема.

HYDROGEOLOGIC BASE FOR THE STUDY OF CHANGES IN BELGRADE MEAN LATITUDES

M. Komatina

Geozavod, Karađorđeva 48, 11000 Belgrade, Yugoslavia

(Received: April 4, 1991)

SUMMARY: The present development stage of the complex geodynamic investigations and predictions of earthquakes, as particularly notable phenomena of movement mechanisms within the Earth's crust, is characterized, among others, by the acceptance of the hydrogeoseismological method and its ample use in many seismic active regions of the globe. The feasible devlelopment of a hydrogeological data base for the study of the geodynamics, or the changes in Belgrade mean latitudes is considered.

1. INTRODUCTION

The geodynamic investigations and prediction of earthquakes, very important for an objective interpretation of changes in the mean latitudes of a territory, has long dwelled only on monitoring the Earth's crust movements and seismic activities, before acquiring in the last thirty years a multidisciplinary approach. The neotectonic geodynamics is based at present on all relevant data: seismological and engineering geological characteristics, geophysical parameters, repeated levelling results, astronomical control of terrestrial movements, modifications in chemical and gaseous compositions of ground water, etc. The modern development stage of complex geodynamic investigations and predictions of earthquakes, as particularly notable phenomena among the Earth's crust movement mechanisms, is characterired, inter alia, by the acceptance of the hydrogeo-seismic method and its ample use in many seismically active regions of the world.

The work under the "Multidisciplinary Study of the Changes in Belgrade Mean Latitudes" Project, during 1989 and 1990, has shown an abundance of hydrogeological information, of interest for the Project, but also the lack of many important data, such as, for instance, data on deep water horizons. While dealing with the principal tasks of the given research project, the consideration in hydrogeology was given to the ground water geology of the area, the genesis and movement of thermomineral waters, chemical composition and gas regimen in deep boreholes of the general town environs, and potential indices of tectonic block displacements.

2. HYÐROGEOSEISMOLOGICAL APPROACH TO THE GEODYNAMIC STUDIES

Isolated published reports on changes in the water temperature and the level in wells and springs, disturbances in the activity of geyzers, and disappearance of springs before earthquakes, have become common in this century. However, only the results of long systematic studies of a number of instructive localities all over the globe have cast the light on the feasibility of hydrogeoseismological prediction of earthquakes, to mention only Tashkent and Fergana geodynamic sites in the Soviet Union, sites in the United States, Japan, China, and other countries, established in the last quarter of the century. Thus the hydrogeological method was developed, based on the studies of hydrodynamic regimen, chemical, gaseous, and isotopic compositions of ground water in association with the occurrence of seismic activity under certain geotectonic conditions, and a proved feasibility of the time of an earthquake

171 - Lé O**G**U

event prediction. It has also been established, that each given area, relative to its geology and hydrogeology, requires a specific scientific approach and selection of a particular hydrogeologic element of reference.

In their efforts to predict earthquakes, Japanese, American, Soviet, Chinese and scientists of other countries concentrated the attention on the rapid changes in well water levels, spring discharges, temperature, chemical and gaseous composition of water. This included also sudden depletion or turbidity of water wells before earthquakes (Wakita, 1982; Mogi, 1985; Mavlyanov, 1983; Ulamov, 1966; Yoshioka, 1978; Deng, 1975). Records are given in the literature of successful observations of numerous water wells and artesian springs in China, Soviet Union, Japan, and other countries. For example, significant fluctuations in ground water level and composition were registered in a large area prior to 1975 Haicheng earthquake (China). Soviet seismologists, who monitored changes in Tashkent Geodynamic Site, came to the conclusion that observation data for gaseous, chemical, and isotopic compositions of water could be used in earthquake predictions (Mavlyanov et al., 1983). Thus, the known Tashkent earthquake was predicted in 1966 on the basis of the monitored radon concentration variations (Fig. 1).

The geological Survey of Japan made a numerosity of ground water observations in many boreholes. Among other findings, a decline of 7.0 m (Fig. 2) was registered in *Funabari well* (central Idzu peninsula) during the 1987 earthquake, and the earlier stable temperature in the nearby *Siraiva* locality suddenly dropped a month before the earthquake and continued to decline. Variations in ground water levels were registered on the entire American continent, even at distances of five thousand kilometres from the epicentre, associated with the disastrous earthquakes (March 1969) on Alaska.

3. MAIN HYDROGEOLOGIC FEATURES

The territory of Belgrade township is characterized by a complex geology and hydrogeological

Fig. 1. – Radon concentrations (dots) in deep boreholes versus time (Tashkent, Central Asia). Black vertical lines: 1966 earthquake intensities.

14

conditions. Four types of *aquifers* are recognized on this territory: (1) river alluxiums; (2) calcareous rock masses; (3) incoherent Neogene sediments; and (4) Paleozoic-Mesozoic base to Neogene sediments. Among these environments, somewhat lower in hydrogeological significance is the complex of dominantly permeable rocks of Paleozoic and Mesozoic ages.

Alluviums of the Sava and the Danube Rivers are distinguished by high permeabilities and large reserves of fresh ground water. They vary in thickness from 15 to 25, even to 40 metres. The water-bearing sand-gravel beds have good communication with the rivers.

Calcareous water-bearing rocks, together with other hard rocks of the *Shumadian Mesozoic Ridge'*, generally extend in north-south direction, from the Danube (at Kalemegdan) toward Kosmaj. Notable in the group of strata are Sarmation limestones, which have a significant subsurface extent, but dip westward and eastward from the 'Shumadian Ridge' centre. The water from this aquifer is used for domestic supply at Sopot, Barajevo, Guncate, and Vranić.

Fig. 2. – Change in *water level* in a deep borehole at *Fundabora*, central Idzu peninsula, Japan.

Neogene incoherent sediments extend east and west from the 'Shumadian Ridge'. Sandy and gravelly sediments vary in thickness, within the group of incoherent rock beds (of dominantly argillaceous rocks), from ten to two hundred meters. The Pannonian and Pontian sands and gravels are of particular interest, because they are a source of water supply to Mladenovac, Grocka, Vrčin, and some other built up areas. The rock masses of the Palaeozoic complex are covered with thicker or thinner rocks of Cretaceous or Tertiary age. Marbled limestones, marbles and quartzites, and contact zones of Palaeozoic rocks and magmatic intrusions, can be bearers of geothermal fluids of practical interest.

The territory is marked by occurrences of *mineral, thermal, and thermomineral waters*. The known springs and wells are, for example, those in Višnjica, Ritopek, Leštani, Boleč, Vrčin (Fig. 3), Ovča, Omoljica, Obrenovac, Vranić, "Braća Jerković" borough (Fig. 4). Most of these occurrences are associated with the zone of Tertiary sediments or the underlying Cretaceous sediments, and mark the existence of artesian water horizons.

The warmest water (51°C) in the general Belgrade area is found at Kupinovo. According to hydrogeologic data, the Belgrade area is abounding in hydrogeothermal resources: thermal water of 62°C was found by drilling at the depth of 789-1137 m in *Selters* at Mladenovac, and of 67°C at 817-862 m in Jugovo near Smederevo. Like in Jugovo, highly mineralized warm water has been found in its general area. The dry residue of this water is up to 19 g/1, and its significant constituents are fluor, ammonia, iron, etc. Water of this kind, classified as mineral water of chloride-sodium type of high mineralization rate: about 16 g/1 and high Cr, Cl, J, CH₄ concentrations, is found by drilling at Ovča.

4. HYDROGEOLOGICAL DATA BASE

The Belgrade area has been the site of voluminous and different geological and hydrogeological investigations. Some of the collected information is instructive for geodynamic studies and interpretation of changes in mean latitudes of the area. This primarily refers to deep drilling data and occurrences of thermomineral water. The occurrences of particular interest for this purpose are those in the Shumadian zone of the Inner Dinarides at the large Avala-Mladenovac-Kragujevac dislocation, or the border zone with the Serbian-Macedonian Massif.

For the formation of a reliable modern hydrogeological data base to serve the given task, the available volumionous documentation (primarily the cadastar of exploratory boreholes in the township and its environs, and the complex geological map of the area at 1:10,000) will be used in accurate locating and establishing the hydrogeological role of all significant water horizons and faults, essential in elucidating the geodynamic activity and proper location of observation points. The selection of observation points will, in this case, follow upon the correlations with other disciplines (neotectonics, seismology, geophysics, engineering geology, geochemistry, geodesy, astronomy), provided the following conditions: (1) the observation facility is located in a neotectonically active zone; (2) a deep aquifer is tapped, isolated from influences of shallower aquifer, surface water or precipitations; (3) the observation facility is adequately equipped; (4) regimen of the observed water horizon is not disturbed by artificial factors, primarily by pumping. Each of the selected facilities will be observed for variations in piezometric level, water temperature, and radon (and possibly some more chemical constituents in water) concentration.

The purpose *hydrogeological data base* should include the following:

in a station of the state

- (a) hydrogeological properties of rocks in the area;
- (b) spatial position, parameters and place of all significant aquifers and faults;
- (c) formation, flow, and discharge of ground water;

Fig. 3. – Geological section in the Zavojnička River valley. 1) Pannonian marl and clay; 2) pannonian sandstone; 3) Sarmatian limestone; 4) Basal conglomerates: 5) Serpentinite.

- (e) variation in gaseous composition and gas emanation intensity;
- (f) ground water regimen (variations in level, temperature, chemical and gaseous compositions in time);
- (g) relation of geodynamic effects in the Earth's crust surface to the hydrogeological situation.

The data base will be one of important references for geodynamical investigations in Belgrade area and useful in selecting indices of tectonic block displacements for a more reliable prediction of earthquakes.

REFERENCES

Deng, Q. et al.: 1981, in: Earth quake Prediction. Maurice Ewing Series IV. Am. Geophys. Union, Washington, 543-565.

(1) (1) (1) (1) (1)

Komatina, M.: 1973, Vesnik Geozavoda, XII/XIII, Ser. B, Beograd, 5-46.

Komatina, M.: 1976, *Rasprave Geozavoda*, XVII, Beograd, 1-64.

Mogi, K.: 1985, *Earthquake Prediction*. Academic Press, Tokio. 1-382.

Perić, J. and M. Milivojević: 1981, Geothermal Resources of Avala-Kosmaj-Bukulja-Rudnik Area. Beograd, 1-156

Ulomov, V.I. and B.Z. Mavashev: 1971, Tashkentskoe zemletriasenie 26 aprelya 1966. Tashkent.

Wakita, H.: 1982, in: *Earthquake Prediction Techniques* (Toshi Asada, ed.), Tokio, 175-216.

Yochioka, R.: 1980, Proc. Earthquake Predict., Res. Symp.. 1980, (in Japanese), 159.162.

1 2 3

Fig. 4. – Prediction thermograph for a borehole in "Braća Jerković" borough. 1) Clay and marl; 2) Gravel; 3) Marl; 4) Conglomerate; 5) Sandstone; 6) Measured water temperature; 7) Depth of "neutral zone"; 8) Water temperature curve for borehole; 9) Prediction temperature curve in situ.

ХИДРОГЕОЛОШКА ОСНОВА ЗА ИЗУЧАВАЊЕ ПРОМЕНА СРЕДЊИХ ГЕОГРАФСКИХ ШИРИНА БЕОГРАДА

М. Коматина

Геозавод, Карађорђева 48, 11000 Београд, Југославија

УДК 528.475 Претходно саопштење

Савремена етапа развоја комплексних геодинамичких истраживања и прогнозе земљотреса, као посебно маркантних феномена у склопу механизма кретања земљине коре, карактерише се, између осталог, прихватањем хидрогеосеизмолошке методе и њеним

широким коришћењем у многим сеизмичким активним рејонима света. Предмет рада је могућност стварања хидрогеолошке основе за изучавање геодинамике односно промена средњих географских ширина Београда.

INSTRUCTIONS TO AUTHORS

The Bulletin de l'Observatoire astronomique de Belgrade publishes original observations and researches in all branches of astronomy. Submit manuscript to the Editor-in-chief, Bull. Obs. Astron. Belgrade, Volgina 7, 11050 Belgrade, Yugoslavia. Submission is a representation that the manuscript has not been published elsewhere. Two copies of manuscript, written in English or French are required; the originals of the figures and camera-ready tables should be sent with the first submission. Style should follow the system used in recent issues of the Journal.

SUBSCRIPTION

Subscription rate per year \$ 20. For Yugoslavia: individuals Dinars 100, institutions Dinars 300. Subscription should be sent:

- in Dinars to the Bank account No 60803-603-4517 (za Bilten)
- payment in foreign currency by cheque direct to the Editorial office, or by means of an international money order addressed to: Jugoslovenska knjiga, Export-Import,

Trg Republike 5, 11000 Belgrade, P.O.Box 36, Yugoslavia.

Back-number price \$10 for single copy.

Bulletin de l'Observatoire astronomique de Belgrade N⁰ 144, Beograd, 1991.

CONTENTS

Original scientific papers:

Revie

Prelin

S. Ninković	A study of the velocity distribution for a particular case of the spherical symmetry	1
T. Bicskei, M. Popeskov	Geomagnetic field observations in the Kopaonik thrust region, Yugoslavia	5
w papers:		
G. M. Popović	Triple star systems nearer than 200 pc	13
inary reports:		
G. M. Popović	Micrometer measurements of double stars (Series 45)	39
D.J. Zulević	Micrometer measurements of double stars (Series 46)	47
R.S. Izmailov N.G. Litkevich, S.N. Sadžakova, V.D. Simonenko, T.I. Suchkova, S.A. Tolchel'nikova–Murri V.I. Turenko	The comparison of the accuracy of the determination of right ascension by means of transit instruments of different types	61
M.S. Dimitrijević, S. Sahal–Bréchot V. Bommier	Stark broadening parameter tables for spectral lines of multicharged ions of astrophysical Interest. I.: C IV lines	65
M.S. Dimitrijević S. Sahal–Bréchot V. Bommier	Stark broadening parameter tables for spectral lines of multicharged ions of astrophysical interest. II.: Si IV lines .	81
M. Starčević, N. Bratuljević V. Vasiljev, D. Blagojević	Correlation between vertical movements and geological features of Belgrade area	101
N. Bratuljević M. Starčević D. Blagojević V. Vasiljev	Determination of the benchmark height changes in levelling network Belgrade during the period 1930–1959	113
M. Lazić	Engineering geological aspects of changes in Belgrade mean latitudes	121
M. Komatina	Hydrogeologic base for the study of changes in Belgrade mean latitudes	125